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Abstract.  Two fundamental issues exist in the damage theory of geo-material based on the concept of 
thermodynamics: existence or nonexistence of the dissipation potential, and whether the dissipation potential 
could be decoupled into a damage potential and a plastic one or not. Thermodynamics theory of elastoplastic 
damage assumes the existence of dissipation potential, but the presence of dissipation potential is conditional. 
Based on the dissipation inequality in accord with the second law of thermodynamics, the sufficient and 
necessary conditions are given for the existence of the dissipation potential separately in total and 
incremental forms firstly, and proved strictly in theory. With taking advantage of the basic mechanical 
properties of geo-materials, the nonexistence of the dissipative potential is verified. The sufficient and 
necessary conditions are also given and proved for the decoupling of the dissipation potential of 
geo-materials in total and incremental forms. Similarly, the non-decoupling of the dissipation potential has 
also been proved, which indicates the dissipation potential of geo-materials in total or incremental forms 
could not be decoupled into a dissipative potential for plasticity and that for damage respectively. The 
research results for the fundamental issues in the thermodynamics theory of damage will help establish and 
improve the theoretic basis of elastoplastic damage constitutive model for geo-materials. 
 
Keywords:    geo-material; constitutive relation; thermodynamics; damage; dissipative potential; 
decoupling 
 
 
1. Introduction 
 

Damage mechanics is an important branch of solid mechanics, and the deterioration process of 
geo-materials is always described by the constitutive model involving damage (Shojaei et al. 2014, 
Lai et al. 2009, Mortazavi and Molladavoodi 2012, Zhou et al. 2013, Zhu et al. 2010). The 
phenomenological method which integrates the irreversible thermodynamics with continuum 
theory is used to describe the deterioration process of the material (Krajcinovic 1985, 1989, 
Lemaitre 1985, Lemaitre and Chaboche 1990, Voyiadjis and Kattan 1990, Guo et al. 2008, Zhou 
et al. 2013). A distinctive property of the theory is that the constitutive relation could be derived 
from two specific functions, the free energy function and the dissipation potential function. Of 
particular importance is the problem of constructing the dissipation potential function, because 
both plasticity and damage mechanisms involve the energy dissipation. 
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Currently, the dissipation potential function is dealt with along two principal approaches. One 
approach is that the unique dissipation potential function is used for plasticity and damage which 
is deemed that these two dissipation processes occur simultaneously and correlate with each other 
(Voyiadjis and Kattan 1992, Faria et al. 1998, Loredana and Massimo 2002, Guo et al. 2008, Zhou 
et al. 2013). Another approach is that the energy dissipated due to plasticity and damage are 
independent of each other (Nguyen and Houlsby 2004, Nguyen 2005, Salari et al. 2004, Shao et al. 
2005, 2006, Mortazavi and Molladavoodi 2012). 

On account of the complexity and speciality of the geo-material damage, a lot of constitutive 
models are built up considering the influence of different conditions. The damage theory for 
geo-materials is not so perfect as classical plastic theory. The main reason may be that some 
fundamental theoretical problems have not been solved in damage mechanics for geo-materials. 
For example, the existence or nonexistence of the dissipative potential, and whether the dissipative 
potential could be decomposed into a damage potential and a plastic one or not, namely, whether 
these two mechanisms can be decoupled or not. In this paper, sufficient and necessary conditions 
are given for the existence of dissipation potential in total relation and incremental relation for 
geo-material, and the sufficient and necessary conditions are provided for the decoupling of 
dissipation potential in total and incremental forms for geo-materials also. 

 
 

2. Thermodynamic foundation 
 
2.1 First law of thermodynamics 
 
Although the energy has various different forms and can transit from one form to another, from 

one object to another, energy conversion should be satisfied in these processes. The 
thermodynamics framework can be obtained in interrelated literature (Voyiadjis et al. 2011, Huang 
2003). Generally, in any nonlinear dynamic system there will be an internal energy (U) and a 
kinetic energy (K). 

 
vv

VVdvKudvU 
2

1
,  (1)

 

where ρ is the mass density, u is the internal energy density, V is velocity vector, v is the body 
occupied spatial domain. 

