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Abstract. This paper develops a 3D homogenization based continuumdamage mechanics (HCDM)
model for fiber reinforced composites undergoing micromechanical damage under monotonic and cyclic
loading. Micromechanical damage in a representative volume element (RVE) of the material occurs by
fiber-matrix interfacial debonding, which is incorporated in the model through a hysteretic bilinear
cohesive zone model. The proposed model expresses a damage evolution surface in the strain space in the
principal damage coordinate system or PDCS. PDCS enables the model to account for the effect of non-
proportional load history. The loading/unloading criterion during cyclic loading is based on the scalar
product of the strain increment and the normal to the damage surface in strain space. The material
constitutive law involves a fourth order orthotropic tensor with stiffness characterized as a macroscopic
internal variable. Three dimensional damage in composites is accounted for through functional forms of
the fourth order damage tensor in terms of components of macroscopic strain and elastic stiffness tensors.
The HCDM model parameters are calibrated from homogenization of micromechanical solutions of the
RVE for a few representative strain histories. The proposed model is validated by comparing results of the
HCDM model with pure micromechanical analysis results followed by homogenization. Finally, the
potential of HCDM model as a design tool is demonstrated through macro-micro analysis of monotonic
and cyclic damage progression in composite structures.

Keywords: continuum damage mechanics; fatigue damage; homogenization; interfacial debonding; cohe-
sive zone element; principal damage coordinate system

1. Introduction

Composite materials are increasingly being used in automobile, aircraft and other high

performance applications because of their improved mechanical properties such as high specific

stiffness and strength. These structural components are often subjected to complicated cyclic loading

history. Although composites may have better fatigue life than metals, deficiencies in current life

prediction techniques hinder optimal design of composite structures under cyclic loading. Unlike

most metals, fatigue damage in composites starts early and grows steadily with deterioration of

stiffness in damaged regions causing redistribution of stresses. As a result, prediction of final failure
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requires complete simulation of cyclic damage progression in the structure. Conventional fatigue life

approaches characterize the fatigue damage by macroscopic quantities such as stress/strain and

experimentally obtained fatigue life or fatigue strength. Popular approaches for fatigue in metals

include stress-life for High Cycle Fatigue (HCF), strain-life for Low Cycle Fatigue (LCF) and

several other models based on S-N or Goodman type diagrams, described in Suresh (1996). These

concepts have been extended to composites by Hashin & Rotem (1973), Gathercole et al. (1994)

and others (Degrieck & Paepegem 2001). These total life approaches, however, do not take into

account the actual damage mechanisms such as localized cyclic plastic strains in metals or matrix/

interfacial cracks in composites, rendering them empirical in nature.

Experimental investigations have shown reduction in the elastic stiffness during fatigue damage

progression in fiber-reinforced composites (Talreja 1987, Reifsnider 1987). Phenomenological

models have been proposed in the literature characterizing fatigue damage through stiffness

degradation, (e.g. Sidoroff & Subagio 1987, Whitworth 1998). In this regard, continuum damage

mechanics (CDM) models provide a constitutive framework for reflecting damage induced stiffness

reduction with the introduction of effective damage parameters that represent overall material

degradation (Kachanov 1987, Voyiadjis & Kattan 2006, Krajicinovic 1996). Damage and failure of

composite materials are inherently multiple scale phenomena coupling different scales of damage

initiation and progression. Two types of CDM models, viz. phenomenological and micromechanical

models, have been proposed in the literature for modeling failure of composite materials. The

phenomenological CDM models (Chaboche 1981, Simo & Ju 1987, Chow & Wang 1987, Arnold &

Kruch 1991, Bhattacharya & Ellingwood 1999, Chow & Wei 1999, Desmorat et al. 2007) employ

scalar, second order and fourth order damage tensors using mathematically and thermodynamically

consistent formulations of damage mechanics. Damage parameters are identified through

macroscopic experiments and in general, they do not explicitly account for damage mechanisms in

the microstructure. In Desmorat et al. (2007), a generalized damage law has been developed in

terms of cumulative measure of internal sliding for monotonic, hysteretic, dynamic and cyclic

loading without explicit consideration of micromechanics. Micromechanics based approaches (Fish

et al. 1999, Chaboche et al. 1998, Ladeveze 2002, Ju et al. 2006, Akshantala & Talreja 2000,

Ladeveze 2002, Echle & Voyiadjis 1999, Fish & Yu 2002, Kruch et al. 2006, Rosek & Onate

2008), on the other hand conduct micromechanical analysis of a representative volume element

(RVE) with subsequent homogenization, to predict evolving material damage behavior. The CDM

model in Echle & Voyiadjis (1999) employs kinematic hardening type damage surface in stress

space to account for cyclic damage. In Fish & Yu (2002), the damage surface concept is dropped

and loading/unloading during fatigue is determined based on equivalent strain. An arc-tangent form

of evolution law for scalar damage evolution is assumed in this case. With the exception of a few

(e.g. Voyiadjis & Kattan 2006, Fish et al. 1999, Kouznetsova et al. 2001, Raghavan & Ghosh

2005), most damage models do not account for the evolution of damage or the effect of loading

history. Significant error can consequently accrue in the solution of problems, especially those that

involve non-proportional loading. Some of these homogenization studies have overcome this

shortcoming through the introduction of simultaneous RVE-based microscopic and macroscopic

analysis in each load step (Fish et al. 1999, Feyel & Chaboche 2000). However, such approaches

can be computationally expensive, especially during fatigue, since detailed micromechanical

analyses need to be conducted in each load step at every integration point in elements of the

macroscopic structure.

