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Displacements of the helical stator tooth for 
an electromechanical integrated toroidal drive 
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Abstract. The stator tooth is a key component of the electromechanical integrated toroidal drive
system. The stator tooth is spiral in shape and the calculation of its displacements is difficult. In this
paper, using the coordinate transformation method, the displacements of the stator tooth in the local
coordinate system are expressed as the function of the variable in the drive coordinate system. Using the
minimum potential energy principle, the equations of the displacements of the stator tooth under the loads
are deduced. The displacement distributions within the stator tooth are investigated and the changes of the
displacement distributions along with the main parameters are analyzed. This research can offer the basis
for the strength and stiffness design of the drive system.
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1. Introduction

A toroidal drive can transmit large torques in a very small size and is suitable for applications to

the technical fields such as aviation and space flight, etc (Kuehnle et al. 1981, Yao et al. 2006, Wei

et al. 2008). As more and more electrical and control techniques are utilized in the mechanical

engineering field, electromechanical integrated drive systems have become an advancing edge of the

mechanical science. 

Many types of the magnetic gear drive have been proposed and investigated recently (Mezani et

al. 2006, Jorgensen et al. 2008, Wang et al. 2006, Liu et al. 2009). The magnetic gear drives are

passive drive systems in which meshing occurs without physical contact. The electromagnetic

harmonic drive (Delin and Huamin 1993) and piezoelectric harmonic drive (Oliver 2000) are active

drive systems in which the meshing forces between the flexible and rigid gears are controlled by the

electromagnetic or piezoelectric force with the drive and power integrated. 

Based on the toroidal drive (Xu and Huang 2003), the authors presented a kind of

electromechanical integrated drive system without contact, i.e., the electromechanical integrated

toroidal drive. This drive is a new concept of the generalized composite drive. With this drive, the

toroidal drive, power and control are all integrated (Xu and Huang 2005). The drive consists of four

basic elements as shown in Fig. 1: (a) radically positioned planets; (b) a central worm; (c) a toroidal

shaped stator; and (d) a rotor, which forms the central output shaft upon which the planets are
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mounted. The central worm is fixed and the coils are mounted along the helical grooves of its

surface. The planets have permanent magnets instead of teeth. The N and S polar permanent

magnets are mounted alternately on a planet. Te stator has helical permanent magnets instead of

helical teeth. In the same manner as the planet, the N and S polar helical permanent magnets are

mounted alternately on the stator. Besides permanent magnets, steel plates can also be used for the

teeth of the stator. When the teeth of the stator are produced with plate permanent magnets, the

plate permanent magnet has also two poles. The pole axis of the magnet is perpendicular to the

plate permanent magnet surface. One pole is near the planet and the other pole is located on the

other surface of the magnet plate. As the teeth of the planet are also permanent magnets, between

the planet teeth and steel plate, enough magnetic force can be generated as well. Therefore, under

the condition that the torque to be transmitted is not large, the teeth of the stator can be produced

with steel plates as well. Cylinder or segment permanent magnets can be used for the teeth of the

planet. The cylinder or segment permanent magnets are mounted on the planet body by bonding or

other joints. The central worm consists of a number of silicon steel sheets. Several helical slots are

cut on the worm. The windings made of insulated wires are mounted along the helical slots. 

If the relation between the planet pitch, tooth number and helical angle on the stator, and number

of pole pairs and helical angle on the worm is specified, then the N pole of one element will

correspond to the S pole of the other element all along. The attractive forces between the N and S

poles of the different elements are the driving forces and meshing occurs without physical contact.

When the alternate current is charged into the coils of the worm, a toroidal circular field is formed.

It can drive several planets rotating about their own axis. And by means of magnetic forces between

the teeth of the planet and stator, the rotor is driven to rotate about its own axis. Thus, a power of

low speed and large torque is generated.

Compared with the toroidal drive, the new drive can be easily produced, without wear, and with

no need for lubrication. It can be substituted for a servo system to simplify the structure of the

existing electromechanical systems. Besides the above-mentioned fields that require compactness,

the drive can be used in fields that require accurate control, such as robots, etc. 

