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Abstract. In this paper a general approach for studying the motion of a cantilever beam interacting
with a 2D fluid flow is presented. The fluid is solved by a general purpose commercial computational
fluid dynamics (CFD) package (FLUENT 6.2), while the structure is managed by means of a dedicated
finite element method solver, coded in FLUENT as a user-defined function (UDF). A weak fluid structure
interaction coupling scheme is adopted exchanging information at the end of each time step. An arbitrary
cantilever beam can be introduced in the CFD mesh with its wetted boundaries specified; the cantilever
can also interact with specified rigid and flexible walls through use of a non-linear contact algorithm.
After a brief review of relevant scientific contributions, some test cases and application examples are
presented.

Keywords: cantilever beam; computational fluid dynamics; finite element methods; fluid-structure
interaction; weak coupling.

1. Introduction

Fluid-structure interaction (FSI) is a very interesting topic and it is the key for resolving many

physical problems that cannot be handled separately from a structural or a fluid point of view.

However, integrated solution of both problems is a difficult challenge, especially in the numerical

modelling of strong non linear problems where advanced solution strategies and tools are available

only for separate problems. In such cases, it is the interaction between the fluid and adjoining

structure that governs the physical behaviour of the entire system. In fact, some coupled problems

can converge in a stable configuration, others can generate an oscillating solution, and some others

can produce an unstable behaviour.

With focus on the FSI general solution strategies, a brief review of relevant scientific

contributions of the last decade is conducted. Genevaux and Bernardin (1996) presented an FSI

application adopting a multibody technique for the structural solution, by subdividing a beam in

rigid bodies connected by elastic joint, and a kinetic gas-lattice method for the solution of the flow

field. Two cases were presented, i.e., the fluid motion induced by the movement of the structure and

the structural deformation induced by the flow field. Wall and Ramm (1998) gave a deep insight
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about theoretical topics of FSI, in which 2D finite element method (FEM) solvers were presented

both for the fluid and structure, adopting a weak coupling, i.e., a time marching solution in which

the structure and fluid were solved separately and exchange information at the end of each time

step. Two practical applications were proposed, i.e., the flow in a channel with a flexible boundary,

suitable for the blood motion analysis, and the vortex shedding produced by a cantilever beam in

the stream of a bluff body. 

Further studies along these lines were carried out by Hübner et al. (2002, 2004) and Wall and

Ramm (2004). In the work by Hübner et al. (2002), a strong coupling was presented with a FEM

monolithic strong coupled solver developed by the authors. Both problems were formulated and

solved simultaneously at each time step. Non linear Lagrangian motion was considered for the

structural part, while a mixed Lagrangian Eulerian technique was implemented for the fluid. Several

applications were presented, including the vortex shedding of the cantilever beam. 

Kölke et al. (2004) presented a strongly coupled numerical analysis of FSI with two immiscible

fluid flows using a discretization method based on stabilized space-time finite elements. Numerical

results for the collapse of a water column onto an elastic dam were compared with experimental

data in order to validate the numerical method. Kämpchen et al. (2004) presented both numerical

and experimental results for a wing interacting with a flow field. The 3D motion of the wing was

solved by a FEM approach using beam elements of the Timoshenko theory. The fluid motion was

solved by a 3D computational fluid dynamics (CFD) solver based on the Euler or Navier-Stokes

equations, depending on the flux intensity. Strong coupling technique was adopted. In the work by

Hübner et al. (2004), the problem of vortex shedding was revisited with a strong coupled non linear

solver, showing how different stable periodic solutions can arise if different initial conditions are

imposed. 

A paper devoted to the general problem of shell structures design in civil and mechanical

engineering was presented by Wall and Ramm (2004). Also FSI topics were covered including the

vortex shedding of a cantilever, modelled by beam elements, and the study of a channel with an

internal obstacle represented by a flexible cylindrical shell. Matthies and Steindorf (2003) presented

a theoretical study of FSI with the main advantages and disadvantages of weak and strong coupling

FSI solvers discussed. Furthermore, a strong approach was proposed, based on a numerical

evaluation of the Jacobian of the complete system of equations obtained by separate solvers. Such

an approach offers a great reduction in time step, but the numerical effort required for

differentiation leads to similar computation performance. 

