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Abstract.  Proper modelling of the basal resistance terms is key in simulating the motion of fluidized 
granular flow. In this paper, standard depth-averaged governing equations of granular flow are used together 
with the classical Coulomb, Voellmy, and velocity dependent friction models (VDFM). A high-resolution 
modified TVDLF method is implemented to solve the partial differential equations without numerical 
oscillations. The effects of basal resistance terms on the motion of granular flows such as geometric shape 
evolution, travel times and final deposits are analyzed. Based on the numerical results, the predictions of the 
front and rear end positions and developing length of granular flow with Coulomb friction model show 
excellent agreements with experiment results reported by Hutter et al. (1995), and illustrate the validity of 
the numerical approach. For the Voellmy model, the higher value of turbulent coefficient than reality may 
obtain more reasonable predicted runout for the small-scale avalanche or granular flow. The energy 
exchange laws indicate that VDFM is different from the Coulomb and Voellmy models, although the flow 
characteristics of both three models fit the measurements and observations very well. 
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1. Introduction 
 

Granular flows are widely used in the civil and mechanical engineering and material science. 
One of the very first and systematic theoretical models was proposed by Bagnold (1954) for 
neutrally buoyant suspension of particles. In recent years, granular flows have been applied to 
simulate the hazardous motions of landslides, debris flows, debris avalanches and mud flows. The 
simulation methods of granular flow are of two kinds: continuum model, so-called the 
computational fluid dynamics, and non-continuum, or discrete models (Teufelsbauer et al. 2011, 
Li et al. 2012, Chen et al. 2012, 2013a, b). Savage and Hutter (1989) proposed, perhaps, the first 
incompressible frictional granular flow equations in the form of the depth-averaged mass and 
momentum balance equations along the sliding surface. These models have been successively 
extended to higher complexities, in geometric and mechanics (see, e.g., Gray et al. 1999, Tai et al. 
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2002, Pudasaini and Hutter 2007, Fischer et al. 2012). These models are widely and successfully 
used in the numerical simulation of landslides, granular flows, avalanches and debris flows. 

Savage-Hutter-type models have been successively extended to include the aspects of pore 
pressure (Iverson 1997, Iverson and Denlinger 2001, Pudasaini et al. 2005a, b), complex terrain 
(Pudasaini et al. 2005a, Fischer et al. 2012), erosion and entrainment (Pitman et al. 2003, Tai and 
Kuo 2008), earth pressure coefficient (Pudasaini and Kröner 2008), and numerical algorithm with 
high resolution (Tai et al. 2002, Pudasaini and Hutter 2007). The original Savage-Hutter model is 
suitable for dry granular flow. Iverson (1997) considered the effects of pore pressure in the debris 
mixture flow, and extended the Coulomb model to the Coulomb mixture flow. This model has 
been further extended later (Iverson and Denlinger 2001, Pudasaini et al. 2005a). Nevertheless, 
Iverson (1997) and Iverson and Denlinger (2001) models are based on the ad-hoc decomposition 
of the total basal load into the solid and fluid components, by introducing a decomposition variable 
(λ). This new internal variable later required an extra closure, which led Iverson and Denlinger 
(2001) to the introduction of an extra advection-diffusion equation. Although their model has been 
able to capture certain aspects of the debris mixture, their model lacks the physics of flow of a 
two-phase debris material. The main drawback in their model originates from the assumption that 
the solid velocity equals the fluid velocity which may not be the valid criterion in general. Because, 
this effectively prevents the evolution of the pore pressure in the mixture, drag cannot be generated, 
no phase-interactions could be included, and that their model is effectively a single-phase model 
(Pitman and Le 2005, Pudasaini et al. 2005a, Fernández-Nieto et al. 2008, Hutter and Schneider 
2010). By proposing a two-fluid model, Pitman and Le (2005) included the simple and linear drag 
force between solid phase and liquid phase into the governing equations. But their model does not 
include the viscous shear effects of the fluid. 