To overcome the shortcomings of macro-micro modeling of composites for predicting damage,
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Ghosh and coworkers (Raghavan & Ghosh 2005, Ghosh et al. 2007) have developed a

computationally efficient, anisotropic homogenization based continuum damage mechanics (HCDM)

model for composites undergoing microstructural damage. Specifically fiber-matrix interface

debonding has been taken as the microstructural damage mechanism in these two dimensional

analyses, for which micromechanical analyses are conducted by the Voronoi cell FEM model (Li &

Ghosh 2004). This model is constructed by homogenizing evolving damage variables in

micromechanical analyses of a representative microstructural volume element of the composite. The

homogenization based continuum damage model (HCDM) has been successfully used for

macroscopic analysis in multi-scale modeling of composites undergoing fiber-matrix interfacial

debonding in Ghosh et al. (2007). In a multi-scale modeling framework, the use of a continuum

damage mechanics model in regions of non-critical diffused damage evolution makes the overall

computing extremely efficient. This model can avoid the need to perform micromechanical analysis

at each load increment. However, it is necessary to zoom into the microstructure and perform pure

microscopic analysis in critical regions of dominant crack propagation or localized instability to

accurately predict catastrophic failure (Ghosh et al. 2007).

The 2D HCDM model in Raghavan & Ghosh (2005) does not incorporate the effects of the path

dependent load history on the parameters in the damage model. Hence its predictions are not

accurate for e.g., non-proportional loading cases. The authors have developed a 3D HCDM model

in Jain & Ghosh (2008b,a) that overcomes these limitations through the introduction of a principal

damage coordinate system (PDCS), which evolves with the load history. The objective of the

present work is to develop a unified continuum damage modeling framework that employs same

damage evolution law for monotonic as well as fatigue damage. To account for fatigue damage,

loading/unloading criterion based on scalar product of the normal to the damage surface in strain

space and the applied strain increment is proposed. A similar criterion has been used in Marigo

(1985) to develop a phenomenological fatigue damage law. The 3D HCDM model introduces

functional forms of a fourth order damage tensor in terms of macroscopic strain and stiffness tensor

components that are calibrated by micromechanical RVE analysis along different strain loading

paths. Anisotropy and its evolution are also effectively treated in this model. Parametric

representation of various damage tensors significantly enhances the computational efficiency by

avoiding cumbersome strain space interpolations in Raghavan & Ghosh (2005). The HCDM model

can be conveniently incorporated in any finite element code, e.g., ABAQUS or MARC for efficient

modeling of damage evolution in composite structures due to degrading microstructures.

The CDM model proposed has two main attributes. It has a very strong connection with the

micromechanical phenomena. For example, one can relate the macroscopic damage energy to the

amount of debonding or fiber cracking in the microstructure for any composite architecture. Thus, it

can be used as an effective tool for microstructure design. The second is that the CDM model

overcomes the necessity for tedious micro-macro computations, while getting the same accuracy and

dependence on the microstructure and micromechanics. Hence it can be coupled and used in any

commercial software for macro-scale structural analyses.

This paper starts with a brief overview of continuum damage mechanics and establishes

significance of PDCS in section 2. Section 3 describes the micromechanical model with interfacial

debonding followed by its homogenization. An orthotropic homogenization based CDM or HCDM

model developed in the PDCS is discussed in section 4. This section also discusses parameter

calibration for monotonic and cyclic loading. Section 5 provides the stress update procedure with

HCDM in its implementation in a macroscopic finite element code for structural analysis. Validation
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of the HCDM model for a single fiber RVE subjected to monotonic and cyclic loading is presented

in section 6. Section 7 presents demonstrative structural applications to show the capabilities of the

HCDM model. The paper concludes with a brief summary of the developed model.