Jahromi et al. (2008) recently have published a contribution about nonlinear soil-structure

interaction using an iterative coupling technique. After a review about solution strategies for

coupled problem comparing monolithic and coupled solvers, several coupling strategies for the

weak approach were presented discussing their numerical performances.

The FSI capability was included by multiphysics FEMLab solver COMSOL (2004) for a

cantilever beam subjected to a transversal flow, in which a progressive deflection was observed

followed by a sudden release with a vortex generation. Tarnopolsky et al. (2000) proposed an

experimental study on the vortex structures generated by reed petals movement of the wind

instruments. This work indicates that the vortexes are produced mainly by the motion of the petal,

which is not particularly influenced by the fluid dynamics. A FLUENT simulation was also

proposed in this work, where the petal was modelled as a non flexible structure with a rigid motion,

for the sake of analysing the vortex structures produced. 

A theoretical solution for the flags excited by variable direction winds was given by Fitt and Pope
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(2001) considering the potential flow field and beam theory. Chang and Moretti (2002) investigated

the problem of tensioned sheet flutter related to papermaking industry using the plate theory and

potential flow field. A similar approach was followed by Tang et al. (2003) in experiments of the

flutter motion for a thin plate mounted downstream to a NACA airfoil, together with numerical

analysis based on the potential flow and non linear beam theory. Vairo (2003) presented a study for

the evaluation of wind loads around the girder of a long span bridge. In this work, a detailed CFD

solution in 2D was performed by the ALE scheme for the stationary cases and for the time histories

of cross section movements. Mollendorf et al. (2003) presented a theoretical study for the prediction

of the movement of a slender body immersed in a fluid. The investigation of the movement of a fin

during swimming was investigated, indicating a close agreement between experiments and

numerical results. Stein et al. (2003) presented a study about aerodynamic interactions between

parachute canopies. In the first part the critical distance of interaction between rigid canopies was

evaluated by a finite element formulation for the solution of incompressible Navier-Stokes equation.

The effect of structure deformation was then considered by means of a deforming spatial domain /

stabilized space time finite element formulation.

In this paper an FSI approach is presented for a cantilever beam interacting with a surrounding

two dimensional flow field. A detailed description of the practical aspect of implementation was

given by Baudille and Biancolini (2005). The structural dynamic problem is very simple, but it is

also a good starting point for studying the FSI problems. In fact, it is possible to simulate several

practical applications, such as the reed valves opening, flag motion, paper sheet motion in paper

making, horizontal motion of skyscrapers interacting with wind, interaction between dams and water

waves. It is worthy to notice that the described problem involves a simple structure (cantilever

beam) interacting with a complex flow field, which can be turbulent, multiphase or other multi-

physics materials. For this reason, the FSI model has been developed for the general purpose CFD

solver FLUENT. A dedicated FEM solver for the cantilever evolution has been coded as a user-

defined function (UDF). Arbitrary Euler beams are handled by the model with the non-linear effects

included, such as the contact between rigid and flexible walls. 

In order to test the accuracy of the proposed method, a benchmark test is first conducted by

investigating the reference cases proposed by Wall and Ramm (1998) and Hübner et al. (2002).

More complex applications are studied through solution of the problem of a water wave interacting

with a flexible dam proposed by Kölke et al. (2004). Finally, the practical application of a reed

valve for two strokes combustion engines proposed by Fleck et al. (1987) is investigated.

2. Theoretical background

As previously mentioned, this work is focused on a simple geometry, a cantilever beam in planar

motion (Fig. 1). Beam theory is applicable for all the structures in which the extension in the

longitudinal direction is larger than the extension in the lateral directions. In this case, the structure

can be represented by a curve, with the curvilinear abscissa, and the local shape of the cross section

at each point along the curve. For the special case where the curve belongs to a plane and the cross

section is symmetric with respect to this plane, along with boundary conditions and loads that are

symmetric, the beam undergoes a planar motion in the symmetry plane. For the present purposes,

we shall assume that the width of the cross section of the beam is constant, but the thickness is a

variable along the curve.
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The aforementioned problem can be solved on the structural point at two different levels of detail.