Recently, several key and new physical aspects of a real two-phase debris flow have been 
presented by Pudasaini (2012) by introducing the virtual mass force that emerges from the fact that 
the solid phase could accelerates relative to the liquid phase as the debris flows. This enhances the 
kinetic energy of the ambient fluid due to the accelerating particles. Similarly, other aspects 
included in the general two-phase debris mass flows (Pudasaini 2012) are: buoyancy, enhanced 
non-Newtonian viscous stress as modelled by including the solid-volume fraction gradient in the 
mixture, and the usual Newtonian viscous effects. Another important aspect is the generalized drag, 
which includes both the solid-like and fluid-like drags and all spectrum connecting these limiting 
states. Further, the generalized drag includes both the linear and quadratic effects in the flow. This 
way, the general two-phase debris flow model (Pudasaini 2012) reveals strong interactions 
between the solid- and liquid-phase. This model has been further extended and applied to different 
flow scenarios, including the tsunami generated by the subaerial and submarine landslides, and 
their complex dynamics (Pudasaini 2014), and the rock-ice avalanches, as described by a new 
enhanced mechanical model (Pudasaini and Krautblatter 2014). 

As in the shallow water equations, the depth-averaged equations for granular flow are derived 
by integrating the mass and momentum balance equations along the flow depth resulting in the 
mass and momentum balances in the surface parallel direction in which the field variables are the 
depth-averaged velocities and the flow height (Savage and Hutter 1989, Camassa and Holm 1993, 
Pudasaini and Hutter 2007). But, there are several significant differences between these two 
models: (1) The forces due to the complex terrain that are included in the granular flow models are 
more complicated than shallow water equations in which such forces are typically ignored (Gray et 
al. 1999, Pudasaini et al. 2005a, Fischer et al. 2012); (2) The influences of erosion and 
entrainment to the motion are more significant (Pitman et al. 2003, Tai and Kuo 2008). (3) The 
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shear stresses in granular material is proportional to normal stress, and the friction coefficient, and 
anisotropic stress distributions (Savage and Hutter 1989). A detailed and comprehensive 
description on these important aspects of granular flows and avalanches can be found in Pudasaini 
and Hutter (2007). 

In hydraulics, it is commonly assumed that the pressure within the flowing sheet is 
hydrostatically distributed, the assumption of hydrostatic stress distribution is reasonable for fluids 
and unrealistic for granular materials with internal strength (Hungr 2008). Present models of the 
earth pressure coefficient have three types: Savage-Hutter model (Savage and Hutter 1989), 
Rankine model (Wang et al. 2010, Hungr 2008), and improved Savage-Hutter model (Hungr and 
McDougall 2009). 

We also mention that, recently, Domnik and Pudasaini (2012) and Domnik et al. (2013) 
presented novel pressure- and rate-dependent Coulomb-viscoplastic flow models, and multiscale 
and efficient simulation techniques to describe the full dynamics of the granular flow from 
initiation to the final depositions. Their unified modelling and simulation technique includes all the 
basic features of the granular flow, which at the same time is very fast due to the coupling between 
the full-dimensional and depth-averaged models with the proper domain decomposition. These 
advanced models do not use hydrostatic assumption, rather a full dynamic pressure is computed 
that is very important in proper modelling of complex flows during the mass collapse, flow 
obstacle interactions, and also in the depositions. 

Basal resistance terms play an important role and significantly influence the flow 
characteristics in the motion of granular flow. There is variety of forms of basal resistance terms in 
granular flows. In the present study, our goal is to analyze the effects of some of them to the 
motion for granular flows, such as geometric shape evolution, runout distance and velocity 
distribution, a detailed analysis has been presented. Numerical results are compared for three 
different basal resistance terms and the conclusions are drawn. 

 
 

2. Mathematical model of granular flow 
 
2.1 Governing equations 
 
As shown in Fig. 1, we build the slope fitted coordinate system in which x points in the 

down-slope direction, y points in the cross-slope direction, and z points in the vertical direction. 
Typical granular flows such as landslides, debris flows and avalanches, can be described by 
incompressible frictional granular flow equations consisting of the mass and momentum balance 
equations, in which the flow mechanics is described by Mohr-Coulomb-type (or other suitable) 
models (Savage and Hutter 1989, Pudasaini and Hutter 2007). Assuming that granular flow is 
incompressible and of constant density, the governing equations can be given by 
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where h and u are height and depth averaged velocity of granular, respectively. θ and δ denote 
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Fig. 1 Sketch of granular flow, the flow zones can be divided into three: starting zone, transition zone, and
deposition zone. The details of transversal and longitudinal profile are shown in the lower left part and 
upper right part, respectively 

 
 
inclined angle and basal Coulomb dry-friction angle, respectively. λκ denotes local radius of 
curvature of the master curve. kap represents ratio of the normal stress to the lateral one, we follow 
Savage and Hutter (1989), it can be written as 
 

  ,1seccos11sec2 2
int

2
int

2   apk                     (3) 
 
where the + applies when flow is converging (passive state), and the – applies when flow is 
elongating (active state); ϕint denotes internal friction angle. 