2. Anisotropic continuum damage mechanics

The general form of CDM models (see e.g. Kachanov 1987), introduces a fictitious stress 

acting on an effective resisting area ( ). This is caused by reduction of the original resisting area A

due to material degradation due to the presence of micro-cracks and stress concentration in the

vicinity of cracks. In Raghavan & Ghosh (2005), Simo & Ju (1987), the effective stress  is

related to the actual Cauchy stress  through a fourth order damage effect tensor Mijkl as

(1)

where Mijkl is a function of a damage tensor D (= Dijklei ej ek el). D can be a zero-th, second

or fourth order tensor, depending on the model employed. As discussed in Voyiadjis & Kattan

(2006), Cordebois & Sidoroff (1982), the hypothesis of equivalent elastic energy is used to evaluate

Mijkl and establish a relation between the damaged and undamaged stiffnesses as

(2)

where  is the elastic stiffness tensor in the undamaged state and Eijkl(D) is the

stiffness in a damaged state. From Eqs. (1) and (2), the relation between the damaged and

undamaged stiffnesses is established as

(3)

where the exponent −T corresponds to the transpose of the inverse of the fourth order M tensor.

With the choice of an appropriate order of the damage tensor and the assumption of a function for

Mijkl, Eq. (3) can be used to formulate a damage evolution model using micromechanics and

homogenization.

2.1 Principal damage coordinate system (PDCS)

For a second order damage tensor Dij, the damage effect tensor Mijkl in Eq. (1) has been

formulated in Murakami (1988) as:

Mijkl = (δ ik − Dik)
−1δjl  (4)

Dij is symmetric and it can describe the damage states which have at least orthotropic symmetry.

For any arbitrary Dij the corresponding effective stress tensor, obtained by substituting Eq. (4) in Eq.

(1), may be unsymmetric. An implicit method of rendering the stress tensor symmetric has been

suggested in Voyiadjis & Kattan (2006), which is used to derive the inverse of the damage effect

tensor [M(Dij)]
−1. The present work assumes orthotropy of the homogenized stiffness matrix in the

principal damage coordinate system. For known values of  and , Eq. (3) results in a system

of nonlinear algebraic equations in Dij, which are solved by nonlinear least squares minimization.

Subsequently, the eigen-vectors of Dij, viz. eD1, eD2 and eD3 are evaluated and the transformation
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matrix [Q]D = [eD1 eD2 eD3]
T is formed. The rotation matrix [Q]D transforms the global coordinate

system to the principal damage coordinate system.

2.2 Evolution of PDCS for different load histories

To examine the evolution of PDCS with different load histories, micromechanical analysis of RVE

with a single fiber of 20% volume fraction is conducted. To allow debonding, the fiber-matrix

interface is modeled using cohesive zone elements as discussed in section 3. Micromechanical

analysis is followed by homogenization to evaluate evolving stiffnesses and PDCS in the composite.

Two combined loading histories are considered for the analyses: Case a: Proportional and Case b:

Non-proportional. The final state of the macroscopic strain eij is identical for both the cases. For the

proportional loading case (a), the orientation of the damage axes jumps to and remains unchanged at

24o with respect to the global axes throughout damaging process. For the non-proportional loading

case (b), the PDCS coincides with the global coordinate system in simple tension during the first

half of loading. In the last half of the loading, the PDCS continuously rotates to a final position of

21o orientation. Certainly in this case, the PDCS rotation should be incorporated in the HCDM

model to account for the damage history.

3. Micromechanical RVE model and homogenization

3.1 Cohesive zone model for interfacial debonding

A 3D micromechanical model for composite microstructures undergoing fiber-matrix interfacial

debonding has been developed in Swaminathan et al. (2006) based on bilinear cohesive law. The

model has been extended in Bhatnagar et al. (2007) to include irreversible hysteretic effects in

mixed-mode failures. In this work, the hysteretic bilinear cohesive zone model is employed to

simulate fiber-matrix interfacial debonding with fatigue damage accumulation.

In the bilinear cohesive zone element of Swaminathan et al. (2006), the relation between traction 

 and the effective opening displacement  is given as

(5)

where (Tn, Tt1, Tt2) are normal and tangential components of the interfacial traction, (δ n, δ t = )

are displacement jumps in normal and tangential directions respectively and β is an empirical factor.

For a positive normal displacement δn, the traction at the interface increases linearly to a

maximum value of σmax corresponding to δc. After that, the traction starts decreasing with increasing

separation and finally reaches zero at a value of δe. The unloading behavior in the hardening region
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follows the same slope as that of the loading path. In the softening region, unloading is assumed to

follow a linear path back from the current position to the origin with a reduced stiffness.

Reloading follows the unloading slope till it meets the point of unloading in the softening plot,

and then continues along the softening plot. When the normal displacement is negative, stiff penalty

springs are introduced to prevent penetration. Details of the implementation of 3D cohesive zone

elements in the user defined element (UEL) subroutine of FE code ABAQUS has been discussed in

Swaminathan et al. (2006).

To account for dissipative mechanisms in the fracture process zone ahead of the crack tip in cyclic

loading, the hysteretic model incurs fatigue damage during reloading. Unloading is still assumed to

be linearly elastic towards the origin of traction-separation curve. During reloading the cohesive

spring stiffnesses in normal and tangential directions are assumed to decay according to the stiffness

degradation law given by:

(6)

where the material parameter δf governs the rate of stiffness decay during cyclic loading. The

hysteretic response of the cohesive model remains within the envelope of the bilinear model. When

the reloading curve intersects the softening curve, it follows the curve and accrues only monotonic

damage as illustrated in Fig. 2. Further details of numerical implementation of the hysteretic

cohesive zone element are discussed in Bhatnagar et al. (2007).

