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Abstract. The theoretical framework of the interaction fields for multiple scales based on field theory
is applied to one-dimensional problem mimicking dislocation substructure sensitive intra-granular
inhomogeneity evolution under fatigue of Cu-added steels. Three distinct scale levels corresponding
respectively to the orders of (A)dislocation substructures, (B)grain size and (C)grain aggregates are set-up
based on FE-RKPM (reproducing kernel particle method) based interpolated strain distribution to obtain
the incompatibility term in the interaction field. Comparisons between analytical conditions with and
without the interaction, and that among different cell size in the scale A are simulated. The effect of
interaction field on the B-scale field evolution is extensively examined. Finer and larger fluctuation is
demonstrated to be obtained by taking account of the field interactions. Finer cell size exhibits larger field
fluctuation whereas the coarse cell size yields negligible interaction effects. 

Keywords: multiscale modeling; crystal plasticity; field theory; differential geometry; non-Riemannian
plasticity.

1. Introduction

Materials can be viewed as an example of complex systems, where non-linear interactions among

multiple scales do exist together with feedback loops among them, making it more than the some of

its parts far beyond “reductionistic” perspective (Hasebe 2008, Phillips 2001). To model such

complexities, at least we need to deal with “interactions” among plural scales, together with the

evolutionary aspects of the individual inhomogeneities. Fortunately, our experiences have shown

that each scale seems to have its own evolutionary rule or the like for the inhomogeneous fields

based on rather distinct physical and geometrical origins. Let us take examples by choosing three

important scale levels in polycrystalline plasticity of metallic materials in terms of inhomogeneous

field evolutions, i.e., the scales of (A) dislocation substructures, (B) grain size and (C) grain

aggregates (Hasebe 2004a, 2004b, 2006). 

The scale A, for dislocation substructures, collective effects of interacting dislocations at high

density in the sense of statistical mechanics is responsible for the dislocation clustering into patterns,

while the long-range internal stress field evolving concurrently tends to determine the resultant

morphology and size of the pattern, especially in the case of cellular structures (Hasebe 2006). The
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scale B, on the other hand, the field evolution in here is mainly attributed to the geometrical

constrains imposed by the external load together with those from the surrounding grains, which is

describable by the continuum mechanics-based formalism (Aoyagi and Hasebe 2007). It should be

noted that the morphology of the substructures to be evolved is essentially dominated by the

crystallographic information except the case of shear bands, which are rather influenced by

macroscopic stress states and thus can penetrate plural crystal grains not always being terminated at

the grain boundaries. Field evolutions in the scale C are attributed, to a large extent, to collective

behaviors of crystal grains composing the polycrystalline aggregate, in terms of role-sharing and

duality (Hasebe (2004a, 2004b, 2006)). In this case, different from dislocations in the scale A, the

statistical mechanics framework cannot be directly applied because of the non-distinguishability of

the crystal grains, each of which has its own shape, size and crystallographic characters. 

The above-mentioned rather distinct mechanisms for individual-scale field evolutions have

encouraged the simple “information-passage” type modeling perspectives, which are more or less

effective in many situations. But questions arise: What are the interactions like and when and how

they are activated? Here is the key for us to go beyond the “reductionistic” perspectives, promoting

the conventional multiscale modeling to grow into practically feasible stages. A theoretical

framework for describing the inter-field correlations among multiple scales was developed and

implemented into a crystalline plasticity-based constitutive model in Part I of this study (Hasebe

2008). The output there can provide us with a new standpoint to examine multiscale crystalline

plasticity problems in the light of “interaction” among plural scales. In Part II, a prer, minary

simulation on a three scale problem is given to show what the interactions are like, together with

some potentially tractable future scopes based on it. A FE simulation result based on crystalline

plasticity (Aoyagi et al. 2008) is used as the initial input for the present simulation, assuming three

scales of great significance in polycrystalline plasticity, i.e., the scales A, B and C, exemplified above. 