For quasi-static deformation this coefficient can be calculated from the standard Mohr- 
Coulomb plasticity model, as was done by Savage and Hutter (1989). Pouliquen and Forterre 
(2002) proposed that for dense granular flows on rough surfaces, the material behaves more like a 
fluid, numerical results tend to show that the vertical and horizontal normal stresses are anisotropic. 
Nevertheless, Pudasaini and Kröner (2008) showed that the deposition process is strongly and 
requires earth pressure coefficient other than unity. Two types of the earth pressure coefficients 
mentioned above are used in the numerical simulation of granular flow and discussed in the 
following numerical simulations. 

To properly model the effect of the changing topography, we apply the curvatures of the basal 
topography as in Gray et al. (1999). The more general form that substantially improves the 
dynamics by enhancing, e.g., the Coulomb friction, gravity and pressure gradients, can refer to 
Pudasaini et al. (2005a), Fischer et al. (2012). 

 
2.2 Basal resistance terms 
 
The momentum equations of granular flow have five parts: mass flux over time, momentum 
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flux, hydraulic pressure gradient, driving gravitational force, and dissipative basal friction force. 
The basal and internal friction angles are obtained from laboratory tests of material, and further 
applied in the natural rock avalanche, landslide and debris flow. Real flows often involve a 
mixture of solid materials and fluids, a rheology that is usually difficult to characterize but 
certainly require more complex models to capture the effect of fluidizations. In this paper, three 
present single-phase models including Coulomb, Voellmy and VDFM are described and employed 
in the numerical simulations. 

 
Coulomb model 
The classic Coulomb friction law proposed by Savage and Hutter (1989) indicates that the 

shear stress is proportional to the normal stress at the base, and the coefficient of friction is a 
constant. The basal resistance term of Coulomb model can be written as 
 

.tancos  gh
u

u
b                             (4) 

 
Voellmy model 
The two parameters model was developed for use in lump mass modeling of snow avalanches, 

and a major modifications was made by Salm (1993). Voellmy model has two parts: friction and 
turbulence terms. Friction term is represented by friction coefficient that is similar with the 
Coulomb model; while, the turbulence term represents the basal friction effects. Voellmy model 
can be given by 
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where ξ is turbulent coefficient accounting for velocity-dependent friction losses. In the context of 
landslide dynamics and the equivalent fluid approach, the second term is not included to account 
for either air drag or turbulence, alone, but rather to empirically account for all eventual sources of 
velocity-dependent resistance (Chen and Lee 2003). Nevertheless, as mentioned in Fischer et al. 
(2012), the Voellmy-type model is not physically fully justified. 
 

Velocity dependent friction model (VDFM) 
For the flow of granular material on rough surfaces and for moderate inclinations, experiments 

based on spherical glass beads with friction angle close to the slope angle reveal a more complex 
behavior, the onset of flow depends both on the inclination of the plane and on the thickness of the 
granular layer, the simple Coulomb friction law cannot capture the features. An empirical friction 
law based on scaling properties measured for steady uniform flows was proposed by Pouliquen 
(1999a, 1999b) and further improved by Pouliquen and Forterre (2002) and Johnson and Gray 
(2011). 

For the glass beads used in the experiments, an initially static granular layer starts to flow when 
the inclination reaches a critical value θstart (h); to stop the flow, we have to decrease the inclination 
to a lower angle θstop (h). μstart (h) and μstop (h) are the tangent of two critical angle mentioned above 
and given by fitting the measured experiments data 
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where δ1, δ2, δ3 denote friction angles; the parameter L, which has the dimensions of length, 
depends on the granular material and surface properties of the plane and characterizes the depth of 
flow over which a transition between the two friction angle occurs (Johnson and Gray 2011). 