3.2 Homogenization and stiffness evaluation

Components of the homogenized elastic stiffness tensor Eijkl, are calculated by solving six

independent micromechanical boundary value problems of the RVE. The RVE is each case is

subjected to periodicity displacement conditions on the boundary. For a given macroscopic or

average strain eij, the corresponding nodes of opposite faces (say  and ) of the RVE are

constrained as Pellegrino et al. (1999)
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Fig. 1 Finite element mesh for the RVE with a cylindrical fiber
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(7)

where ∆xi are the relative coordinates of nodes on opposite faces. Macroscopic strains are then

applied by fixing a corner node and specifying the displacement on master nodes M1, M2 and M3

that belong to orthogonal faces as shown in Fig. 1. Elastic stiffness Eijkl is evaluated by applying

single unit strain components to the RVE. These correspond to six boundary value problems, for

example, e11 = 1.00, all other components = 0 etc. Finally, the homogenized or macroscopic stresses

Σij and strains eij are obtained by volume averaging.

4. Evolution equations for the HCDM model

The anisotropic CDM model involving fourth order damage tensor, proposed in Raghavan &

Ghosh (2005), introduces a damage evolution surface to delineate the interface between damaged

and undamaged domains in the strain-space (eij). In this work, a damage evolution surface that is

valid for monotonic as well as cyclic loading is written in the principal damage coordinate system

(PDCS) as

 (8)

where the m / f in the superscript denote monotonic and cyclic loading respectively. Wd is the

dissipation of the strain energy density due to stiffness degradation that is expressed as:

(9)

where the prime in the superscript denotes quantities expressed in the PDCS using the

transformation laws
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n
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p ui( )
n
1

p– eij∆xj=
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2
---e'ij  P' ijkl

m f⁄
e'kl κ' αWd( )–=
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2
---e'ije'kl E' i jkld∫=

Fig. 2 Hysteretic cohesive zone model response under cyclic loading to eventual failure
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= QipQjqQkrQlsEpqrs and = QikQjlekl (10)

and Qij is the transformation matrix.  is a fourth order symmetric negative definite tensor that

corresponds to the direction of the rate of stiffness degradation tensor  is a damage

state variable and α is a scaling parameter.

Damage evolution due to monotonic loading takes place when > 0. In this case, consistency

condition = 0 is satisfied and assuming associativity rule in the stiffness space, the rate of

stiffness degradation in PDCS is given as

 (11)

The loading/unloading criterion during cyclic loading is based on the inner product of the strain

increment  and the normal to the strain space damage surface . Thus,

 (12)

In this case, the damage evolution takes place satisfying the condition F' < 0, = 0. The

corresponding rate of stiffness degradation in PDCS is

 (13)

4.1 Parametric forms and parameter calibration

4.1.1 Damage state variable κ '

The damage function κ'(Wd) is evaluated for a reference loading path, and results for all other

strain paths are scaled with respect to this reference value. For the reference loading path ( ,

all other ), setting P'1111 = 1, κ' is determined from damage surface of Eq. (8) as

(14)

The function κ'(Wd) is determined from the micromechanical analysis by evaluating Wd at each

strain increment. The κ' − Wd plots for four different strain paths are shown with circular marks in

Fig. 3. Wd remains zero in these plots, till κ ' exceeds a threshold value corresponding to the

initiation of debonding induced microscopic damage. Subsequently, Wd increases rapidly, signaling

substantial material deterioration during the initial stages of damage. Eventually, Wd saturates at a
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value  corresponding to configuration with arrested debond or fully debonded interface. Very

little material degradation due to damage occurs beyond this saturation value. The behavior of the

plots are similar; however the value of  differs for the different strain histories. The variability

of  with different loading paths in the 3D strain space can be taken into account using the

scaling factor (eij) as reported in Raghavan & Ghosh (2005). However, such an approach requires

evaluation and storage of (eij) for a large number of individual loading paths for interpolation.