Similarly, dW is the mechanical work increment and dQ is the thermal increment, and can be 
written as 








ApvfdW VdVd  (2)

 








 AqnvrdQ dd  (3)

 

where f is a body force vector, p is the surface force vector, ∂v is the boundary, dA is the 
infinitesimal area, r is a body thermal vector, q is the surface thermal vector, and n is the unit 
vector of outward normal. 

The first law of thermodynamics (energy conservation) in the incremental form can be written 
as 
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QWUK dddd   (4)
 

For arbitrarily part of v, the local form of the energy conservation would be 
 

0ddivd   qru  (5)
 

where σ, dε are stress and strain increment respectively. 
 
2.2 Second law of thermodynamics 
 
The second law of thermodynamics, which determines the direction of energy transition, states 

that the entropy of a thermodynamic system cannot decrease. It can be stated as 
 










An

T

q
v

r
QQS TT dd

T
       ,0d  (6)

 

where S is entropy, and T is absolute temperature. 
Applying the divergence theorem to the heat flux across the boundary of a unit volume 
 

 





vT
T

q
q

T
v

T

q
An

T

q
d)graddiv

1
()ddiv(d

2
 (7)

 

where S is entropy, and T is absolute temperature. 
Applying the divergence theorem to the heat flux across the boundary of a unit volume 
 

0/)grad(  TT
T

q
divqrdS   (8)

 

Invoking Eq. (5) into Eq. (8), the local form is obtained for the Clausius-Duhem inequality 
 

0gradddd  T
T

q
STu  (9)

 

The factor ρ simply appears as a multiplier throughout the analysis. If the extensive quantities 
are all converted to a per unit volume, rather than per unit mass, then this factor disappears 
(Houlsby and Puzrin 2000). 

0gradddd  T
T

q
STu  (10)

 
2.3 Thermodynamics potential and dissipative inequality 
 
While the heat exchanged could be neglected, the free energy ψ would be 
 

TSu   (11)
 

The incremental change in free energy can be written as 
 

dTSTdSdud   (12)
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On the use of Eqs. (11) and (12), the following relation is derived 
 

0grad
1

)dd(d  Tq
T

TS  (13)
 

On the other hand, ψ can be written as 
 

),,,( TDke   (14)
 

where εe, k, D are elastic strain, plastic internal variable, and damage variable respectively. 
Then the chain rule yields 
 

T
T

D
D

k
k

e
e

ddddd



















  (15)

 

So Eq. (15) would take the form 
 

0)d(ddd)d( 

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









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 qgT
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SD
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k
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
  (16)

 

where 
ep ddd   , is the plastic strain increment, .grad

1
T

T
g   

Eq. (16) holds for arbitrarily chosen part of volume, there will be 
 

T
S

e 










     ,  (17)

 

Defining the thermodynamics force K, Y as 
 

D
Y

k
K











     ,  (18)

 

On using Eq. (16), the energy equation and local entropy production inequality take following 
forms 

0ddd  qgDYkKp  (19)
 

It is assumed there is no local heat source, which means, the thermal dissipation is zero. Then 
Eq. (19) takes the form 

0ddd  DYkKp  (20)
 
 

3. Dissipative potential 
 
Except the free energy function, the dissipative function is also needed for establishing of 

constitutive model based on thermodynamics. However, the misunderstanding, which takes the 
dissipative function as the result of the second law of thermodynamics, exists in the determining of 
dissipative function. In fact, only the dissipative inequality Eq. (20) could be obtained according to 
the second law of thermodynamics. The dissipative potential would be developed under a set of 
additional hypothesis. 
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3.1 Total relation 
 
The total relation for constitutive model indicates that the arbitrary value of state variables 

corresponding to a certain value of the corresponding thermodynamics forces, and the dissipative 
potential Ω for total relation expression is defined as function of state variables 

 

),,,,( Dkp
p
s

p
v   (21)

 

where ,p
v  ,p

s  p are the plastic volumetric strain, generalized plastic shear strain, and Lode 
angle of plastic strain respectively. 