The expressions for the friction coefficient (μ(h, Fr)) can be written as follows in terms of the 

thickness h and the local Froude number 
gh

u
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where β and γ are measurement constants. Nevertheless, physically correct Froude number should 
include the factor cosθ, pressure and gravitational potential energy as explained in Pudasaini and 
Domnik (2009) and Domnik and Pudasaini (2012) with extended and generated Froude numbers. 
The extended Froude number for depth-averaged flows is defined as the ratio between the kinetic 
and the potential energy 
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u
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where, xd is the constant of integration, which is the distance from the point of the mass release 
along the channel to the point where the flow hits the horizontal reference datum. 

To easily employ Eq. (8) in the governing equations of granular flow, the friction coefficient 
can be transferred into the form of basal shear stress. With the velocity dependent friction 
coefficient Eq. (8), the basal shear stress Eq. (4) reduces to, (because tanδ = μ) 
 

).,(cos Frhgh
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u
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3. Numerical approach 
 
In order to test the above model equations (mention Eqs. (1)-(2)) against avalanche events 

either in nature or in the laboratory, a numerical integration scheme must be constructed 
(Pudasaini and Hutter 2007, Pitman et al. 2003, Savage and Hutter 1991). In the past decades, 
numerical techniques have been developed to solve the Savage-Hutter avalanche equations for 
typical moving boundary value problems of granular flows (Pudasaini and Hutter 2007). Early 
attempts used Lagrangian moving mesh finite difference schemes (Savage and Hutter 1989, 1991, 
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Hutter et al. 1995) and traditional Eulerian integration techniques (Savage and Hutter 1989, 
Pudasaini and Hutter 2007) are susceptible to numerical instabilities and cause non-physical 
oscillations in regions of large gradients of the variables. Shock capturing finite difference 
techniques (Pudasaini and Hutter 2007, Ouyang et al. 2013) and Godunov-type finite volume 
methods (Denlinger and Iverson 2001, Toro 2001, Pitman et al. 2003) were applied, respectively. 
We choose a recently developed high-resolution approach, namely the modified total variation 
diminishing Lax-Friedrichs (MTVDLF) type difference method. The governing equations of 
granular flow can be rewritten as follows 
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A transformation of Eq. (10) is given by 
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The original TVDLF method of Yee (1989) was extended and improved by Tóth and Odstrčil 

(1996). This method has been verified to solve the granular gravity driven free surface flows 
(Thornton 2005). They introduced the Hancock predictor step to increase the temporal accuracy, 
and suggested that Yee's original anti-diffusive flux should be multiplied by a local or global 
Courant number to obtain a less diffusive scheme. The Hancock predictor step is used to calculate 
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All the variables and fluxes are obtained, and then a full step, using this predictor half step, as 

follows 

     .ΔtSUFUF
Δx

Δt
UU n

j
/n
/j

MLF/n
/j

MLFn
j

n
j  





 21
21

21
21

1               (14) 

 
We mention that these flows may better be simulated by using other numerical methods, such 

as, TVD-NOC (Tai et al. 2002). However, this is subject to scrutiny with experimental or field 
data. For more detail on it, we refer to Pudasaini and Hutter (2007). 
 
 
4. Numerical experiment 
 

A series of laboratory experiments were carried out by Hutter et al. (1989), and further reported 
by Savage and Hutter (1991). Experiment No. 87 (see Hutter et al. 1989, 1995) involving flow of 
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1500 g of particles down a bed lined with drawing paper and having an initial inclination of 50° is 
implemented in the paper (see Fig. 2). Experiments were performed in a 100 mm wide chute made 
up of two straight portions (one inclined of 1,700 mm length and the other horizontal 1,700 mm 
long) connected by replaceable circular arc sections (246 mm radius). The granular materials 
employed Vestolen plastic particles, with a mean diameter of 3.5 mm, bulk density of 540 kg/m3, 
and the drawing paper was adopted in the bed lining to simulate the basal friction (see Table 1). 
The main aspect of this paper is to simultaneously study and analyze the effect of different basal 
friction laws on the dynamics, run-out, and deposition of fluidized granular flows down a 
one-dimensional curved basal topography that merges into a horizontal run-out. 