To avoid this approach in the 3D analysis, novel functional forms of κ' are introduced to

explicitly describe its dependence on the macroscopic strain components eij, as well as on Wd. Three

invariant forms of the strain components, consistent with anisotropic material properties model are

used in these functions. They are:

(15)

where  is the deviatoric strain tensor. The invariants I1, J2 and J3 are

respectively linear, quadratic and cubic functions of eij. The constants A, B, C, F, G, ..., S are

introduced to characterize the state of anisotropy in the damaged material. The functional form of κ'

is developed to conform to the plots of Fig. 3, and is expressed as:

κ'(I1, J2, J3, Wd) = b0 + f (I1, J2, J3) [1 + b1tan(b2Wd)] (16)

The form decomposes its dependence on the dissipation energy and the strain. The latter depen-

dence is represented by a polynomial function of the invariants as:
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Fig. 3 Functional representation of the κ ' − Wd relation from homogenized micromechanics (HMM) data
points
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f (I1, J2, J3) = α0 + α1I1 + α2J2 + α3J3 + α4 + α5I1J2 + ... (17)

The constants A, B, C, ... in Eq. (15), b0, b1, b2 in Eq. (16), and α0, α1, ... in Eq. (17) are determined

by a nonlinear least squares minimization of the difference between results of micromechanical

analysis and those from the functional form in Eq. (16), i.e.,

(18)

Micromechanical analysis of the RVE is conducted for Nref different strain histories to explicitly

compute the values of . A sufficient number of reference strain paths (Nref) are selected such

that the parametric representation in Eq. (16) represents all possible strain history in field

simulations. A fifth order polynomial function in Eq. (17) yields good convergence properties for

the least square residual. Fig. 3 satisfactorily compares the −Wd plots by the function in Eq. (16)

with results from the micromechanical analysis for the different strain paths.

4.1.2 Damage surface parameter  for monotonic loading

In the incremental finite element formulation for evolving damage, the backward Euler method is

used to integrate the rate of stiffness degradation in Eq. (11). Corresponding to the strain increment

from step n to step n + 1, the parameter  may be expressed as

(19)

where  is the secant stiffness at the end of the increment. Substituting this into the

damage evolution Eq. (8) at the end of the increment yields the incremented form of the damage

surface as

(20)

where κ' n + 1(I1, J2, J3, Wd) represents the size of the parametric damage surface and (Wd)n + 1 at the

end of the interval is evaluated by using the backward Euler integration method. The parameter

λn + 1 is then evaluated from the relation

(21)

 may be subsequently determined from Eq. (19). The direction of the rate of stiffness

degradation varies continuously with damage evolution with increasing loads. From Eq. (11) this

implies that  also varies accordingly. A polynomial function form is derived for the

components  in terms of the anisotropic invariants of strain defined in Eq. (15), as

 (22)

Again, the coefficients  in Eq. (22) are determined by a nonlinear least square equation solver.

Fig. 4(a) shows a comparison of the micromechanical results and the calibrated function in Eq. (22)
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for an RVE under uniaxial tension. With a fifth order polynomial function (22), the root mean

square error is observed to be less than 3%.

4.2.3 Damage surface parameter  for cyclic loading

Integrating the rate of stiffness degradation in Eq. (13) using backward Euler method,  may

be expressed as

(23)

Substituting this into the rate form = 0 of damage evolution Eq. (8) yields

 (24)

The parameter  is then evaluated as

(25)

 may be subsequently determined from Eq. (23).

A parametric functional form involving components of secant stiffness tensor  and increment

in the magnitude of strain tensor is proposed for . The parametric form is given as

 (26)
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The coefficients  and  are found to depend on the secant stiffness as:

(27)

The coefficients  in Eqs. (26) and (27) are determined by nonlinear least squares minimization

of the difference between results of micromechanical analysis for a few representative strain paths

and those from the functional form. Fig. 4(b) shows that satisfactory fit is achieved for the

components of  for a representative case of uniaxial tension.

5. Stress update algorithm for macroscopic analysis

The homogenization based continuum damage mechanics model is implemented for macroscopic

finite element analysis using the user material interface (UMAT) in the commercial code ABAQUS.

In an incremental solution process, subscripts n and n + 1 correspond to values at the beginning and

end of the n − th increment respectively. At each integration point of an element in the FE model,

the stresses ( )n + 1 are obtained from known values of the strain (eij)n + 1 and state variables at n

using the HCDM constitutive model. The essential steps in the UMAT update algorithm for the n −
th increment are described below.

1. Given (eij)n + 1, evaluate ( )n + 1 using Eqs. (15) and (22) for monotonic loading and evaluate

( )n + 1 using Eq. (26) for cyclic loading.

2. At the start of each iteration algorithm for solving the damage evolution problem, assume that

the starting value of the PDCS rotation tensor .

3. Check for damage due to monotonic loading: For the I − th iteration, monotonic damage

evolution takes place if:

. In this case, update the damage state variable as

 and proceed to step 6 to update the secant stiffness.

4. Check for damage due to cyclic loading: Evaluate the scalar product  or .

The applied load increment results in damage due to fatigue if:

. In this case, update the damage state variable as

and proceed to step 6 to update the secant stiffness.

5. Unloading: The applied load increment results in neutral loading or unloading if:

 and . In this case, proceed to step 8 with

unchanged secant stiffness tensor .