Together with the differential operation and Eq. (20) 
 

0dddddd  DYkKqqp p
p
s

p
v    (22)

 

where p, q, θσ are the hydrostatic stress, generalized shear stress, and Lode angle of stress 
respectively. 
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In analogy to Eq. (22) 
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  (24)

 

Ω* is given via the Legendre transform of Ωd 
 

),,,,( YKqp    (25)
 

Then the total relation would be yielded for constitutive model 
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Eq. (26) expresses the constitutive relation in which the thermodynamic strain depends upon 
the dissipative potential leading to a total relation between thermodynamics forces and the state 
variables. Once the dissipative potential ),,,,( Dkp

p
s

p
v  is specified, the evolution of the 

state variable can be obtained by Eq. (26). A key point to observe here is that such a constitutive 
equation will not be allowed under the nonexistence of dissipative potential. Thus, we have to find 
the additional requirement for the existence of dissipative potential of geo-materials. 

Theorem 1: There exists a dissipative potential ),,,,( Dkp
p
s

p
v  , such that equations 

,
p

v
p
s

qp

 






 ,
p

v

qp

p 





 






 ,
p

v

K

k

p








 ,
p

v

Y

D

p








 ,
p
s

qq

p 





 






 ,
p
s

K

k

q








 ,
p
s

Y

D

q








 

,
p

K

k

q















 ,
p

Y

D

q















 
k

Y

D

K








 holds in the thermodynamics strain field. 
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Necessary condition: 
If there exists a dissipative potential ),,,,,( Dkp

p
s

p
v   then we have 

 

DYkKqqp p
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Using Eq. (23), yield 
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Note that from 
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Namely 
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With the same process, the following equation can be derived 
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Sufficient condition 
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The dissipative energy from point 0 to point ),,,,( Dkp
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v   can be expressed 
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The quantity of Eq. (32) is determined by the end point ),,,,,( DkM p
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v   so Eq. (32) is the 
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Because of 
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So 
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We get the dissipative potential 
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Proof finished. 
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have to hold in the thermodynamics strain field, if Ω is the dissipative potential. 
The basic mechanical characteristics of geo-materials are used to verify whether the dissipative 

potential exists or not. For geo-materials, the plastic strain could be described as 
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where A, B, C, D, E, F, L, M, N are the corresponding deformation coefficients respectively. 
In the pseudo triaxial condition, the three principal stresses satisfy ,321    and the stress 

Lode angle (θσ) keeps constant, so the computation of plastic strain could be simplified as 
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 (40)
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The matrix 







DC

BA
 for geo-materials here, is different from that for the metal material with 

.0 CB  Generally 0 ,0  DA  (Liu et al. 2009). Under the negative dilatancy deformation 
stage (shear leads to volume shrinking) of geo-materials, 0B  and 0C  can be derived, i.e., 

.CB   Hence, the matrix should not be a singular one, and the following transformation exists 
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Namely 
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For the negative dilatancy deformation stage of geo-materials, .CB   So 
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The main import of the above result is that equation 
p

v
p
s

qp

 






 cannot hold at all the 

deformation stage of geo-materials. According to the necessary and sufficient condition for the 
dissipation potential of geo-materials, it could be concluded that there is no dissipative potential 
with total relation expression for geo-materials, and the total relation for constitutive model cannot 
be constructed by the dissipative potential. 

 
3.2 Incremental relation 
 
Different from the total relation for constitutive model, the incremental relation indicates that 

arbitrary increment of state variables corresponding to a certain increment of the thermodynamics 
forces, and the dissipative potential Ω with incremental expression is defined as function of state 
variable increment 

 )d,d,d,d,d( Dkp
p
s

p
v   (44)

 

where ,d p
v ,d p

s ,d p kd  and Dd  are the increments for plastic volumetric strain, generalized 
plastic shear strain, Lode angle of plastic strain, plastic internal variable, and damage variable 
respectively. 