2. Analytical model and procedure

Fig. 1 shows the one-dimensional strain distribution used as the initial condition in the present

study. The strain distribution has been obtained in a finite element (FE) analysis on a multi-grained

model (Aoyagi et al. 2008), where the plots indicate the FEM results, while the line approximated

based on the reproducing kernel particle method (RKPM) (Liu et al. 1995, Chen et al. 1996).

Corresponding contour diagrams of  are shown in the inset. Three scales, A, B and C,

chosen here are indicated in Fig. 2, where the number of modulations in the central grain along the

transverse cross section is plotted against the evaluation range (size) of the second derivative. For

the scale A, the effective cell size model is used to evaluate the strain distribution and its derivatives

therein, assuming the periodicity commensurate with , whose detailed treatments are given

below. 

In the following section, we will firstly derives a general expressions for the three scale

interaction field with the effective cell size-based A-scale field applicable to full 3D situations.

Secondly, its reduced version to the 1D problem to be treated here will be given. 

2.1 General expressions for three-scale problem

To evaluate the distortion and strain distributions in the scale A, we virtually assume the
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following sinusoidal form with a periodicity corresponding to the effective cell size  in a

point-wise manner as schematically depicted in Fig. 3. Tonsorial versions of the A-scale distortion

and strain are assumed to be given as, 

  and (1)

were x A represents A-scale coordinates whose values are given randomly, while  and 

are the amplitudes of the cell size-order elastic distortion and the corresponding elastic strain

fluctuations. Here,  is to be evaluated from the effective cell size for each slip system, i.e.,

 by multiplying a direction tensor and taking summation over all the slip systems

considered, namely, 

dcell

 
x( )

βij

 eA
βij

 e cell– 2π

dcell

 i j
x( )

-----------------x
A

⎝ ⎠
⎛ ⎞sin= εij

eA
βi j

 eA( )sym=

βij

 e cell–
εij
e cell–

dcell

 ij
x( )

dcell

 α( )
x( )

Fig. 1 Plastic strain/distortion distribution obtained in field theory-based FEM analysis and interpolated by
RKPM employed in 1D-interaction field simulation

Fig. 2 Variation of number of modulations in incompatibility distribution with evaluation size of derivative,
together with three scales, A, B and C, chosen for field interaction analysis
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 (2)

where,  and  indicate unit vectors in the slip direction and slip plane normal for the (α) slip

system, respectively. The above equation was obtained by equating, 

 (3)

and 

 (4)

Here,  is the Schmid tensor defined by  sym. The corresponding elastic distortion

and strain amplitudes , and  appear in Eq. (1) are estimated based on linear elasticity,

together with the similitude relationship for the resolved shear stress with the reciprocal of ,

as, 

 (5)

Note that the above-assumed sinusoidal form of the distortion or strain itself does not correspond

directly to the A-scale fluctuations but its derivatives at each point do characterize them, i.e., as the

dislocation density and incompatibility fields. 

By using distortion or strain tensor expressed by Eq. (1) for the A scale, we calculate explicitly

the dislocation density and incompatibility tensors, respectively, as, 
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Fig. 3 Schematic drawing for treatment of A scale in the present simulation
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 (6)

and

  

(7)

For scales B and C, we will conduct direct evaluation of the derivatives, i.e.,

 (8)

and

(9)

For the interaction terms, e.g., between scales A and B, 

 (10)

 (11)

It should be noted that, in the second interaction component , the further differentiation of  

with respect to the A-scale coordinates, which has been virtually introduced, cannot be explicitly

performed. To this end, we tentatively assume a locally (point-wise) sinusoidal variation of  with

a periodicity corresponding to the evaluation range of the differentiation in the B-scale  plus its

additional finer fluctuation with respect to the A scale in the present paper, i.e., 

 (12)

Assuming the A-scale fluctuation  in the above to be commensurate with , i.e.,

, we finally have for Eq. (11), 
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 (11a)

