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Abstract. This paper is intended to investigate interaction response of a train running over a suspension
bridge undergoing support settlements. The suspension bridge is modeled as a single-span suspended
beam with hinged ends and the train as successive moving oscillators with identical properties. To
conduct this dynamic problem with non-homogeneous boundary conditions, this study first divides the
total response of the suspended beam into two parts: the static and dynamic responses. Then, the coupled
equations of motion for the suspended beam carrying multiple moving oscillators are transformed into a
set of nonlinearly coupled generalized equations by Galerkin’s method, and solved using the Newmark
method with an incremental-iterative procedure including the three phases: predictor, corrector, and
equilibrium-checking. Numerical investigations demonstrate that the present iterative technique is available
in dealing with the dynamic interaction problem of vehicle/bridge coupling system and that the differential
movements of bridge supports will significantly affect the dynamic response of the running vehicles but
insignificant influence on the bridge response.
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1. Introduction

Suspension bridges are usually used to cross a deep valley or a wide creek for its long-span

feature. Meanwhile, a rail suspension bridge should be designed so stiff that it has the ability to

carry the heavy weights of running trains over it. After construction of rail suspension bridges,

however, differential settlements at bridge foundations would become one of key issues being

considered for running safety of trains and normal operation of railway system. The reasons of

differential settlement for bridge structures are attributed to: earthquake shaking, different soil

conditions below bridge foundations, loading capacity of sub-soil in construction site, compaction of

earth fill, and the shocks and vibrations coming from railway traffic (Yau 2009a). For railway

bridges, these factors may distort rail geometry and further result in railway track sinking, which

will directly reduce the ride quality and maneuverability of trains traveling over the bridges (Yau

2009b). 

Over the past several decades, there are many research works (Chatterjee et al. 1993,

Hayashikawa and Watanabe 1982, Vellozzi 1967, Yau and Fryba 2007, Yau and Yang 2008) devoted
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to vehicle-induced vibration of suspension bridges. One of key findings indicated that the cable

tensions of short or medium span suspension bridges would be amplified significantly when

subjected to moving loads. In this study, a train is simulated as a sequence of moving sprung mass

units and the suspension bridge as a single-span suspended beam with hinged supports (see Fig. 1).

To resolve the dynamic problem for a suspended beam undergoing support settlement, the total

response of the beam is decomposed into two parts: the static response due to permanent support

settlement and the dynamic component due to inertial effect of beam vibration (Yau and Fryba 2007,

Yau 2009a). An exact solution of pseudo-static displacement of a single suspended beam shaken by

multiple support motions presented by Yau (2009b) is employed to represent the static response of

the suspended beam undergoing support movements. For the purpose of numerical computation, this

paper employs Galerkin’s method to convert the governing equations containing sprung mass units

into a set of differential equations in generalized systems, and then solve the two sets of differential

equations using an iterative approach with Newmark’s finite difference scheme (Newmark 1959).

Numerical studies indicate that the effect of differential settlement is generally small on the bridge

response, but may produce a significant amplification on the vehicle’s response of a moving train.

Such a fact should be taken into account in evaluating the operation performance of a railway system.

2. Formulation

In this study, the dynamic behavior of a suspension bridge carrying a moving train is limited to

vertical vibration of a single-span suspended beam with hinged supports. Based on the deflection

theory of small deformation (Pugsley 1957, Yau and Fryba 2007, Yau and Yang 2008), basic

simplifications for the analytical mode of suspended beam and moving train are outlined as follows:

(1) The stiffening girder is modeled as a linear elastic Bernoulli-Euler beam with uniform cross section;

(2) As shown in Fig. 2, the bridge towers supporting the stiffening girder and suspension cable are

assumed so rigid that their deformations during vibrations are negligible;

(3) The suspension cable is assumed to be capable of carrying all the dead loads of the stiffening

girder with the aid of inextensible vertical hangers so that the suspended beam is in an un-

stressed state before the action of live loads and its vertical deflection is identical to the

suspension cable’s;

(4) The train passing over the suspended beam comprises several identical cars, and each car is

modeled as two identical moving oscillators (see Fig. 2), each oscillator is used to model

either the front or rear half of a carriage;

Fig. 1 Schematic diagram of a suspension bridge traveled by a train
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(5) According to the design specification written by THSR (1999), allowable angular distortion

between any two points along a bridge span due to ground settlement should not exceed 1/1000.