One way is to consider the planar problem with the hypothesis of plane strain or plain stress using

the continuum mechanics principles. This approach is general and powerful, because no restrictions

on the shape of the structure are required. Furthermore, it allows us to deal with the structural part

with the same dimensionality used for the surrounding fluid field representation. The main

disadvantage is that thin structures are difficult to handle, because a very fine discretization is

required for the numerical solution in order to preserve a regular grid dimension in the cross section

and along the beam. The other way is to adopt the beam theory by which a solution for the

through-the-thickness displacement field can be obtained with the global motion given at the level

of curvature-bending dual variables, rather than at the local stress-strain field. The latter is the

approach to be adopted in this study.

Under the hypothesis of small displacements for a straight member, the following curvature-

bending relation holds:

(1)

where E is the material Young modulus, χ is the curvature (that can be approximated by the second

derivative of the transversal displacement v0 along the beam direction x) and I(x) is the cross section

moment of inertia that for the constant width w beam with variable thickness t given as

(2)

The motion of the beam is governed by the following differential equation: 

(3)

where m(x) is the mass/length of the cross section, f (x,t) is the transversal applied load, and t is

time.

The boundary conditions are imposed for the lateral displacement and its derivatives for the beam.

For a cantilever, zero displacement and rotation are imposed at the clamped end (x = 0), and zero

bending moment and transversal force are imposed at the free end (x = L), that is,
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Fig. 1 Cantilever beam
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,       (4)

,     (5)

For a very thin structure where a zero thickness internal boundary is considered in the fluid, the

displacement field given by the classical beam theory is applicable, which can be expressed in terms

of the deformed shape of the middle line, considering the out of plane displacement and its derivatives.

For a finite-thickness structure, an accurate representation of the displacements field is required in

order to properly trace the movement of the interface between the structure and fluid domains. 

Considering the complete displacement field of the beam (that is the one to be used in the fluid

coupled calculation):

(6)

the following functions are valid at upper and lower faces of the beam:

,     

     (7)

At the interfaces, the fluid interacts with the structure by means of pressure forces (pup (x) and

pdown (x)) and shear forces (τup (x) and τdown (x)). By the hypothesis of small displacement, the effect

of shear forces produced by friction at the boundary layer can be neglected, because it produces

mainly horizontal loads which affect only the axial deformation of the structure. The transversal

applied load is given by the following expression:

(8)

However, for the case of tapered beams, the friction can also introduce a transversal component

that has to be accounted for. If this is the case, the resultant of pressure forces in the transversal

direction has to be considered as well, 

(9)

where the local angle  can be expressed as the first derivative of the thickness,

(10)

3. Numerical model

3.1 Structural model

Cantilever beam motion was solved by the FEM approach. The element stiffness and mass
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matrices in closed-form were adopted for the Euler beam theory following the work of Meirovitch

(1986). For the 2D beam element shown in Fig. 2, four degrees of freedom are required, i.e., a

rotation and an out-of-plane displacement at each node denoted by the vector y: 

(11)

The force and moment acting on the element are denoted by the vector f:

(12)

The relation between the forces and displacements of each element is linear:

(13)

where the stiffness matrix  is

(14)

The elastic strain energy of the element can be written as
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Fig. 2 Beam element notation
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(15)

The kinetic energy can be written as

(16)

where the consistent mass matrix  is 

(17)

The overall stiffness and mass matrixes are assembled by summing the contributions of all

elements at each node of the structure in the global coordinates,

(18)

(19)

A proportional damping was introduced for the structure in the assembled system as

(20)

The dynamic equation of motion in matrix form can be written as follows:

(21)

where {F} is the force vector due to external actions. For a complete FSI problem, this vector

contains both the structural and fluid forces. The structural forces are produced by the dead weight

of the structure itself, which may be given as lumped loads. The fluid forces are produced by the

local pressure and shear stress acting on structural faces. The force field on the structural elements

is transformed to nodal loads based on energy equivalence.

The Newmark method of central finite difference representation, as exposed by Blakely (1993) for

NASTRAN solver, is then adopted for the displacement derivatives for a constant discrete time step:

(22)

With this, the equation of motion (11) can be expressed in discrete form:
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After some manipulation, the following time marching scheme can be obtained:

(24)

where each of the matrices is given as

(25)

In the presence of non linear contact forces, the matrix [A2] is modified as follows:

(26)

By so doing, the non linearity contact forces can be handled in an explicit fashion.