Similarly, for the interaction between scales C and A, we have, 
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For another interaction between scales B and C, we directly calculate via,
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Combining Eqs. (6)-(16) altogether, finally we have the total incompatibility tensor for the
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2.2 1D Expression for three-scale problem

One-dimensional constitutive equation employed in this study is,

 (19) 

where  are constants. This is a reduced version of the constitutive equation for a

crystalline plasticity model presented in section 4 of Part I, i.e., 

 (20)

with

 and (21)
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hardening ratio further given as,
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Eq. (19) is evaluated, in the present study, from a given initial strain distribution that has been

obtained in the FE analysis on multi-grained model (Aoyagi et al. 2008) and interpolated based on
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 and (28)

Similarly, for the interaction terms between scales B and C, we have,

 (29)

where the derivatives are evaluated also based on finite difference method, i.e., central difference

for the spatial derivative and forwarded difference for the time derivative, i.e.,
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3. Application example 

Here we consider steels in fatigue focusing on the effect of dislocation substructures to be evolved

during cyclic deformation. It has been shown experimentally (Yokoi et al. 2004) that steels yielding

well-developed 3D cell structure of dislocations exhibit extrusion/intrusion at the specimen surface

with the corresponding width to the average cell size of the order of sub-micro to micrometer

ultimately leading to crack initiation from thereabout. By way of sharp contrast, steels yielding 2D

substructures, i.e., that with vein or planer morphology, tend to be accompanied by finer extrusions

at the sample surface that can significantly delay the crack initiation in comparison with the former

case. Furthermore, the cyclic properties are also changed drastically from cyclic hardening to

softening. 

The above is a striking example of the multiscale properties observed in a certain class of steels

that definitely needs to be interpreted and solved from “multiscale” perspective as in the present

study. Note that those drastic changes in the dislocation substructures and the concomitant fatigue

properties are reported to be caused by addition of copper depending on its form within the ferrite

matrix, e.g., solid solution and nano-sized precipitates (Yokoi et al. 2004). The connection with the

electronics, i.e., ab initio-based viewpoints and approach, has been extensively discussed separately

elsewhere (Chen et al. 2008), where the addition of copper atoms is shown to drastically change the

core structure of a screw dislocation of BCC iron from non-polarized to fully-polarized. 

4. Analytical results and discussion

4.1 Results 

Three scales, A, B and C, are considered as an example case of the application; each being

assumed to be corresponding to the scale levels of dislocation substructures (A), crystal grains (B)

and their aggregate (C), respectively. The characteristic scales commensurate with the respective

evaluation size of the derivative operations set here are (A) 0.5, (B) 1.76 and (C) 8.8 µm,

respectively, as depicted in Fig. 2. Therefore, the scale ratios for the present case are, 

 (35)

In what follows, a use is made of the incompatibility terms for the individual scales A, B and C,

together with the pair interactions between arbitrary two scale levels, i.e., BC, BA and AB. Here,

they are evaluated separately via, 
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where “scale” indicates the distinction of scales, e.g., scale = A for scale A and scale = BC for

inter-scale of B and C, etc, while  expresses the corresponding scale ratio, e.g., , ,

, etc. 

Fig. 4 displays thus obtained distributions for the respective incompatibility terms, i.e., individual-

scale incompatibility and interaction terms. The scale A exhibits finer fluctuations than the others

extending both positive and negative values reflecting the wavelength of the underlying effective
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cell size . The scales B and C show similar distribution to each other. Their interaction

terms, BC and CB, yield slight difference between the two, which is caused by artificially

introduced information loss in the differentiation operations (Eqs. 29 and 29’) for the purpose of

meeting the present aim. Large asymmetry, on the other hand, is observed in the interaction terms

for the A-B and A-C scale pairs, i.e., >>  and >> . In the latter two cases, the A-

scale fluctuation in the strain tends to be averaged out during the differentiation process with respect

to the larger scale, i.e., B or C. 