2.1 Governing equations of motion

For a simply supported beam suspended by a parabolic cable with a cable sag y0 (Irvine 1981),

the governing equation of motion for the suspended beam undergoing differential support

movements can be described as (Yau 2009b)

(1)

where , m = mass of the beam and cable per unit length

along x-axis, c = damping coefficient, u(x,t) = vertical deflection of the beam, EI = flexural rigidity

of the beam, T = horizontal component in the initial cable tension (due to dead loads), p(x,t) =

loading function of moving oscillators, and

(2)

with Ec = elastic modulus of the cable, Ac = area of the cable, Lc = the effective length of the cable.

Meanwhile, (u0, uL) and (dx0, dxL) represent the vertical and horizontal support movements at the left

and right bridge supports, respectively. Consider the differential movements at bridge supports

depicted in Fig. 2, the non-homogeneous boundary conditions for the suspended beam with hinged

ends are given as follows:
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Fig. 2 A series of sprung masses cross a suspended beam with support movements
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(3)

Since the horizontal component of cable force in Eqs. (1) and (2) is dependent on both the beam

deflection u(x,t) and support movements ( ), the governing equation of motion in Eq.

(1) is non-linear in nature. 

2.2 Equations of moving sprung mass units

As shown in Fig. 2, a sequence of identical sprung masses is crossing a single-span suspended

beam at constant speed v. In this study, each sprung mass unit is used to model either the front or

rear half of a carriage, which is composed of a lumped mass supported by a spring-dashpot system.

Let the oscillator model has the following properties: mw = mass of wheel-set, mv = lumped mass, cv

= damping coefficient, and kv = stiffness coefficient. Consider the regular nature of sprung mass

units shown in Fig. 2, the load function p(x,t) is given as [Yau 2009b]: 

(4a-c)

in which, P = −(mv + mw)g = lumped weight of a moving oscillator, δ = Dirac's delta function, H(t) =

unit step function, k = 1, 2, 3, …, N-th moving load on the beam, tk = arrival time of the k-th

oscillator entering the beam, uvk = vertical displacement of the k-th lumped mass, fvk = interaction

force existing between the beam and the wheel mass of the k-th moving oscillator, = track

irregularity (vertical profile), gs(xk) = vertical ground settlement profile, and xk = position of the k-th

load along the rail line, as defined in Eq. (4b). As shown in Eq. (4c),  represents the k-th

oscillator is entering to the suspended beam,  running on the beam, and

 departing the beam.

3. Method of solution

As indicated in Eqs. (1) and (3), it is a partial integro-differential equation with time-dependent

boundary condition. For this problem, this study divides the total deflection response u(x,t) of the

suspended beam into two parts: the static displacement U(x) and the dynamic deflection ud(x, t)

(Yau and Fryba 2007, Yau 2009b), or

(5)

Here, U(x) represents the structure deformation caused by the relative support displacements applied

statically (Yau and Fryba 2007), and ud(x,t) the dynamic deflection due to inertia effect of the

structure. By this concept, substituting Eq. (5) into Eq. (1) and discarding all the dynamic terms and
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external loads, the static equation of motion in terms of the static displacement U(x) is written as

follows: 

(6)

And the static response U(x) in Eq. (6) has to satisfy the following non-homogeneous boundary

conditions (Yau and Fryba 2007) :

(7)

As the closed form solution solved by Yau (2009b), the static displacement is: 

(8)

where

(9)

The static displacement shown in Eq. (8) reveals that the first term represents the rigid body

displacement due to vertical support movements, and the second term means the static natural

deformation caused by the relative support movements of horizontal and vertical components. It is

emphasized that the non-uniform horizontal support movements may affect the increments of cable

force. On the other hand, introducing Eqs. (5) and (6) into Eq. (1), the equation of motion for the

dynamic deflection ud(x, t) of the suspended beam is converted into the following equation:

(10)

Since the static displacement U(x) has satisfied the non-homogeneous boundary conditions shown

in Eq. (7), introducing Eqs. (5) and (7) into Eq. (3) yields the following homogeneous boundary

conditions for the dynamic deflection ud(x,t) :