3.2 CFD model

The FLUENT commercial CFD code was used to simulate the fluid dynamics evolution. A 2D

approach has been chosen to study the phenomena involved. The computational domain is a 2D

unstructured mesh composed of triangular elements eventually with consideration for more than one

phase. In Fig. 3, a typical mesh for the fluid domain of the vortex shedding benchmark is shown.

The FLUENT can handle a wide range of incompressible and compressible, laminar and turbulent
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Fig. 3 Detail of CFD mesh for the vortex shedding benchmark
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fluid flow problems either in steady-state or transient conditions. Moreover, various mathematical

models for the transport phenomena, such as heat transfer and chemical reactions, can be taken into

account. For all flows, FLUENT solves the conservation equations for mass and momentum using a

finite volume discretization technique. For flows involving heat transfer or compressibility, an

additional equation for energy conservation is solved. Additional transport equations are also solved

when the flow is turbulent. For flows involving mixing or reactions, a special conservation equation

is solved. For the case when the non-premixed combustion model is used, conservation equations

for the mixture fraction and its variance are also solved. 

3.3 CFD/FEM coupling strategy

The coupling technique used is based on a weak approach, in the sense that the structural problem

is solved after the fluid time step is made available. The forces applied to the structure are passed

by FLUENT at the end of each time step to the FEM solver. Then the structural problem is solved

and the new geometry configuration obtained is applied to the fluid domain by means of the moving

and deforming (MDM) capability of FLUENT. The flow chart of the solution process is given in Fig.

4. This coupling strategy is very efficient and is capable of handling a wide range of FSI problems.

Convergence is ensured by choosing the correct time step size for the coupled problem.

3.4 CFD/FEM interface management

The computational CFD mesh for the fluid domain is prepared as usual with a pre-processing

tool. A conformal FEM mesh for the structure is automatically built by the FSI code from the

boundary mesh of the fluid domain. Both thin and thick beams are considered. If a zero-thickness

structure is modelled in the fluid domain, only two faces of the beam are passed to the FEM solver

to build the corresponding beam model. Otherwise, for a non-zero thickness structure, three faces

are passed. A basic requirement for the mesh is that the opposite faces of the structure must be

aligned and straight in the initial configuration, and that their nodes must be aligned. This condition

allows the code to create a line of nodes along the middle line of the structure so as to generate the

Fig. 4 Flow chart of the solution process
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beam elements between them. For a non-zero thickness cantilever, not only the vertical

displacements, but also the rotations of the section are taken into account in order to correctly move

the CFD boundary nodes. Furthermore, a coordinate system transformation is implemented for

describing the general position and orientation of the cantilever and for transforming all information

from the global coordinate system to the local one.

4. Cases of study

4.1 Vortex shedding

A well-known benchmark problem has been used as an initial test of the present approach, i.e.,

the vortex shedding excitation of a cantilever beam positioned downstream of a square obstacle in a

laminar flow. From a structural point of view, the deformed shape of the cantilever is determined by

the pressure load and shear stresses. From a fluid dynamics point of view, the beam constitutes a

time-varying boundary condition for the fluid flow. The reference results for the benchmark were

available in the works by Wall and Ramm (1998) and Hübner et al. (2002). The geometry of the

problem is given in Fig. 5, where all dimensions are expressed in metres.

The fluid has a density of 1.18 10−3 kg/m³ and a viscosity of 1.82 10−4 Pa · s. The structure is

characterized by a density of 0.1 kg/m³ and a Young’s modulus of 2.5 106 Pa. The boundary

conditions of the test case are a velocity inlet of 51.3 m/s, a constant outlet static pressure, a free

sleep condition on the lateral walls, and a no-slip condition on the body and beam walls.