Ω* is given via the Legendre transform of Ω 
 

),,,,( YKqp 
   (45)

 

Then the incremental relation for constitutive model would be yielded 
 

576



 
 
 
 
 
 

Nonexistence and non-decoupling of the dissipative potential for geo-materials 

Y

Q
D

K

Q
k

q

Q

q

Q

p

Q
p

p
s

p
v 






















d   ,d   ,d   ,d   ,d


 
  (46)

 

Eq. (46) expresses the constitutive relation where the thermodynamic strain increments depend 
upon the dissipative potential leading to an incremental relation between thermodynamics forces 
and the state variables. Once the dissipative potential )d,d,d,d,d( Dkpp

s
p

v 
  is specified, 

the evolution of the state variable can be obtained by Eq. (46). Obviously, such a constitutive 
equation will not be allowed under the nonexistence of dissipative potential with incremental 
expression. In the following, the additional requirements are provided for the existence of 
dissipative potential of geo-materials with incremental expression. 
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 hold in the field of thermodynamics strain 

increment. 
The proof of theorem 2 is the same as theorem 1, so there is no need to give unnecessary details 

here. A point to note for the analysis is that these equations have to hold in the field of 
thermodynamics strain increment. 

The basic mechanical characteristics of geo-materials are made use of to verify whether the 
dissipative potential function with incremental expression exists or not. 

The experimental data are reported in Figs. 1(a)-(b) for the pseudo triaxial test of soil specimen 
(Anandarajah et al. 1995), from which the experimental result is observed. 
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(a) Stress increment (b) Strain increment (%) 

Fig. 1 The strain increment influenced by stress increment (Anandarajah et al. 1995) 
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The main import of the above result is that equation 
)()( p

s
p

v d

p
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q
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



 could not be satisfied. 

According to theorem 2, it could be obtained that there is no dissipative potential with incremental 
expression for geo-materials, and the incremental relation for constitutive model cannot be 
constructed by the dissipative potential with incremental expression. 
 
 
4. Decoupling 
 

In order to avoid the difficulty of constructing the complete dissipative potential, another 
attempt is to establish the dissipative potentials for plasticity and damage separately. Its basic 
assumption is that plastic dissipation and damage dissipation are independent. In this form 
decoupling is required for these two mechanisms. But there has been a lot of controversy on this 
method. Some people think this is the thermodynamic limit which is slightly stronger than the 
second law of thermodynamics, and materials generally meet it (Nguyen and Houlsby 2004, 
Nguyen 2005, Salari et al. 2004). Although some other people speculate that the dissipation 
potential can’t be decoupled (Voyiadjis and Kattan 1992, Faria et al. 1998), but they can’t give 
convincing arguments. The qualification for the decoupling of dissipative potential of 
geo-materials is presented and that geo-materials can’t meet the dissipative decoupling 
requirements is verified in the following. 

 
4.1 Decoupling for the dissipative potential with total relation expression 
 
In this part, the qualification is provided for the dissipative potential with total relation 
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Theorem 3: There exists a dissipative potential with total relation expression which could be 
decoupled into a plastic dissipative potential Ωp and a damage one Ωd, whose necessary and 
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So on. 

Namely, ,0


D

p
 ,0


D

q
 ,0


D

q 
 ,0


D

K
 ,0



p
v

Y


 ,0



p
s

Y


 0



p

Y




 and 0



k

Y
 

hold in the thermodynamics strain space. 

Sufficient condition: If ,
)d()d( p

v
p
s

qp

 






,
)d()d( p

v

qp

p 





 






,
)d()d( p

v

K

k

p








 

578



 
 
 
 
 
 

Nonexistence and non-decoupling of the dissipative potential for geo-materials 

,
)d()d( p

v

Y

D

p








,
)d()d( p

s

qq

p 





 






,
)d()d( p

s

K

k

q








,
)d()d( p

s

Y

D

q








,
)d()d( p

K

k

q















,
)d()d( p

Y

D

q















,
)d()d( k

Y

D

K








,0


D

p
,0



D

q
,0



D

q  ,0


D

K
,0




p
v

Y


,0




p
s

Y


 