(11)

Next, the dynamic deflection (ud) can be approximated by a series of sinusoidal functions (Yau

and Yang 2008):

(12)

where qn(t) means the generalized coordinate associated with the n-th assumed mode of the

suspended beam. By Galerkin’s method, the following generalized equation of motion for the n-th

dynamic system of the suspended beam is given:
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(13)

(14)

with the coupled equation of the k-th sprung mass unit in Eqs. (4). Here, the generalized forces of

 and  with respect to the k-th sprung mass unit are respectively expressed as

(15)

and . Combining Eqs. (4) and (13) yields the following equation of motion for the

vehicle/bridge interaction model

(16)

where {q} = generalized coordinate vector of the suspended beam, [mb] = generalized beam mass

matrix including the sprung masses moving on the suspended beam, [cb] = generalized beam

damping matrix, [kb] = generalized beam stiffness matrix, {p} = generalized force vector acting on

the generalized beam system; {uv} = vehicle displacement vector, { fv} = exciting force vector, and

([kc],[cc],[mc]) = structural matrices of the vehicles corresponding to mass, damping, and stiffness.

To compute the dynamic response of vehicle-bridge interactions for a suspended beam undergoing

support movements, an incremental-iterative procedure needs to be carried out in Section 5. 

4. Simulation of vertical ground settlement profile

When a train crosses a suspension bridge subject to multi support settlements, the train may

encounter simulation problem of “falling” or “jumping” if the transition length (see Fig. 2) of

ground surface settlement is assumed to be zero in analysis. Because of this, as shown in Fig. 2, the

following cubic functions will be adopted to simulate the vertical profile of ground settlement at

both the left and right sides of the bridge:
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Here, xL = the distance measured from the left reference point, LL = the length from the left

reference point to the left tower support of the bridge, and xR = the distance measured from the right

tower support, LR = the length from the right tower support of the bridge to the right reference point,

u0 = vertical support settlement at the left tower, and uL = vertical support settlement at the right tower.

5. Strategy for incremental-iterative dynamic interaction analysis 

In conducting the dynamic response analysis of a structure with support settlements, two sets of

structural responses have to be solved; one is the static response due to support settlements and the

other the dynamic component caused by the vibration of the structure. By adopting the discretized

process based on the Newmark method (Newmark 1959), we can transform the vehicle-bridge

system shown in Eq. (16) into equivalent stiffness equations tailored for the ith iteration of the

incremental step at time t + ∆t as 

(18)

where the equivalent stiffness matrices are given as follows:

(19)

and = displacement increments generated at the incremental step of the ith

iteration, = unbalanced forces resulting from the last iterative step, and

 denote the Newmark coefficients. For the first iteration (i = 1), 

and  represent the load increments of the suspended beam and moving

oscillators at the beginning of the incremental step, respectively. For the following iterations, the

unbalanced force  is equal to the difference between the external force  and the

effective internal forces  for all the generalized system of the suspended beam at time t + ∆t, i.e.,

(20)
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(21)

where = effective resistant force vectors of the generalized beam system and

the vehicles. Let us define the root mean square of all the sum of unbalanced forces as

(22)

When  is larger than a preset tolerance (say 10−3), iteration for removing the unbalanced forces

involving the predictor and corrector should be repeated. With the flowchart shown in Fig. 3, an

incremental-iterative procedure for nonlinear analysis of the vehicle-bridge system considering

support settlements is summarized as follows (Yau 2009b): 

(1) Solve the static displacement U(x) given in Section 3. In this stage, the sprung masses that

have not yet entered the suspended beam are only subjected to rail irregularities and transition

ground settlements shown in Section 4;
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Fig. 3 Flow chart of incremental-iterative procedure
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(2) Transform the governing differential equation in Eq. (10) into a set of coupled equations in

generalized coordinates as in Eq. (13);

(3) Discretize the vehicle-bridge interaction equations into a set of equivalent stiffness equations

using Newmark’s method (see Eqs. (18) and (19));

(4) Perform the iterative procedure with vehicle-bridge interaction given in the flowchart of Fig. 3

to compute the response of the suspended beam and sprung mass units. 