 
4.1 Numerical results for Coulomb model 
 
Four cases of Coulomb model are performed in the analysis (see Table 2), three values of bed 

friction angle (20°, 21.5° and 23°) and two values of internal friction angle (25° and 29°) are 
adopted to analyze their effects on the dynamic characteristics of granular flow. The numerical 
results have been scaled by L0 for length, H0 for height (depth), gL0  for velocity and gL /0  
for time, respectively. 

Fig. 3 shows the experimental measurements and theoretical predictions of the evolution of the 
leading and trailing edge positions of the granular avalanche. It can be seen that the moving time 
and runout distance decrease with increasing bed friction angle, and are fairly insensitive to the 
value of the internal friction angle; this arguments coincide with the conclusions drawn by Hutter 
et al. (1989, 1995). The numerical results of Coulomb-2 with a δ of 21.5° and ϕint of 29° show 
excellent agreement in terms of the front and rear end positions of the moving mass in line with 
the findings by Hutter et al. (1989, 1995). We can conclude that the numerical approach adopted in  

 
 

 

Fig. 2 Sketch of channel geometry in the numerical simulations 
 
 

Table 1 Conditions and material parameters in the laboratory experiments (m denotes granular mass; L0, H0 
are initial length and height of granular flow, respectively) 

Parameters m (g) ρ (kg/m3) L0 (mm) H0 (mm) θ (°) 

Value 1,500 540 300 150 50
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Table 2 Physical parameters and numerical results of Coulomb model 

Run No. δ (°) ϕint (°) Travel time )( /0 gL  Runout distance (L0) 

Coulomb-1 20 29 9.33 11.36 

Coulomb-2 21.5 29 8.77 10.71 

Coulomb-3 23 29 8.31 10.19 

Coulomb-4 21.5 25 8.75 10.83 
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(xr) edge positions of the granular avalanche; ϕint and δ denote internal friction angle and bed friction 
angle of granular materials, respectively. Circle symbols represent experiment results of Vestolen
avalanches reported by Hutter et al. (1989, 1995) 
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Fig. 5 Final deposits for Coulomb model 
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the paper is suitable and numerical results are realistic and reliable. 
Fig. 4 shows the developing length of the moving mass, circle symbols represent experiment 

results reported by Savage and Hutter (1991) and Hutter et al. (1995). From Fig. 4, we see that the 
predictions of the accelerating phase is more accurate than that of the decelerating phase, and the 
final deposits are conformed with measurement results. In addition, the developing length of 
granular material increases with increasing bed friction angle, and decreases with increasing 
internal bed friction; the internal friction angle has significant effects on the dimensionless length 
of granular, because it can influence the earth pressure coefficient and flow profile (see Pudasaini 
and Kröner 2008 for more details). Table 3 illustrates the earth pressure coefficients with different 
material parameters, the active and passive earth pressure coefficients depend on whether an 
element of material is being elongated or compressed in the direction parallel to the bed. 

 
 

Table 3 Earth pressure coefficients of Coulomb model with different granular material parameters (ka and kp 
denote active and passive values of earth pressure coefficient, respectively) 

Run no. δ (°) ϕint (°) ka kp 

Coulomb-1 25 21.5 0.88 1.99 

Coulomb-2 29 20 0.66 2.5 

Coulomb-3 29 21.5 0.72 2.51 

Coulomb-4 29 23 0.80 2.43 
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Fig. 6 Flow characteristics of granular materials at five different dimensionless times for Coulomb-3 case.
The solid, dot and dash-dot (last panel) lines denote flow profile, velocity distribution and front 
velocity of granular flow, respectively 
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The final deposits of four cases are shown in Fig. 5, we see that the final deposits tend to be 
thin fronts and thick rear ends for the Coulomb friction law (Pudasaini et al. 2005a), it is actually 
reported in some of landslide and rock avalanches, but generally the actual debris distribution 
shows the opposite trend (Hungr and Evens 1996). It is reasonable for using the typical Coulomb 
friction law to describe the flow characteristics of homogeneous granular material, but the real 
events such as natural rock avalanche and landslide are more complex and difficult to capture the 
effect of fluidization, which is not within the scope in the paper. In addition, it is also seen that the 
final deposits have a steeper rear end with increasing bed friction angle and decreasing internal 
friction angle. 

