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Abstract.  In this paper, a refined exponential shear deformation theory for free vibration analysis of 
functionally graded beam with considering porosities that may possibly occur inside the functionally graded 
materials (FGMs) during their fabrication. For this purpose, a new displacement field based on refined shear 
deformation theory is implemented. The theory accounts for parabolic distribution of the transverse shear 
strains and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear 
correction factors. Based on the present refined shear deformation beam theory, the equations of motion are 
derived from Hamilton’s principle. The rule of mixture is modified to describe and approximate material 
properties of the FG beams with porosity phases. The accuracy of the present solutions is verified by 
comparing the obtained results with the existing solutions. Illustrative examples are given also to show the 
effects of varying gradients, porosity volume fraction, aspect ratios, and thickness to length ratios on the free 
vibration of the FG beams. 
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1. Introduction 
 

Functionally graded materials (FGMs) have many advantages for use in engineering structural 
components. Unlike fiber-matrix laminated composites, FGMs do not have problems of 
de-bonding and delaminating that result from large inter-laminar stresses. The concept of FGMs 
was initially introduced in the mid-1980s by Japanese scientists. FGMs are microscopically 
inhomogeneous and spatial composite materials which are usually composed of two different 
materials such as a pair of ceramic-metal or ceramic-polymer. The composition of the material 
changes gradually throughout the thickness direction. As a result, mechanical properties are 
assumed to vary continuously and smoothly from the top surface to the bottom. Due to good 
characteristics of ceramics in heat and corrosive resistances combined with the toughness of metals 
or high elastic of polymers, the combination of ceramics and metals or polymers can lead to 
excellent materials. The FGMs are widely used in mechanical, aerospace, nuclear, and civil 
engineering. Consequently, studies devoted to understand the static and dynamic behaviors of 
FGM beams, plates have being paid more and more attentions in recent years. 
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Zhong and Yu provided an analytical solution for cantilever beams subjected to various types 
of mechanical loadings using the Airy stress function. Bending analysis of FG beams based on 
higher order shear deformation under ambient temperature was investigated by Kadoli et al. 
(2008). Li (2008) investigated static bending and transverse vibration of FGM Timoshenko beams, 
in which by introducing a new function, the governing equations for bending and vibration of 
FGM beams were decoupled and the deflection, rotational angle and the resultant force and 
moment were expressed only in the terms of this new function. 

Sallai et al. (2009) investigated the static responses of a sigmoid FG thick beam by using 
different beam theories. Benatta et al. (2009) presented a mathematical solution for bending of 
short hybrid composite beams with variable fibers spacing. Şimşek (2010a) studied the free 
vibration analysis of an FG beam using different higher order beam theories. In a recent study, 
Şimşek (2010b) has studied the dynamic deflections and the stresses of an FG simply-supported 
beam subjected to a moving mass by using Euler–Bernoulli, Timoshenko and the parabolic shear 
deformation beam theory. Giunta et al. (2011) used the Hierarchical theories for the free vibration 
analysis of functionally graded beams. Thai and Vo (2012) investigated the Bending and free 
vibration of functionally graded beams using various higher-order shear deformation beam 
theories. Hadji et al. (2014) studied the bending and vibration responses of FG beams via a higher 
shear deformation beam theory. Bourada et al. (2012) proposed a new four variable refined plate 
theory for thermal buckling analysis of functionally graded sandwich plates. Nedri et al. (2014) 
studied the free vibration analysis of laminated composite plates resting on elastic foundations by 
using a refined hyperbolic shear deformation theory. Klouche Djedid et al. (2014) used a n-order 
four variable refined theory for bending and free vibration of functionally graded plates. Ait Yahia 
et al. (2015) investigated the wave propagation in functionally graded plates with properties using 
various. Merazi et al. (2015) proposed a new hyperbolic shear deformation plate theory for static 
analysis of FGM plate based on neutral surface position. 