Fig. 1 The model machine for the drive system
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The authors have conducted some research for the drive system to investigate the driving torque

and its affecting factors (Xu and Huang 2005), while presenting a control theory for the drive

system (Xu and Fan 2006). As the loading torque becomes large, one should pay special attention

to the strength and stiffness problems of the drive system. The stator tooth is the key component of

the drive system, of which the strength and stiffness have important influence on the operating

performance of the drive system. When the drive is in operation, speed fluctuation can occur with

the output shaft. It is mainly caused by the non-uniform air-gap between the stator teeth and the

planet teeth, which can be attributed to two factors. One is the manufacturing and mounting errors

of the machine, another is the elastic displacements of the stator teeth. When the manufacturing and

mounting errors are ignored, an elastic displacement of 0.04 mm for the stator tooth can cause a

speed fluctuation of about 8% for the output shaft under the condition that the air-gap between the

stator teeth and the planet teeth is about 0.5 mm. To reduce the speed fluctuation, the manufacturing

and mounting accuracy should be improved. Besides this, the stiffness of the stator teeth should be

chosen properly. Therefore, it becomes a prerequisite to calculate the elastic displacement analysis

of the stator teeth, which serves as the basis for designing the stiffness of the stator teeth. The

problem can be resolved using standard finite elements codes. However, an analytical solution has

one obvious advantage over the finite element solution, because it enables us to draw some inherent

rules that are favorable for the parameter design and optimum of the drive system. For the reason

stated, we shall focus on derivation of an analytical solution for the stator tooth that is spiral in shape.

In this paper, the coordinate systems for the drive system and its stator tooth are established, and

the transformation matrices between the different coordinate systems are presented. Based on this,

the displacements of the stator tooth in the local coordinate system are expressed as a function of

the variables in the drive coordinate system. Using the minimum potential energy principle and

selecting proper trial function, the equations of the displacements of the stator tooth under the loads

arederived. Using these equations, the displacement distributions within the stator tooth for the drive

system are investigated and the changes of the displacement distributions with respect to the main

parameters are analyzed. The results show that the related parameters have obvious influence on the

displacement distribution of the stator tooth. In order to decrease the displacements of the stator

tooth, these parameters should be selected properly. The present research offers a useful basis for

the strength and stiffness design of the drive system.

2. Coordinate transformation

Fig. 2 shows a helical stator tooth and its related coordinate systems. As the stator teeth are all of

helical surface, their displacement calculation is quite complicated. In order to obtain the

displacement, we must use the coordinate transformation principles. To this end, we select the

coordinate systems for electromechanical integrated toroidal drive as shown in Fig. 2. The

coordinate system s (x, y, z) is attached to the stator, s1 (x1, y1, z1) is attached to the planet, s2 (x2, y2,

z2) to the normal section of the stator tooth, sr (xr, yr, zr) to the rotor, and s10 (x10, y10, z10) also to the

rotor. The z2- and zr-axes are the rotating axes of the rotor, particularly the z1-axis is the rotating

axis of the planet. Here, φ1 is the planet rotating angle, R is the planet radius, λ is the lead angle of

the stator tooth, tan , with a indicating the central distance between the planet andλ
zsR

z1 a R φ1cos+( )
-------------------------------------=
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stator, zs is the tooth number of the stator, and z1 is the tooth number of the planet.

The matrices M101, Mr10, M0r and M21 are the coordinates transformation matrices from the

coordinate system s10 to the system s1, from the system s10 to the system sr, from the system sr to

the system s, and from the system s1 to the system s2, respectively. These matrices can be given as

follows:

(1)

(2)

M101

φ1cos φ1sin 0

φ1sin– φ1cos 0

0 0 1

=

Mr10

1 0 0 a

0 0 1 0

0 1– 0 0

0 0 0 1

=

Fig. 2 The coordinate systems for the drive and its stator tooth (a) Coordinate systems of the drive, (b)
Coordinate systems of the planet and a stator tooth, (c) Coordinate system on the cross section of a
stator tooth 
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(3)

(4)

3. The minimum potential energy principle and the displacement function

In order to obtain the displacement of the helical stator tooth, we use the minimum potential

energy principle as below:

(5)

where , U is the strain energy of the stator tooth, and W is the work of the forces.

From Eq. (5), one obtains

(6)

where  and  are the virtual strain energy and virtual work, respectively.