The granular flow characteristics at five different dimensionless times (t = 1.0, 2.0, 4.0, 6.0 and 
final time) for Coulomb-3 case are shown in Fig. 6. We see that the granular mass starts to move 
due to the gravity and hydraulic pressure gradient, the velocities of granular material in the 
inclined plane vary almost linearly (t = 1.0 and 2.0), it ensures the symmetric flow profile during 
the motion if the initial flow profile is symmetric (Tai et al. 2002). When the front end of granular 
material reaches the curved section, the velocity decreases in the approaching front. Finally, the 
granular mass reaches the horizontal section. Then, first the head of granular material begins to 
settle. The approaching granular material from the upslope impacts the already deposited granular 
hip. The maximum runout distance and runout time for the Coulomb model are about 8.77 and 
10.71, respectively. These phenomena are in line with those already described in Pudasaini et al. 
(2005a), and Pudasaini and Hutter (2007). In conclusion, the modified TVDLF method gives good 
predictions of the dynamic characteristics of granular flow with experiment results. 

 
4.2 Numerical results for Voellmy model 
 
Compared with the classic Coulomb friction law, Voellmy model has two parts, a dry-Coulomb 

type friction and a velocity squared drag. This model has been widely applied in the simulation of 
mass movements, especially for granular avalanches. Three cases with different turbulent 
coefficients are performed in the analysis, and the material parameters and numerical results are 
shown in Table 4. The numerical results of Voellmy model is shown in Fig. 7. It can be seen that 
the front and rear end positions increase with increasing turbulent coefficient, and the rear end 
positions are smaller than that of Coulomb model due to the Voellmy drag. Voellmy drag 
moderately influences the leading edge positions, but significantly influences the trailing edge 
positions perhaps due to the value range of turbulent coefficients chosen in the numerical 
simulations. The predicted runout distance and moving time increase with increasing turbulent 
coefficient, Voellmy-3 case with a turbulent coefficient of 2000 m/s2 shows excellent agreement 
with the experiment results. 

For the original Voellmy model, friction part is dependent on the geometric shape, and 
independent on the granular materials; the turbulent coefficient depends on the turbulent friction 

 
 

Table 4 Physical parameters and numerical results of Voellmy model 

Run No. δ (°) ϕint (°) ξ (m/s2) Travel time )( /0 gL  Runout distance (L0) 

Voellmy-1 21.5 29 500 8.60 9.84 

Voellmy-2 21.5 29 1200 9.17 10.89 

Voellmy-3 21.5 29 2000 9.22 11.06 
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(Fischer et al. 2012). Pudasaini and Hutter (2007) found this notion conflicts the observations by 
experiment and large-scale landslide. Salm (1993) interpreted the turbulent coefficient as a viscous 
friction, and the value of ξ mainly depends on the topography. Fig. 8 shows the final deposits of 
several Voellmy model cases, the predictions of Voellmy model elongate the final deposits than 
that of Coulomb model. According to the observed data by Chen and Lee (2003), Fischer et al. 
(2012) and Hungr and Evans (1996), the turbulent coefficient ranges from 100 to 1,000 m/s2 
(range from 200 to 300 m/s2 for coalmine waste dump failures, range from 500 m/s2 for rock 
avalanches). However, the case of Voellmy-3 with a ξ of 2000 m/s2 shows excellent agreement 
with the predicted results for Coulomb model. We can conclude that the higher value of turbulent 
coefficient than reality may obtain more reasonable predicted runout for the small-scale avalanche 
or granular flow. 

 
4.3 Numerical results for VDFM 
 
The material parameters of VDFM are obtained by fitting the empirical data, our goal in the 

analysis is not to find the parameter combination that best fits the measurements and observations. 
This can easily be achieved with all three models. Instead we want to analyze the sensitivity of 
dynamic characteristic to material parameters with different basal resistance terms. Referring 
Pouliquen (1999a, b), the friction angles are chosen as δ1 = 21°, δ2 = 30.7°, δ3 = 2.22°; β = 0.136 
denotes a measured constant for glass beads; γ is chosen equal to 10-3, because the predictions of 
the model are not sensitive to its value as long as γ is less than 10−2 (Pouliquen and Forterre 2002). 
L = 0.65 provides a convenient length scale with which to non-dimensionalise the depth of the 
flow (Johnson and Gray 2011). Three cases of VDFM are performed in this analysis and the 
material parameters are shown in Table 5. 