However, in FGM fabrication, micro voids or porosities can occur within the materials during 
the process of sintering. This is because of the large difference in solidification temperatures 
between material constituents (Zhu et al. 2001). Wattanasakulpong et al. (2012) also gave the 
discussion on porosities happening inside FGM samples fabricated by a multi-step sequential 
infiltration technique. Therefore, it is important to take in to account the porosity effect when 
designing FGM structures subjected to dynamic loadings. 

In this paper, a variationally consistent shear deformation theory is developed using a new 
displacement field for thick FG beams having porosities. The rule of mixture is modified to 
describe and approximate material properties of the FG beams with porosity phases. Based on the 
present refined shear deformation beam theory, the equations of motion are derived from 
Hamilton’s principle. The accuracy of the present solutions is verified by comparing the obtained 
results with the existing solutions. Illustrative examples are given also to show the effects of 
varying gradients, porosity volume fraction, aspect ratios, and thickness to length ratios on the free 
vibration of the FG beams. 

 
 

2. Problem formulation 
 
Consider a functionally graded beam with length L and rectangular cross section b×h, with b 

being the width and h being the height as shown in Fig. 1. The beam is made of isotropic material 
with material properties varying smoothly in the thickness direction. 
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Fig. 1 Geometry and coordinate of a FG beam 
 
 
2.1 Effective material properties of metal ceramic functionally graded beams 
 
The properties of FGM vary continuously due to the gradually changing volume fraction of the 

constituent materials (ceramic and metal), usually in the thickness direction only. The power-law 
function is commonly used to describe these variations of materials properties. The expression 
given below represents the profile for the volume fraction. 

A FG beam made from a mixture of two material phases, for example, a metal and a ceramic. 
The material properties of FG beams are assumed to vary continuously through the thickness of 
the beam. In this investigation, the imperfect beam is assumed to have porosities spreading within 
the thickness due to defect during production. Consider an imperfect FGM with a porosity volume 
fraction, ),1(   distributed evenly among the metal and ceramic, the modified rule of 
mixture proposed by Wattanasakulpong and Ungbhakorn (2014) is used as 

 


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Now, the total volume fraction of the metal and ceramic is: Vm + Vc = 1, and the power law of 

volume fraction of the ceramic is described as 
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Hence, all properties of the imperfect FGM can be written as 
 

   
22

1 
mcm

k

mc PPP
h

z
PPP 






   (3)

 
It is noted that the positive real number k (0 ≤ k ≤ ∞) is the power law or volume fraction index, 

and z is the distance from the mid-plane of the FG plate. The FG beam becomes a fully ceramic 
plate when k is set to zero and fully metal for large value of k. 

Thus, the Young’s modulus (E) and material density (ρ) equations of the imperfect FGM beam 
can be expressed as 
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However, Poisson’s ratio (ν) is assumed to be constant. The material properties of a perfect FG 

beam can be obtained when α is set to zero. 
In addition, for another scenario of porosity distribution, it is possible to obtain imperfect FGM 

samples which have almost porosities spreading around the middle zone of the cross-section and 
the amount of porosity seems to be on the decrease to zero at the top and bottom of the 
cross-section. Based on the principle of the multi-step sequential infiltration technique that can be 
employed to fabricate FGM samples (Wattanasakulpong et al. 2012), the porosities mostly occur 
at the middle zone. At this zone, it is difficult to infiltrate the materials completely, while at the top 
and bottom zones, the process of material infiltration can be performed easier and leaves less 
porosity. Consider this scenario, the equations of Young’s modulus (E) and material density (ρ) in 
Eqs. (5)-(6) are replaced by the following forms 
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2.2 Basic assumptions 
 
The assumptions of the present theory are as follows: 
 

(1) The origin of the Cartesian coordinate system is taken at the median surface of the FG 
beam. 

(2) The displacements are small in comparison with the height of the beam and, therefore, 
strains involved are infinitesimal. 

(3) The transverse displacement w includes two components of bending wb, and shear ws. 
These components are functions of coordinates x, y only. 