4.2 Breaking dam

A two-phase problem is investigated in order to test the FSI model in combination with other

CFD sub-models. A water column is initially placed at the bottom left corner of a tank surrounded

by atmospheric air. In the middle of the bottom of the tank, there is a flexible dam. The geometry

configuration of the problem is given in Fig. 6 with all dimensions expressed in metres. Under the

effect of gravitational acceleration, the water falls down and smashes into the dam, producing its

Fig. 5 Geometry of the test case



A general approach for studying the motion of a cantilever beam interacting with a 2D fluid flow 459

deformation. Free slip boundary condition is applied on all the walls and the top of the tank is

considered as an open boundary with a prescribed static pressure condition. The dam is made of

rubber with a Young’s modulus of 1 MPa and density of 1000 kg/m3. This case has been studied by

Kölke et al. (2004), where the time-history responses of the water shapes and dam tip displacements

are reported for both the numerical and experimental investigations.

4.3 Reed valve

One practical application that needs an FSI approach is the working cycle of a reed valve. Reed

valves are pressure-driven flow stoppers, used in systems such as two-stroke engines, compressors

and shock absorbers. A typical reed valve configuration is shown in Fig. 7. The reed petal is made

of flexible material and mounted between a base and a stopper. The base serves as a barrier for

valve closure, while the upper stoper, which can be curved, has a double function: it serves as a

guide to prevent excessive opening of the valve, while optimising the shape of the open channel

Fig. 6 The initial configuration of the water column and the flexible dam

Fig. 7 A diagram of the reed valve, showing the flexible reed petal, base, and stopper



460 Riccardo Baudille and Marco Evangelos Biancolini

from a fluid dynamics point of view.

The overall gas dynamics and local fluid motion depend on the open area of the valve. The open

area in turn depends on the reed motion, which is driven by pressure loads produced by the fluid.

Air suction in the crankcase is produced when the piston moves toward top dead centre (TDC).

This gives rise to a pressure difference relative to the inlet manifold, which causes the reed valve to

open. The actual behaviour is complicated by the valve dynamics, the inertial effects of the entering

air, and a local vortex. 

Baudille and Biancolini (2002) have studied the non linear dynamics of this component by

lumping the effects produced by the fluid motion as an equivalent viscous load. In the present work,

an FSI simulation was performed for the reed valve of the Yamaha RD350 engine studied by Fleck

et al. (1987). The main engine characteristics are reported in Table 1. The reed petal analysed in

this work is made of fibreglass with the major characteristics listed in Table 2. The reed valve has

been modelled as a 2D problem. By taking into account the symmetry condition with respect to the

middle line of the valve, only half of the engine manifold is modelled. Actual pressure histories

found in this work were applied as boundary conditions at the inlet and outlet boundaries of the

CFD domain. The applied pressure difference will be shown in the results section.

5. Results

5.1 Vortex shedding

In order to quickly achieve the expected solution of stationary vortex shedding, a steady

Table 1 Yamaha RD350 engine characteristics

Model Yamaha RD 350 LC

Swept volume 347 cm3

Cylinders 2

Bore 64 mm

Stroke 54 mm

Connecting rod length 110 mm

Trapped compression ratio 6 : 1

Reed valve arrangement V-block

Number of reed petals 4

Carburettor diameter 26 mm

Table 2 characteristics of the reed petal analysed

Material Glass fibre

Density 1850 Kg/m3

Young’s modulus 21.5 · 109 Pa

Free length 29.0 mm

Width 22.0 mm

Thickness 0.46 mm

Stopper radius 48.0 mm
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calculation of five hundred iterations was first performed without the FSI model. The flow field

obtained was then applied as the initial condition for the unsteady FSI simulation. This procedure

shortens the total calculation time, but does not affect the final result. 

The fluid dynamics problem is laminar, given a Reynolds number of 333. The vortex shedding

frequency of the isolated square cylinder is 6.25 Hz, corresponding to a Strouhal number of 0.12,

while the first natural frequency of the cantilever beam is 3.03 Hz. Comparing these frequencies to

the resulting frequency of the coupled problem of 3.18 Hz, we can conclude that the coupled

behaviour is dominated by the first mode of the cantilever beam. Animations of the CFD

predictions for the pressure and velocity fields around the bluff body and the slender flexible

structure are consistent with expectations, as shown in Fig. 8. The result obtained for the vertical

displacement of the free end of the beam with respect to time is in good agreement with the

reference cited above, as illustrated in Fig. 9.