Fig. 5 shows the total incompatibility distribution  for the interaction field comparing with

that without interaction (referred to as “referential”). It is shown that the field interactions evidently

enhance the total field fluctuation where finer modulations are superimposed on the referential field.

dcell x( )

ηBA

int
ηAB

int
ηCA

int
ηAC

int

F η̃( )

Fig. 4 Obtained incompatibility terms for A, B and C scales together with interaction terms

Fig. 5 Comparison of total incompatibility term distribution between with and without interaction
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In the present case, as can be understood from the comparison among the results displayed in Fig.

4, the contribution from the A scale plays a prominent role especially through the interaction terms

 and . This implies the importance of the field fluctuations in the dislocation

substructure order in evaluating mesoscopic damage evolution, e.g., ultimately leading to crack

initiation in fatigue. It must be emphasized that such microscopic information normally tends to be

averaged out in the upper scale simulation based on conventional crystal plasticity. 

Let us scrutinize further the effect of A-scale fluctuation on the interaction field. We consider

three cases with different average sizes of the effective cell  mimicking three distinct

dislocation substructures to be evolved during high cycle fatigue, e.g., (1)three-dimensionally well-

organized cell, (2)two-dimensionally developed vein and (3)uniformly distributed planer array of

dislocations. These are assumed here to be modeled by introducing small, intermediate and large

effective cell sizes, respectively, in the present context i.e., = 0.5, 1.5 and 5 µm. The latter

two cases, for simplicity, employ the same  distribution as the first one but multiplied by

magnification factors with the amplitude leaving  constant. Fig. 6(a) compares thus assumed

cell size distributions with the three , where the result for = 0.5 µm was obtained in

the FE analysis in Aoyagi et al. (2008).

Fig. 6(b) shows comparison of the A-scale incompatibility term  obtained

for the three  cases, while Fig. 6(c) displays the resultant total incompatibility terms . It

is clearly demonstrated that the difference in  sensitively controls the fluctuation levels in the

A-scale field, ultimately influencing those in the total incompatibility field. The largest cell size, i.e.,

= 0.5 µm, brings about minute fluctuation in  with small enough amplitude, resulting
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Fig. 6 Effect of A-scale fluctuation on total incompatibility distribution; (a) cell size distributions with three
average sizes, (b) corresponding incompatibility term distributions for A scale and (c) resultant total
incompatibility distributions comparing three cases
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in the negligible effect on the total incompatibility , while the smallest size, i.e.,

= 0.5 µm, causes larger and finer field fluctuations which significantly modulate the 

distribution especially in its frequency. The average size of = 0.5 µm, on the other hand,

exhibits the intermediate trends both in  and  between the above two cases. These

results demonstrate relatively high sensitivity of the A-scale field fluctuation to the overall response

in terms of field fluctuation. 

Corresponding stress distributions to the above total incompatibility are compared in Fig. 7,

demonstrating the noticeable effect of  also on the resultant fluctuation in the stress field.

Significantly enhanced fluctuations can be observed, where the small enough  evidently

makes the stress field further modulated with respect to the scale of the order of  keeping the

overall distribution profile unaltered. The large enough , in sharp contrast, results in much

smaller and, accordingly, negligible effect on it. Also we can notice that the amplitude of the

averaged response is slightly reduced with increasing contribution of the A-scale field fluctuation.

This is due to the additional degrees of freedom in deformation to accommodate the imposed

inhomogeneity which tends to soften the stress response as mentioned in Part I (Hasebe 2008).

Practically, the above results for the stress response with enhanced fluctuation is expected to be

closely related with rougher surface undulations, e.g., during fatigue (e.g., Yokoi, et al. 2004).

Therefore, we can conclude that the introduction of the interaction field among multiple scales

captures the essential effects of the microscopic fluctuations, e.g., those in the dislocation

substructure order, normally absent in the conventional crystal plasticity-based models and
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Fig. 7 Comparison of stress distribution among different interaction conditions in terms of average cell size in
scale A
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simulations, on the inhomogeneous field evolutions in the upper scales, which will be

macroscopically averaged out. 