 
),(),(),,( txwtxwtzxw sb   (8)

 
(4) The transverse normal stress σz is negligible in comparison with in-plane stresses σx. 
(5) The axial displacement u in x-direction, consists of extension, bending, and shear 

components. 

sb uuuu  0  (9)
 
The bending component ub is assumed to be similar to the displacements given by the classical 

beam theory. Therefore, the expression for ub can be given as 
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x

w
zu b

b 
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  (10)

 

The shear component us gives rise, in conjunction with ws, to the parabolic variation of shear 
strain γxz and hence to shear stress τxz through the thickness of the beam in such a way that shear 
stress τxz is zero at the top and bottom faces of the beam. Consequently, the expression for us can 
be given as 
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2.3 Kinematics and constitutive equations 
 
Based on the assumptions made in the preceding section, the displacement field can be 

obtained using Eqs. (2)-(6) as 
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The strains associated with the displacements in Eq. (13) are 
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The state of stress in the beam is given by the generalized Hooke’s law as follows 
 

xx zQ   )(11  and xzxz zQ   )(55  (15a)
 

where 
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2.4 Governing equations and boundary conditions 
 
Hamilton’s principle is used herein to derive the equations of motion. The principle can be 

stated in analytical form as (Thai and Vo 2012) 
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where t is the time; t1 and t2 are the initial and end time, respectively; δU is the virtual variation of 
the strain energy and δT is the virtual variation of the kinetic energy. The variation of the strain 
energy of the beam can be stated as 
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where N, Mb, Ms and Q are the stress resultants defined as 
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The variation of the kinetic energy can be expressed as 
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where dot-superscript convention indicates the differentiation with respect to the time variable t; 
ρ(z) is the mass density; and (I1, I2, I3, I4, I5, I6) are the mass inertias defined as 
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Substituting the expressions for δU and δT from Eqs. (17) and (19) into Eq.(16) and integrating 
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by parts versus both space and time variables, and collecting the coefficients of δu0, δwb, and δws, 
the following equations of motion of the functionally graded beam are obtained 
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Eq. (21) can be expressed in terms of displacements (u0, wb, ws) by using Eqs. (13), (14), (18) 

and (20) as follows 
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where A11, D11, etc., are the beam stiffness, defined by 
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3. Analytical solution 
 
3.1 Effect reinforcement 
 
The equations of motion admit the Navier solutions for simply supported beams. The variables 

u0, wb, ws can be written by assuming the following variations 
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where Um, Wbm, and Wsm are arbitrary parameters to be determined, ω is the eigenfrequency 
associated with mth eigenmode, and λ = mπ / L. 

Substituting the expansions of u0, wb, ws from Eqs. (24) into the equations of motion Eq. (22), 
the analytical solutions can be obtained from the following equations 
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4. Results and discussion 
 

In numerical analysis, fundamental frequencies of simply supported perfect and imperfect FG 
beams are evaluated. The FG beam is taken to be made of aluminum and alumina with the 
following material properties: 

 
Ceramic (PC: Alumina, Al2O3): Ec = 380 GPa; v = 0.3; ρc = 3800 kg/m3. 
Metal (PM: Aluminium, Al): Em = 70 GPa; v = 0.3; ρm = 270 kg/m3. 
 
And their properties change through the thickness of the beam according to power-law. The 

bottom surfaces of the FG beams are aluminum rich, whereas the top surfaces of the FG beams are 
alumina rich. 