6. Determine the secant stiffness as follows:

• Determine Wd by inverting the  relation in Eq. (16) as
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(28)

• Using the backward Euler method to integrate , determine

(29)

• Update the secant stiffness using the relation

 (30)

7. Determine the PDCS rotation matrix  from the eigen-vectors of , corresponding

 to the updated secant stiffness  using the procedure described in section 2.1. If

convergence in the rotation matrix is achieved, i.e.,

If max |((Qij)n + 1)
I − ((Qij)n + 1)

I − 1| ≤ TOL, i, j = 1, 2, 3

then proceed to step 8. Otherwise, return to step 3 and continue iteration.

8. Update macroscopic stresses with the converged value of the secant stiffness matrix  as

(31)

6. Numerical examples for validating the HCDM model

The orthotropic 3D homogenization based CDM (HCDM) model is validated by solving a few

numerical examples. Results obtained from macroscopic simulations using the HCDM model are

compared with homogenized micromechanical or HMM results for the RVE. The HMM model is

obtained by homogenizing or volume averaging the micromechanical stresses and strains in the

RVE subjected to periodic boundary conditions with imposed macroscopic strain as done in

(Raghavan & Ghosh 2005). The macroscopic finite element model implementing the HCDM

constitutive relations, consists of a single eight-noded quadrilateral element. A 3D fiber-matrix

composite RVE consisting of a unit cube containing a cylindrical fiber of radius 0.2523 (Fig. 1) is

considered for this validation study. Material properties of the elastic matrix are Em = 4.6 GPa, νm =

0.4, while for the elastic fiber they are Ec = 210 GPa, νc = 0.3. The fiber volume fraction in the RVE

is 20%. Cohesive zone parameters for the interface are δc = 5.0 × 10−5 m, δe = 20 × 10−4 m, δ f = 20

× 10−3 m and σm = 0.02 GPa. Micromechanical analyses of the RVE are conducted by enforcing

periodic displacement boundary conditions and imposing the macroscopic strain fields on the RVE.

6.1 Model validation for monotonic loading

To validate the HCDMmodel for monotonic loading conditions, both proportional and non-

proportional macroscopic strain loading conditions are applied as follows:

1. L1 Proportional uniaxial tension loading: e11 0, all other eij = 0 for the entire loading process.

This is taken as the reference loading path.
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2. L2 Proportional, combined tension/shear loading: e11 0, e22 0, e12 0, all other eij = 0 for

the entire loading process.

3. L3 Non-proportional loading: e11 0, all other eij = 0 (uniaxial tension in the first half of the

loading); and e11 0, e12 0, all other eij = 0 (combined tension/shear in the second half of the

loading)

Contour plot of the microscopic stress in the 3D RVE, subjected to uniaxial tension in the x1
direction is shown in Fig. 5. The figure also shows the extent of debonding for the microstructure. 

The various parameters in the HCDMmodel are calibrated for the RVE following the procedure

outlined in section 4. The constants A, B, C, F, G, ..., S in Eq. (15) for the strain invariants are

evaluated for the RVE and reported in Table 1. The constants exhibit symmetry with respect to x1
and x2 directions of the RVE. Since there are many calibrated constants in the expressions for 

and , only a few representative values are given. These are: b0 = 0.1E − 6; b1 = 12.44;

b2 = 0.44E5; α0 = 0.42; α1 = 3.08; α2 = 2.44; α3 = 74.2. For , some of the constants are =

−1.16; ; ; 

Figs. 6(a-c) compare the macroscopic stress-strain plots obtained from macroscopic analysis using

HCDM with HMM results for the three load cases considered. The excellent match in most cases

corroborates the satisfactory performance of the HCDM model. An important observation from

these results is the sensitivity of the HCDM behavior to different loading conditions. The RVE

subjected to loading (L1) shows rapid material degradation with increasing strain as the interface

undergoes debonding in Fig. 6(a). The stiffness stabilizes at a strain of 0.0012 when the interface

debonds completely. Similar trends are seen for the combined loading (L2) in Fig. 6(b), where

≠ ≠ ≠

≠
≠ ≠

κ'

P' i jkl
m

P' 1111

m
c0

1111

c1

1111
0.144–= c2

1111
0.615–= c3

1111
0.144–=

Fig. 5 Contour plot of microscopic stress (σ11) in the RVE subjected to a uniaxial tensile strain e11 = 0.004

Table 1 Constants in the parametric representation of I1, J2 and J3 in Eq. (15) for the single fiber RVE

A B c F G H L M N O P Q R S

0.32 0.32 0.02 0.02 0.02 0.42 0.18 0.38 0.38 0.00 0.16 0.34 0.13 0.16
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material degradation is followed by a constant stiffness phase corresponding to locked state. The

merit of representing the HCDM model in the PDCS is evident from the results of the non-

proportional loading case (L3) in Fig. 6(c). The PDCS representation results in a remarkable

improvement of accuracy when compared to results in Fig. 6(d), which are obtained without

incorporation of PDCS. The effectiveness of the HCDM model is evident from its CPU time of 20s,

which is several times faster than that of HMM model with a CPU time of 780s.