Note, below the scale A, dynamical effects associated with moving and interacting individual

dislocations are expected to become dominant, generating “temporal” field fluctuations rather than

or in addition to the “spatial” fluctuations discussed above, whose contribution can in principle be

taken into account by combining separate and direct simulations based on, e.g., dislocations

dynamics (Kubin et al. 1992, Zbib et al. 1998, Ghoniem et al. 1999). An example of related

discrete dislocation-based discussion on the effect of stress field fluctuation on the stability of dense

dislocation structures is found in Yamada et al. (2008). 

5. Toward system stability/instability evaluation

One of the ultimate scopes of the present study is to develop a novel methodology to be able to

evaluate the stability/instability of the complex systems of polycrystalline materials in plasticity,

explicitly considering interactions among multiple scales accompanied by evolving inhomogeneous

fields. In this section, a candidate framework will be presented based on the interaction field

formalism given above.

In the interaction field theory, everything about the field evolution is characterized by

(37)

 

which is further introduced in the incompatibility term of the hardening model. A preliminary

analysis will be made by utilizing the above matrix, which is called “evolutionary matrix” hereafter.

Each component in the evolutionary matrix is tentatively evaluated by a signed spatial average, i.e., 

 (38)

The evolution of the system will be virtually simulated by a continued product of the evolutionary

matrix wong time, and is evaluated via a phase diagram, i.e., , where

 (39)

From the results shown in Fig. 4, we have,

 (40)

The above matrix is asymmetric and cannot be diagonalized. The corresponding phase diagram

with reference to the scale B, i.e., , is displayed in Fig. 8(a). Variations of  and  with

power n is shown in Fig. 8(b). Oscillation takes place initially and is followed by limit cycle-like
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behavior as n increases. This implies that the system will oscillate in the B scale order as cyclic

deformation proceeds. 

Let us next examine some virtual cases with different off-diagonal terms. If there is no interaction,

all the off-diagonal components should vanish, i.e., 

 (41)

This case corresponds to a system composed of linearly interacted and thus completely separable

multiple scales, with no unpredictable response. The discriminant of the characteristic equation in

this case is Ddiscr = −22.0 < 0 meaning the equation have three distinct real roots. The phase diagram

and variations of  and  for this case are also shown in Fig. 8(a) and (b), respectively. No limit

cycle-like oscillation takes place in this case, and a convergence is reached soon, implying that the

system is stable in the absence of field interaction.

Several other examples have been examined based on the slightly modified evolutionary matrices

from Eq. (40). Variations as spiral converging, spiral diverging, and zigzag behavior on the phase

diagram are observed depending on the difference in the off-diagonal components. These results

imply that even with slight differences in the off-diagonal components can result in totally different
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system response. Possibilities of chaotic responses will be pursued in the next step. Also it should

be noted that the above is just a “toy” problem of a preliminary kind. The full 3D polycrystalline

systems may exhibit totally different and more complex responses, since the scales B and C have

qualitatively different incompatibility field in terms of the distribution and evolution based on its

origin as exemplified previously. Further details of these results will be presented in the next study.

 

6. Conclusions 

This paper applied the mathematical formalism for describing multiple field interactions

constructed in Part I to a three-scale problem assuming a multi-grained plasticity of steels under

fatigue, where three orders of dislocation substructures (A), grain size (B) and grain aggregates (C)

were considered. A one-dimensional constitutive model together with plastic strain distribution

obtained in FEM-RKPM (reproducing kernel particle method) analysis was used for the simulation.

Field fluctuations both for individual scales and the interaction terms were explicitly obtained and

their roles on the evolution of the overall system were discussed. In the present context, the A-scale

fluctuations were demonstrated to be highly influential in the upper scale field evolutions, especially

in the scale B, which is consistent with experimentally reported results. Furthermore, a candidate

scope for the system stability analysis was proposed based on an evolutionary matrix to be

evaluated from the incompatibility distributions.
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