For convenience, the following dimensionless form is used 
 

m

m

Eh

L 
2 

  

 
To validate accuracy of the proposed theory, the comparisons between the present results and 

the available results obtained by Simsek et al. (2010a) and Sina et al. (2009) is shown in Table 1. 
Indeed, in Table 1, the non-dimensional natural frequencies for the perfect FG beam with k = 

0.3 for different length-to-height ratios. As can be seen the results of the present theory are in good 
agreement with the other shear deformation theories. 
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Table 1 Comparison of non-dimensional fundamental frequencies of FG beams with k = 0.3. 
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
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









h

h

dzzEIhL  

Source L / h = 10 L / h = 30 L / h = 100 

FSDBTR (*) 2.701 2.738 2.742 

FSDBTS(*) 2.701 2.738 2.742 

PSDBTR(*) 2.702 2.738 2.742 

PSDBTS(*) 2.702 2.738 2.742 

ASDBTR(*) 2.702 2.738 2.742 

ASDBTS(*) 2.702 2.738 2.742 

Sina et al. (2009) 2.695 2.737 2.742 

Present 2.702 2.738 2.742 
(*) Results from Ref. (Simsek 2010a) 

 
 

Table 2 Five Non-dimensional frequencies of FGM beam (L/h = 5) 

k α 1  2  3  4  5  

0.5 

0 4.4118 15.4728 29.8929 45.8279 62.4877 

0.1 4.4053 15.4707 29.9251 45.9205 62.6586 

0.2 4.3939 15.4569 29.9444 46.0053 62.8317 

1 

0 3.9914 14.0224 27.1480 41.7120 56.9997 

0.1 3.9079 13.7669 26.7225 41.1454 56.3218 

0.2 3.7873 13.3939 26.0931 40.2962 55.2921 

5 

0 3.3991 11.5281 21.6924 32.6795 44.0756 

0.1 3.1448 10.6624 20.0789 30.2938 40.9317 

0.2 2.6924 9.1773 17.3940 26.4164 35.9187 

10 

0 3.2814 11.0264 20.5815 30.8108 41.3529 

0.1 3.0278 10.0958 18.7457 27.9794 37.4967 

0.2 2.5677 8.4726 15.6400 23.2907 31.2070 

 
 
The first five dimensionless frequencies of perfect and imperfect FG beams are provided in 

Table 2. It should be noted that the materials properties are predicted using Eqs. (3)-(4). The 
results reveal that the frequency results decrease as the volume fraction of porosity (α) increases. 

In Figs. 2 and 3, the effect of the porosity the fundamental frequencies of FG beams with two 
different types of porosity distribution is illustrated. It is noted that Solution I refers to the result of 
imperfect FG beams with evenly distributed porosities using Eqs. (3)-(4), while, Solution II is for 
the beams with another type of porosity distribution using Eqs. (6)-(7). It can be seen from Fig. 2 
that the porosity leads to an increase of frequency and hence this type of porosity distribution 
(Solution I) makes the beam stiffer. However, the effect of porosity on fundamental frequencies 
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(Fig. 3) using Solution II is reversed and this type of porosity distribution makes the beam flexible. 
In Fig. 4, the fundamental frequencies of imperfect FG beams with two different types of 

porosity distribution are plotted versus the power-law exponent (k). As observed, Solution II 
provides higher frequencies than those of Solution I; moreover, the frequencies increase with the 
increase of the power-law exponent (k) when this latter takes values more than 2. 

 
 

Fig. 2 Variation of the fundamental frequency  


















2/

2/

0
2 )(/ /

h

h

dzzEIhL  of FG beams (k = 1) with L / h

ratio for various values of the porosity volume fraction by considering the first solution 
 
 

Fig. 3 Variation of the fundamental frequency  
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Fig. 4 Variation of the fundamental frequency  
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5. Conclusions 
 
The exponential shear deformation beam theory is proposed for free vibration of perfect and 

imperfect FG beams. The theory accounts for parabolic distribution of the transverse shear strains 
and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear 
correction factors. The modified rule of mixture covering porosity phases is used to describe and 
approximate material properties of the imperfect FG beams. It is based on the assumption that the 
transverse displacements consist of bending and shear components. Based on the present beam 
theory, the equations of motion are derived from Hamilton’s principle. The influence of the 
porosities on natural frequencies is then discussed. Numerical examples show that the proposed 
theory gives solutions which are almost identical with those obtained using other shear 
deformation theories. 
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