The virtual strain energy of the stator tooth can be given as follows:

(7)

where  are the stress components of the stator tooth in the coordinate axes  and

, respectively; , are the strain components of the stator tooth in the coordinate axes

 and , respectively;  are the shear stress components of the stator tooth in

three different directions, respectively;  are the shear strain components of the stator

tooth in three different directions, respectively; and V is the volume of the stator tooth.

The virtual work done by the loads applied to the stator tooth can be given as follows:

(8)

where  is the load applied to the stator tooth ( ,  and ), ,  and  are the

displacements of the stator tooth in the coordinate axes ,  and , respectively.

Eq. (7) can be changed into the following form

 (9a)

where  is the bending moment about axis ,  the bending moment about axis ,  is the

tension force in the  direction,  is the shear force in the  direction,  is the shear force in

the  direction, and  is the torsional moment about axis , 

M0r

φrcos φrsin– 0

φrsin φrcos 0

0 0 1

=

M21

1 0 0 R–

0 λcos λsin 0

0 λsin– λcos 0

0 0 0 1

=

δEt 0=

Et U W–=

δU δW=

δU δW
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2
--- σx2δεx2 σy2δεy2 σz2δεz2 τx2y2δγx2y2 τy2z2δγy2z2 τz2x2δγz2x2+ + + + +( ) Vd∫∫∫=

σx2 σy2 σz2, , x2 y2,
z2 εx2 εy2 εz2, ,
x2 y2, z2 τx2y2 τy2z2 τz2x2, ,

γx2y2 γy2z2 γz2x2, ,

δW Fbx2δu2 Fby2δv2 Fbz2δw2+ +( ) Vd∫
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Fbi i x2= y2 z2 u2 v2 w2
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(9b)

Here, A is the transverse cross-sectional area of the stator tooth, E is the modulus of elasticity of

the stator tooth material, G is its shear modulus of elasticity, Ix2 is the second moments of area of

the tooth about axis x2 (Ix2 = dl3 / 12, where l and d are the width and thickness of the tooth,

respectively), and Iy2 is the second moments of area of the tooth about axis y2 (Iy2 = ld3 / 12).

To simplify the analysis, the strain components of the stator tooth in the coordinate system s2 can

be expressed in terms of the strain components in the coordinate system s, that is,

(10a)

where 

 (10b)

The strains of the tooth can be expressed as functions of the displacements,

 (11a)

(11b)

(11c)

(11d)

(11e)

(11f)
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In coordinate system , a point on the stator tooth can be expressed as

(12)

Using the coordinates transformation, the point can be given in the coordinate system  as

follows:

(13)

 From Eq. (13),  and  can be obtained as follows: 

(14a) 

(14b)

(14c)

Let the trial function of the displacements u, v and w be as follows:

(15a)

(15b)

(15c)

where , and  are the initial and end mesh angles of the planet tooth as shown in

Fig. 3. From Eq. (15),  and  can be calculated.
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In the coordinate system , the arc length ds can be calculated using Eqs. (13) and (15),

 (16a)

where 

(16b)

Combining Eqs. (9) with (10), (11), (14), (15) and (16), the strain energy of the stator tooth can

be determined.

If the magnetic forces  and  are applied to the stator tooth (see Fig. 2), with the angle of

the acting point denoted by , the work done by the forces can be computed from Eq. (8) as

 (17a)

where 

, here  (17b)
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Fig. 3 The initial and end angles of the planet tooth meshing with the stator tooth
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 From Eq. (18), one obtains

(19)

where 

In matrix :
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In matrix A13:
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In matrix A33:

From Eq. (19), the coefficients ai, bi and ci (i = 1 to k) in the trial function (15) can be

determined. Hence, the displacements of the stator tooth under the applied forces can be obtained.