(5) Update all the structural matrices in Eq. (16) at each increment;

(6) Check the unbalanced forces to see if they are smaller than preset tolerances. When the root

mean square of the sum of the generalized unbalanced forces is larger than the preset

tolerance, go to step (4) to precede the next iteration for removing the unbalanced forces;

(7) Repeat the steps (4)-(6) for another time increment once the condition of convergence is

satisfied.

6. Numerical investigations

Fig. 2 shows a series of moving oscillators with non-uniformly regular intervals crossing a single-

span suspended beam at constant speed v. The properties of the suspended beam and sprung mass

unit are listed in Tables 1 and 2, respectively. In Table 1, the symbol of fi represents the ith modal

frequency. It is noted that the first natural frequency of anti-symmetric mode of the suspended beam

is lower than that one of symmetric bending mode due to a strengthening effect of cable tension on

the first symmetric bending mode. 

The acceleration response of moving vehicle is usually used to evaluate the running safety of a

train traveling over railway bridges (Yau and Yang 2006, Yau 2006a, Yau 2006b, Yau 2007). From

the computed results of trained-induced response of a suspended beam by Yau and Yang (2008), the

use of 16 modes is sufficient to describe the dynamic behavior of the suspended beam. For this

reason, the same number of modes will be used in all the examples to follow. 

To account for the random nature and characteristics of track irregularity in practice, the power

spectrum density (PSD) function for track class 6 designed by Federal Railroad Administration

(USA) (Yang et al. 2004) will be adopted to simulate the vertical profile of track geometry

variations:

where Ω = spatial frequency, and Av, (= 1.5 × 10−6 m) Ωr (= 2.06 × 10−6 rad/m), and Ωc (= 0.825 rad/

m) are relevant parameters. Fig. 4 shows the vertical profile of track irregularity for simulation of

track geometry variations in this study. 
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Table 1 Properties and natural frequencies of the suspended beam
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272 J. D. Yau

6.1 Resonance of acceleration response

Whenever the passage frequency (= v/d) of train loadings with identical intervals d matches any of

the natural frequencies (fi) of the bridge, the bridge will be set in resonance as there are more train

loads pass through the bridge (Yang et al. 1997). The corresponding resonant speed of the train is

denoted as vres,i = fid (Yau and Yang 2006). This is the so called resonance phenomenon for train-

induced response of the railway bridge. The resonance phenomenon of a suspended beam induced

by moving loads with identical intervals has been demonstrated in Refs. (Yau 2006a, Yau and Fryba

2007, Yau and Yang 2008). In this study, we shall let the moving oscillators pass through the

suspended beam with the first two resonant speeds, i.e., vres,1 = f1d = 40.6 m/s (= 146 km/h) and vres,2 =

f2d = 45 m/s (= 162 km/h). 

Fig. 5 shows the time-history response acceleration responses at the first quarter and midpoint of

the suspended beam. The results indicate the response amplitude at the mid-span due to the train

loads traveling at the second resonant speed vres,2 (= 162 km/h) is generally smaller than that at the

first quarter-point with the first resonant speed vres,1 (= 146 km/h). One reason for this is that as the

train loads with a repetitive car length (d = 25 m) far less than the bridge span length (L = 150 m)

move over the bridge, the simultaneous presence of multi train loads on the bridge deck may exert a

suppression action on the first symmetric mode (i.e. the second bending mode), which may cause

the mid-span acceleration of the bridge deck to be less severe compared with the other resonant

case involving the anti-symmetric mode. In addition, Fig. 6 depicts the maximum acceleration

(av,max) of the sprung masses versus the vehicle speed (v). Such a plot is called av,max – v plot in the

following examples. The results indicate that the maximum acceleration of the vehicle increases

along with the increase of moving speeds. 