6.2 Model validation for cyclic loading

The HCDM model is validated for cyclic loading by comparing the results of macroscopic

simulations using the HCDM model with homogenized micromechanical or HMM results for the

single fiber RVE. The RVE is subjected to cyclic tension-shear combined loading of eij = eij + ẽij

Fig. 6 Comparison of macroscopic stress-strain behavior obtained using HCDM and homogenized
micromechanics (HMM) for RVE with a cylindrical fiber (Fig. 1), for load cases (a) L1, (b) L2, (c)
L3 and (d) L3 without incorporation of PDCS
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sin(2πt). Figs. 7(a-b) show comparison of the HCDM predictions for stress and secant stiffness with

the results of HMM for 50 cycles. Excellent agreement is obtained between HCDM and HMM in

both cases. The components of elastic stiffness tensor degrade rapidly due to monotonic damage

during the first cycle, followed by steady degradation due to fatigue damage. The CPU times for

analyses with the HCDM and HMM models respectively, are 2 mins. and 175 mins. This reasserts

the effectiveness of HCDM model.

The error in stresses predicted by the HCDMmodel in the above validation studies is attributed to

the error in the functional representation of (Wd) and , as well as the assumption of

orthotropy. A rigorous sensitivity study is thereby conducted to ensure accurate representation of the

damage parameters such as in Eqs. (22) and (26). Functional representations of Eqs. (16) and (22)

have been successfully validated through tests on a variety of microstructural configurations and

reported in Jain & Ghosh (2008b). It is evident from the examples discussed that the material

degradation and consequently the variation of damage parameters depends on the applied strain

path. This emphasizes the need for comprehensive 3D micromechanics based continuum damage

model for use in macroscopic analysis modules.

7. Macro-micro analysis with the HCDM model

This section is intended to demonstrate the potential of HCDM model as a design tool for

composite microstructures in structural applications by establishing a connection between

macroscopic damage evolution and explicit microscopic failure mechanisms. Macroscopic structural

simulation of damage evolution is conducted by the commercial FEM code ABAQUS (Abaqus

2001) with the HCDM model incorporated in the user subroutine UMAT. Once calibrated and

validated, the HCDM model for a given RVE can be used for macroscopic analysis using the stress

update procedure explained in section 5. A distinct advantage of the HCDM model over

κ' P' i jkl
m f⁄

Fig. 7 Comparison of (a) component E1111 of elastic stiffness tensor and (b) macroscopic stress Σ11 obtained
using HCDM and homogenized micromechanics (HMM) for RVE with a cylindrical fiber, for cyclic
tension-shear combined loading of eij = eij +  sin(2πt)ẽij
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conventional macro-micro homogenization methods (Lene & Leguillon 1982, Guedes & Kikuchi

1991) is that the macroscopic analysis of large structures can be conducted very efficiently while

preserving the effects of microstructural features.

7.1 Damage in projectile impact

The simulation involves a deformable composite projectile impactor colliding with a rigid surface

as shown in Fig. 8. The impactor is cylindrical in shape with radius of 3.2 mm and length of 32.4

mm and is moving with initial velocity of 10 m/s. The impactor is assumed to be constituted of

microstructural RVE described in section 6. The RVE is oriented in the structure such that the local

(RVE) 3-direction coincides with the global 2-direction of Fig. 8. The macroscopic material

behavior of the impactor is described by the calibrated HCDM model developed in section 4. To

account for the inertia effects, the simulation is conducted with ABAQUS/Explicit with the HCDM

constitutive law incorporated in VUMAT. The density of epoxy matrix is assumed to be 750 Kg/m3

while that of steel fiber is 7800 Kg/m3 so that, for fiber volume fraction of 20%, the density of the

aggregate is 2160 Kg/m3. The rigid surface and the projectile are modeled using continuum

elements, and contact between projectile and rigid surface is assumed to be frictionless. 

The total energy dissipated due to evolving damage (Wd) in the impactor is plotted as a function

of time in Fig. 9(a). After initial period of elastic response corresponding to negligible values of

total Wd, the damage initiates and Wd accumulates rapidly. Fig. 9(b) shows contour plot of energy

dissipated Wd due to evolving damage at 5.0 µs. The damage initiates near the periphery of the

impactor head and then propagates towards the center of the head cross-section. It is observed that

at t = 5.0 µs (see Fig. 9(b)), damage is nonuniformly distributed about the center because of material

orthotropy. The damage is seen to progress into the impactor as the stress waves due to impact

travel into the impactor.

Time histories of the normal contact force at the impactor-rigid wall interface are compared in

Fig. 10. The simulations are conducted with and without damage. The elastic stiffness tensor in the

latter case is equal to the homogenized RVE stiffness with a perfect interface. The plots show that

contact force rapidly reaches a peak value, reduces and stabilizes for a while and then gradually

Fig. 8 Finite element model of a composite impactor colliding with a rigid surface
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increases again. Stress waves generated during impact propagate away from the center of impactor

head towards the periphery. Also the waves propagate towards the back end of the impactor. Due to

material orthotropy, the waves propagate at different speeds in different directions. The waves get

reflected from the boundaries and interact with each other, causing the later increase in contact

force. The contact forces with and without damage are concurrent until damage initiation, after

which, the contact force with damage accumulation is lower. The difference between the two curves

increases as more and more damage accumulates, indicating reduction in the load carrying capacity

of the material.