Fig. 8 Simulated pressure and velocity fields around the square bluff body and the slender flexible structure
for different times

Fig. 9 Vertical displacement of the beam free end predicted by the FSI model compared to literature reference
data by Wall and Ramm (1998) and Hübner et al. (2002)
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5.2 Breaking dam

The two-phase problem of the breaking dam was simulated by the FLUENT multiphase model

Volume Of Fluid (VOF), with the Geo-Reconstruct scheme, in conjunction with the proposed FSI

model. The air fluid was considered as a compressible ideal gas, because its compressibility plays a

crucial role when the air is trapped by water in a closed volume, as shown in the simulation results.

Both the surface tension and wall adhesion of water are neglected. The FLUENT standard k-e

turbulence model has been used for the fluid dynamics simulation.

Initially the water column begins to fall down and then it reaches the obstacle which starts to be

deformed by the water mass impact. During the raise of water on the left side of the dam, the

deformation of the structure increases until it reaches the maximum when the water has flown more

than one dam length over the tip. Then the tip displacement starts to decrease, showing a sudden

reduction when the water impinges on the right wall of the tank. Subsequently, some tip oscillation

are observed, when the water starts to cover all the free end of the structure. 

Fig. 10 shows a comparison of the water shape between the experimental images and simulation

contours. In Fig. 11 the horizontal displacement of the free end of the dam is plotted versus time,

Fig. 10 Comparison of the water shape between experimentation and simulation

Fig. 11 Horizontal tip displacement of the dam predicted by the FSI model and measured experimentally by
Kölke et al. (2004)
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both for numerical and experimental data. All experimental reference data are taken from the results

by Kölke et al. (2004). It is confirmed that good agreement has been made between the present

results and experiment ones. A little lack of accuracy can be attributed to some simplifications that

have been made. For instance, the simulated case is two-dimensional, but the real structure is three-

dimensional. The dam is modelled as a cantilever beam with its elasticity taken as linear. However,

the actual rubber behaviour is far from this. Finally, the small displacements approach has been

used, even though the deformation of the structure is not small.

5.3 Reed valve

Numerical simulation results of the reed valve described above is illustrated in this paragraph. The

FSI model was used here with the contact algorithm capability, in order to correctly simulate the

contact of the petal with its stoppers. The FLUENT standard k-ε was chosen as turbulence model

for the fluid simulation. 

The pressure and velocity fields are illustrated in Fig. 12 for various time steps for an engine

cycle at 4770 RPM. From these images, one may notice the reed petal reaction to the pressure

Fig. 12 Flow fields in the reed valve at various times during an engine cycle at 4770 RPM

Fig. 13 Tip displacement of the reed valve predicted by the FSI model and measured experimentally by Fleck
et al. (1987); the measured pressure differential is also shown
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variation, the vortex formation downstream the valve, and the predicted bouncing of the petal at

closure and at full opening by the contact program. The tip vertical displacement of the reed agrees

very well with experimental data given by Fleck et al. (1987), as shown in Fig. 13.

6. Conclusions

In this paper a dedicated approach for FSI modelling is presented. Structural dynamics was solved

by an FEM solver coupled with the commercial CFD solver FLUENT based on a weak coupling

approach, i.e., by allowing the information to be exchanged at the end of each time step. The

structural model that interacts with the CFD model is defined by specifying the boundaries of

deformable parts and contact walls. During the solution, the interface motion is transferred through

use of the moving mesh capability of the CFD solver. 

In order to validate the code, while illustrating its applicability, three different two-dimensional

cases are studied, i.e., the vortex shedding excitation of a cantilever beam positioned downstream of

a square obstacle, the interaction between water and a flexible dam, and the working cycle of a reed

valve. It is interesting to note that the complexity of applications is increased through the examples.

In the vortex shedding test, the cantilever interacts with a single phase laminar fluid. As for the case

of a breaking dam, a two phase fluid is required for tracking the interface between air and water. In

the reed valve test, the problem is further complicated by the contact interaction between the reed

and stopper. 

For all the applications satisfactory results in term of the dynamics behaviour of coupled

structures have been obtained, as indicated by the close agreement with reference results. It is

confirmed that, despite its simplicity, the proposed solution scheme can be considered a versatile

and robust approach for the solution of FSI problems.
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