Fig. 4 Vertical profile of track irregularities
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6.2 Simulation of transition length for support settlement

Adopt the same data used in Example 6.1 and add the conditions of vertical support settlements

with (u0 = −2.5 cm, uL = −3.75 m) to the left and right bridge supports, respectively. To simulate

various transition lengths for a train entering the suspended bridge with support settlement, five sets

of transition length are considered, that is, rtran (= LL / L = LR / L) = 0, 0.1, 0.5, 1.0, 3. The analysis

results of av,max − v plot have been plotted in Fig. 6 as well. Obviously, the inclusion of ground

Fig. 5 Time history of acceleration of the suspended beam

Fig. 6 Effect of transition length
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settlement will amplify the vehicle’s response significantly. However, as the transition length ratio

of rtran is zero, the acceleration response amplitudes at lower speeds appear abnormally amplified

since the train enters ot departs the suspended beam in a way of falling or jumping. Because of this,

the larger one of transition length for settlement profile (LL = LR = 3L) is selected in the following

example. On the other hand, for the same moving resonant speeds of moving sprung masses used in

Example 6.1, Fig. 5 has also drawn the time-history acceleration responses of the suspended beam

undergoing the present vertical support settlement. From the analysis results, the influence of

differential settlement on bridge response is generally insignificant since the inertial forces induced

by the running sprung mass units acting on the suspended beam are much smaller than the static

weights of sprung masses. This effect will be further discussed in the following example.

6.3 Effect of differential support movements

To investigate the influence of horizontal support movements on the interaction response of the

vehicle/bridge system, let us suppose the right bridge support in Fig. 2 subject to a permanent

horizontal movement due to earthquakes. Table 3 lists three types of support movements, that is,

vertical support settlements (type 1), and vertical/horizontal support movements (type 2 and 3). Here

type 2 means the positive horizontal support movement at the right tower tends to elongate the

suspension cable and further increases the cable tension. By contrast, the negative horizontal support

movement of type 3 would decrease the strengthening effect of cable tension on the suspended

beam.

With the inclusion of horizontal support movements, the maximum acceleration responses of

sprung mass units and midpoint of the suspended beam against speed have been drawn in Figs. 7

and 8, respectively. The results indicate that considering the horizontal support movement of type 3

results in a significant amplification on the av,max − v plot compared with the support movements of

types 1 and 2. This can be attributed to the decrease of cable tension due to the negative horizontal

support movement of type 3, which will reduce the bending stiffness of the suspend beam. On the

other hand, for the support movement of type 2, the girder has been stiffened by the additional

cable tension due to positive horizontal movement. Because of this, the response of the moving

sprung masses traveling over the suspended beam is reduced. Besides, as shown in Fig. 8, the effect

of differential ground settlements on the beam response is insignificant, since the inertial forces

induced by the moving oscillators are much smaller than the static weight of these oscillators. 

Table 2 Properties of moving oscillator and resonant speeds

N d1

(m)
d2

(m)
d = d1 + d2

(m)
P

(kN)
mw

(t)
mv

(t)
cv

(kN-s/m)
kv

(kN/m)
vres,1

(km/h)
vres,2

(km/h)

10 17.5 7.5 25 200 4.0 16.4 45 250 117 162

Table 3 Types of support movements

Support movements/ Type u0 (cm) uL (cm) dx0 (cm) dxL (cm)

Type 1 −2.5 −3.75 0 0

Type 2 −2.5 −3.75 0 3

Type 3 −2.5 −3.75 0 −3
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7. Conclusions

By taking into account the effect of multi support settlements, the dynamic analysis of a single-

span suspended beam traveled by successive moving sprung masses have been carried out. The

decomposition concept was adopted for dealing with the static and dynamic response of the

suspended beam. The system equations were solved by an incremental-iterative procedure involving

the three phases of predictor, corrector, and equilibrium-checking. From the numerical study, the

following conclusions are drawn: (1) The simulation of support settlements for a suspension bridge

should include the transition length on the two side of the bridge; (2) Differential support

settlements will result in significant amplification on the acceleration response of the moving

vehicles, but not for the stiffening girder; (3) As the horizontal support movement tends to decrease

Fig. 7 Effect of support movements on av,max− v plots

Fig. 8 Effect of support movements on beam response
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the cable tension of a suspension bridge, the amplified extent of acceleration response of the

running vehicles over the bridge is particularly noticeable; (4) Generally, as a train passes through a

region with potential ground settlement, it means that the moving speed of the train may exceed the

shear wave velocity of soft soil (Yang et al. 2007). For this reason, bridge-soil interaction will

become significant and a further study should be conducted to introduce the soil-structure

interaction into the vehicle/bridge coupling system.
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