Finally, the homogenization method allows for the assessment of stress-strain and damage evo-

lution in the microstructural RVE, subject to a given macroscopic strain history. At a point on the

Fig. 9 Energy dissipated (Wd) due to evolving damage in the composite impactor (a) total Wd as a function of
time and (b) contour plot of Wd at time = 5.0 µs

Fig. 10 Comparison of the interfacial contact force during impact with and without interfacial damage for
composite impactor
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face of the impactor, the macroscopic stress evolution predicted by HCDM model is compared with

the homogenized stress obtained from the microstructural RVE analysis subjected to macroscopic

strain history. The comparison is demonstrated in the Fig. 11. Excellent agreement between the

HCDM and the homogenized micro-scale distributions confirm the robustness of the HCDM model.

7.2 Fatigue damage in a composite cantilever

A composite cantilever thick plate of 5 m length, 2.5 m width and 0.5 m thickness is subjected to

an oscillatory load at the free end as shown in Fig. 12. The cyclic behavior of the structure is

simulated using ABAQUS/Standard. The plate is constituted of microstructural RVE as described in

Fig. 11 Comparison of stress evolution predicted by HCDMmodel and the homogenized micromechanics
(HMM) at a macroscopic point on the head of the composite impactor

Fig. 12 Contour plots of energy dissipated (Wd) due to evolving damage for composite cantilever (a) after
one cycle and (b) after 40 cycles
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section 6. The calibrated HCDM model developed in section 4 defines the constitutive behavior of

the plate and is incorporated in ABAQUS user defined subroutine UMAT. A vertical displacement

 sin(2πt) is applied at the free end of the cantilever plate.

Figs. 12(a-b) show contour plots of the dissipated energy Wd due to evolving damage after one

cycle and 40 cycles respectively. During the first cycle, the structure deforms elastically until high

bending stresses cause damage to initiate at the top surface of the fixed end. The damage then

accumulates rapidly till the end of the first cycle with the monotonic part of the loading. After the

first cycle, the degraded material points undergo steady degradation due to fatigue. This is evident

from the higher values of Wd in Fig. 12(b) compared to Fig. 12(a). Subsequently, redistribution of

stresses takes place resulting in growth of damage zone as seen in the contour plots.

The damage evolution in the microstructural RVE can be assessed by subjecting the RVE to the

macroscopic strain history at any material point. Fig. 13 shows the σ11 contour plot in the

u u ũ+=

Fig. 13 Contour plot of the microscopic stress (σ11) in the RVE at a macroscopic point on the top surface of
the cantilever near the fixed end after 40 cycles

Fig. 14 Homogenized micromechanical stress Σ11 of RVE at a macroscopic point, showing steady reduction
of the peak stress due to fatigue damage accumulation
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microstructural RVE at a point on the top surface near the fixed end. The corresponding

macroscopic stress evolution is shown in Fig. 14. The plot shows steady drop in the peak stress

over the cycles because of fatigue damage accumulation.

8. Conclusions

An accurate and computationally efficient 3D homogenization based continuum damage

mechanics model (HCDM) is developed for fiber reinforced composites undergoing interfacial

debonding due to monotonic and cyclic loading. The HCDM model represents orthotropic behavior

of damaging composites through a fourth order damage tensor which characterizes the stiffness as

an internal variable. The effect of rotation of the principal damage axes due complex strain histories

is accounted for by expressing the damage evolution laws in the principal damage coordinate

system (PDCS). The model is found to accurately predict damage behavior for a wide range of

proportional and non-proportional, monotonic as well as cyclic loading conditions. The proposed

loading/unloading criterion for fatigue is seen to yield good accuracy. Functional forms of various

damage parameters  and  are developed in terms of the invariant forms I1, J2 and J3
and stiffness tensor  to express variation of damage variables with the evolving damage.

Parameters are calibrated by performing micromechanical RVE analysis for a few imposed strain

histories. The functional forms of the parameters overcome the serious limitations of constant

damage parameters that are conventionally assumed in CDM models. The assumption of orthotropy

of damage laws in the PDCS is found to yield reasonably good accuracy. The model’s robustness is

evident from the good agreement between HCDM and homogenized micromechanical (HMM)

response for a variety of loading paths. The capability of the model to efficiently predict damage in

structures with explicit reference to the microstructural composition is demonstrated through macro-

micro analysis of two composite structures. The ability of the HCDM model to directly correlate

macroscopic behavior to the microstructural morphology, makes it a very effective tool in a material

design framework to enhance the failure properties of structures.
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