,0



p

Y




0



k

Y
 hold in the thermodynamics strain space, and then the thermodynamic 

dissipative potential ),,,,( Dkp
p
s

p
v   could be expressed as ).(),,,( Dk d

p
s

p
vp p    

As for ,0







p
v

Y

D

p


 ,

p
v

p



  ,
D

Y



 we have 

 

0
2





Dp
v

 (48)

 

Eq. (48) is a simple second-order homogeneous partial differential equation, so we have 
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Combining with Eq. (49), we obtain 
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Combining with Eq. (51), we have 
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Combining with Eq. (53), we arrive at 
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Proof finished. 
Thus, qualifications for the decoupling of dissipative potential of geo-materials are 
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 cannot hold at all 

the deformation stage of geo-materials. So the dissipative potential for geo-materials with total 
relation expression could not be decoupled into the dissipative potentials for plasticity and damage 
separately. In addition, we can also take the structured soil for instance. When the structural unit 
has been completely damaged, the structural soil would transit to remolded soil without structure 
property. (Lagioia and Nova 1995, Kavvadas and Amorosi 2000, Zhou and Liu 2007). Based on 
the concept of continuum mechanics, Zhou and Liu (2007) put forward a composite damage 
theory and established an isotropic damage constitutive model for geo-materials. In order to verify 
the model, the relationship of the hydrostatic stress p and volumetric strain were also given in the 
literature. Through these data, we can get the relationship curve of the damage variable D and the 

 
 

(a) (b) 

Fig. 2 Damage evolvement of structured soils under isotropic pressure (Zhou and Liu 2007) 
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hydrostatic stress p under isotropic damage condition, as shown in Fig. 2(b). In the stress path of 
isotropic pressure condition with p varing from 0 to 1000 kPa (Fig. 2(a)), the properties of 
structured soils get gradually close to the remolded soil with the increase of surrounding pressure p, 

and the damage sustains to develop, as shown in Fig. 2(b). Via Fig. 2, we can obtain that ,0


D

p
 

which doesn’t conform to the requirement on 0

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D

p
 for the dissipative potential with total 

relation expression being decoupled into the dissipative potentials for plasticity and damage 
separately. 

 
4.2 Decoupling for the dissipative potential with incremental expression 
 
The qualification would be presented for the dissipative potential with incremental expression 
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Theorem 4: There exists a dissipative potential with incremental expression which could be 
decoupled into the dissipative potentials for plasticity (Qp) and damage Qd, whose necessary and 

sufficient condition is that equations ,0
)d(





D

p
,0

)d(





D

q
,0

)d(





D

q  ,0
)d(





p
v

Y


,0

)d(





p
s

Y


 

,0
)d( p






Y

,0
)d(





D

K
0

)d(





k

Y
 holds in the field of thermodynamics strain increment. 

The proof of theorem 4 is the same as theorem 3. It is unnecessary to present the details here. 
We should know qualifications for the decoupling of dissipative potential of geo-materials with 
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 could not be satisfied for 

geo-materials. Also, from Fig. 2(b), we can obtain that: the damage begins to intensify from the 
initial un-damaged state as p increases, which results in the increase of damage variable D at 

different growth rate. So, with the increase of stress p, 0
)d(





D

p
 can’t be always satisfied. So the 

dissipative potential with incremental expression could not be decoupled into the dissipative 

581



 
 
 
 
 
 

Yuanxue Liu, Yu Zhang, Runze Wu, Jiawu Zhou and Yingren Zheng 

potentials for plasticity and damage respectively. 
 
 

5. Conclusions 
 
● There is no dissipative potential with total relation expression for geo-materials, and the 

total relation for constitutive model cannot be constructed by the dissipative potential with 
total relation expression. 

● There is no dissipative potential with incremental expression for geo-materials, and the 
incremental relation for constitutive model cannot be constructed by the dissipative potential 
with incremental expression. 

● The dissipative potential for geo-materials with total relation expression could not be 
decoupled into the dissipative potentials for plasticity and damage separately. 

● The dissipative potential with incremental expression could not be decoupled into a 
dissipative potential for plasticity and that for damage respectively. 
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