4. Results and discussions

In order to obtain the displacement distribution within the stator tooth, the above equations have

been implemented in a software tool developed in the Matlab environment. The parameters of the

numerical example have been listed in Table 1. In operation of the drive, two magnetic forces are

applied to one stator tooth. One force is applied along the radial direction of the planet and kept

constant under the condition that the air-gap between the stator and planet teeth, and their material

and size are determined. The force is perpendicular to the direction of the air-gap and has obvious

effects on the air-gap. For the model machine developed by the authors, the load is about 10 N.
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Table 1 Parameters of the example system

a / R R (mm) zs z1 l (mm) d (mm) E (GPa)

2 30 20 8 12 6 210
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Hence, the force (load) is taken as 10 N in simulation. Another force is applied along the tangential

direction of the planet tooth and its amplitude is dependent on the output torque. The force is

parallel to the direction of the air-gap and has very small effects on the air-gap. Hence, the force

(load) is also taken as 10 N in simulation. Fig. 4 shows the displacement distribution of the stator

tooth under load Fbx2 in the x2 direction (Fbx2 = −10 N Fby2 = 0 N), Fig. 5 shows the displacement

distribution of the stator tooth under load Fby2 in the y2 direction (Fbx2 = 0 N Fby2 = 10 N), Fig. 6

shows the displacement distribution of the stator tooth under loads Fbx2 and Fby2 (Fbx2 = −10 N

Fby2 = 10 N).

From Figs. 4-6, one can observe the following facts:

(1) For the load applied to the stator tooth in the x2 direction, the displacements u2, v2 and w2 in

three directions occur. The displacement u2 in the x2 direction is much larger than

displacements v2 and w2 in the other two directions. 

(2) As the mesh point between the planet and the stator changes, the maximum displacement in

Fig. 4 The displacement distributions under load Fbx2
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the x2 direction changes as well. When the mesh point is far from two ends of the stator

tooth, the position of the maximum displacement u2max is nearly identical to the mesh point.

However, as the mesh point is near the two ends of the stator tooth, the shift between the

position of the maximum displacement u2max and the mesh point occurs. Such a position is

located between the mesh point and the center point of the tooth, but it is near to the mesh

point. 

(3) When the two mesh points are symmetrical to the center point of the stator tooth, the

displacement distributions are approximately symmetrical to the center point. However, they

are not completely symmetrical, and the displacements for the mesh point in front of the

center point of the stator tooth ( ) are a bit larger than those for the mesh point behind

the center point of the stator tooth ( ). 

(4) As the stator tooth is spiral, displacement v2 occurs in the y2 direction when only the load in

φ0 0
0≤

φ0 0
0≥

Fig. 5 The displacement distributions under load Fby2
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the x2 direction is applied to the stator tooth. 

(5) When the mesh point is in the center point of the stator tooth ( ), the displacement v2

is a minimum. When the mesh point moves toward the end point of the tooth, the

displacement v2 first grows then drops. 

(6) When the mesh point is at center point of the tooth, the displacement v2 is negative between

the mesh point and one end point ( ), and positive between the mesh point and another

end point ( ). 

(7) When the mesh point is within the angle range , the displacement v2 is negative along

the whole stator tooth, and when the mesh point is within the angle range , the

displacement v2 is positive along the whole stator tooth. 

(8) When only the load in the x2 direction is applied to the stator tooth, the displacement w2

occurs as well. The displacement w2 is larger than the displacement v2.

(9) When the mesh point is in the center point of the stator tooth ( ), the displacement w2

φ0 0
0

=

ϕ0 0
0≤

ϕ0 0
0≥

φ0 0
0≤

φ0 0
0≥

φ0 0
0

=

Fig. 6 The displacement distributions under loads Fbx2 and Fby2
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is also a minimum. When the mesh point moves toward the end point of the tooth, the

displacement w2 first grows then drops as well. 

(10) Along the whole stator tooth, tensile stain zone ( ) and compression strain zone

( ) occur. At most mesh points, one tensile stain zone and one compression strain zone

occur. At some mesh points, two tensile stain zones or two compression stain zones occur.

(11) When only the load in the y2 direction is applied to the stator tooth, the displacements u2, v2

and w2 in three directions occur as well. The displacement v2 in the y2 direction is much

larger than displacements u2 and w2 in the other two directions.

(12) As the mesh point between the planet and the stator changes, the maximum displacement in

the y2 direction changes as well. The changes are similar to those of the displacement u2

mentioned above.

(13) When the two mesh points are symmetrical to the center point of the stator tooth, the

displacement v2 distributions are approximately symmetrical to the center point as well.

However, the displacements for the mesh point behind the center point of the stator tooth

( ) are a bit larger than those for the mesh point in front of the center point of the

stator tooth ( ).

w2 0≥
w2 0≤

φ0 0
0≥

φ0 0
0≤

Fig. 7 Changes of the displacement distributions along with the main parameters
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(14) As the stator tooth is spiral, displacement u2 occurs in the x2 direction when only the load in

the y2 direction is applied to the stator tooth. 

(15) When the mesh point is in the center point of the stator tooth ( ), the displacement u2

is a minimum as well. When the mesh point moves toward the end point of the tooth, the

displacement u2 first grows then drops. 

(16) When only the load in the y2 direction is applied to the stator tooth, the displacement w2

occurs as well. The displacement w2 is smaller than the displacement u2. The changes of

displacement w2 here are similar to the case when only the load in the x2 direction is applied

to the stator tooth.

(17) When the loads in the x2 and y2 directions are applied to the stator tooth simultaneously, the

displacements u2, v2 and w2 in three directions occur as well. However, both u2 and v2 are large.

(18) Under the condition that the load in the x2 direction is equal to the load in the y2 direction, the

displacement in the y2 direction is larger than that in the x2 direction. 

(19) When the loads in the x2 and y2 directions are applied to the stator tooth simultaneously, the

displacement w2 is also larger than the case when only the load in one direction is applied. 

(20) Along the whole tooth, the displacements u2 are all negative and the displacements v2 are all

positive for any mesh points. 

Fig. 7 shows the variation of the displacement distributions versus the main parameters. Here, the

mesh point is at ,  and , i is the ratio of the length to width of

the section of the stator tooth, . From Fig. 7, the following observations can be made:

(1) For constant planet radius R, as the center distance a increases, the displacements u2, v2 and w2

grow, among which the increase of the displacement v2 is more obvious. For constant planet

radius R, as the center distance a increases, the lead angle of the stator tooth becomes small and

the length of the stator tooth increases, so the displacements grow with increasing center distance.

(2) As the stator tooth number zs increases, the displacements u2 and v2 drop. When the stator

tooth number is small, the decrease of the displacements along with tooth number zs is

obvious. When the stator tooth number is large, the decrease of the displacements along with

tooth number zs is very small. As the stator tooth number zs increases, the lead angle of the

stator tooth becomes large and the length of the stator tooth decreases, so the displacements

drop with increasing tooth number zs. When the tooth number zs is large, the length variation

of the stator tooth along with the tooth number zs is quite small, so the decrease of the

displacements along with the tooth number zs is not obvious. 

(3) As the stator tooth number zs increases, the displacement w2 first drops then grow in the

opposite direction. 

(4) As the planet tooth number z1 increases, the displacements u2, v2 and w2 grows. It is also

because the lead angle of the stator tooth becomes small and the length of the stator tooth

increases with increasing the planet tooth number. 

(5) As the ratio i increases, the displacements u2 and w2 grows, but v2 drops.

(6) These results show that the related parameters have obvious influence on the displacement

distribution of the stator tooth. In order to decrease the displacements of the stator tooth,

these parameters should be selected properly.

Here, a FEM analysis package, ANSYS, is used to simulate the elastic displacements of the stator

tooth (see Fig. 8). The differences between the FEM results and those by the strain energy method

are compared in Table 2. The results show that the maximum error of the displacements is smaller

than 15%, which illustrates the applicability of the results presented in the paper.

φ0 0
0

=

φ0 0
0

= Fbx2 10N–= Fby2 10N=

i l d⁄=
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5. Conclusions

In this paper, we use the coordinate transformation method and express the displacements of the

stator tooth in the local coordinate system as a function of the variables in the drive coordinate

system. By the minimum potential energy principle, the equations of the displacements of the stator

tooth under the loads are derived. The displacement distributions within the stator tooth for the

drive system are investigated. The results show that the related parameters have obvious influence

on the displacement distribution of the stator tooth. In order to decrease the displacements of the

stator tooth, these parameters should be properly selected. 

Table 2 The comparison of the maximum displacements from FEM and energy method

Energy method (m) FEM (m) errors

u 0.0000275 0.0000236 14.18%

v 0.0000315 0.0000268 14.92%

w 0.0000330 0.0000305 4.55%

Fig. 8 The elastic displacements of the stator tooth from FEM
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