Fig. 9 shows the numerical results of the evolution of the front and rear end positions of the 
granular avalanche with VDFM. It is known that the front and rear end positions of VDFM are 
much smaller than that of Coulomb model, because the material parameters adopted in the numerical 
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Table 5 Physical parameters and numerical results of VDFM (S-H denotes the earth pressure coefficient 
employs the Savage-Hutter assumption) 

Run No. δ1 (°) δ2 (°) δ3 (°) β L (mm) kap Travel time )( /0 gL Runout distance (L0)

VDFM-1 21 30.7 22.2 0.136 0.65 S-H 8.64 9.32 

VDFM-2 21 30.7 22.2 0.136 0.65 1.0 10.24 9.35 

VDFM-3 18.0 26.0 19.0 0.136 0.65 S-H 9.71 10.78 

 
 

analysis are taken from glass beads, and different with Vestolen in experiment conducted by 
Hutter et al. (1995). We further analyze the effect of earth pressure coefficient on the dynamic 
characteristics of granular flow. The isotropic conditions i.e., earth pressure coefficients equal 1.0, 
are implemented to analyze the effect of earth pressure coefficient on the flow characteristics. Fig. 
9 indicates that the runout distances are very close, while the moving time of hydrostatic 
assumption is longer than that of Savage-Hutter assumption. 

Fig. 10 indicates that the runout distances with hydrostatic assumption and Savage-Hutter 
assumption are very close. Nevertheless, there have significant differences between two models, 
the rear end with hydrostatic assumption has a larger thickness than that with Savage-Hutter 
assumption. We can conclude that the effect of earth pressure coefficients on the motion of 
granular flow cannot be ignored even for VDFM in line with findings by Pudasaini and Kröner 
(2008). For the details of more pressure assumption models, we can refer to Pirulli et al. (2007) 
and Hungr and McDougall (2009). 

 
 

5. Energy in granular flows 
 
Typical granular flow involves complex energy exchange (for detailed description, see 

Pudasaini and Domnik 2009, Domnik and Pudasaini 2012). The potential energy, Ep, is transferred 
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Fig. 11 Sketch of calculating energy of granular cells. We assume that each cell of granular has a uniform
height, and the potential energy can be obtained by the gravity center of granular cell 

 
 

to the kinetic energy, Ek, and the friction induced internal energy Ef, when granular materials are 
released on the inclined plane. The total energy of granular materials is the summary of potential, 
kinetic and friction induced internal energy, Et = Ep + Ek + Ef. To simplify the analysis, and the 
losses of the potential and kinetic energy represent the dissipative energy that is induced by the 
basal friction force. Based on the conclusions reported by Fei et al. (2010), the width of chute (W0) 
is considered, the kinetic and potential energies are given by 
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pp                (16) 

 

where Ek, Ep denote kinetic and potential energies, respectively; hi, ui are height and zelocity of 
each granular cell, dx denotes the length of granular cell. Noting that the zero of potential energy 
locates in the horizontal plane, and the height of the basal topography (zb) can be directly obtained. 

 
 
Fig. 12 illustrates the energy exchange laws during the motion of granular materials. Kinetic 

and potential energies are obtained by using Eqs. (15)-(16). We assume that the energy losses 
during the motion caused by the basal friction force, and the complex flow behavior such as 
rolling and collisions between multi-contact particles are ignored. Thus, the dissipative energy can 
be deduced by the decreases of total mechanical energy. From Fig. 13, we see that when granular 
mass starts to move, the kinetic energy increases and potential energy decreases because the 
developing length increases and corresponding height decreases. When the rear end of granular 
material reaches the horizontal plane, the potential energy is very small, because the zero potential 
datum locates the horizontal plane. It is worth noting that the energy exchange laws for Coulomb 
and Voellmy models are very close, the kinetic and dissipative energies of VDFM are smaller 
compared with the other models. 

Fig. 13 is the energy change rates (ΔE / Δt) during the motion of granular materials with  
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different basal resistance terms. It is known that the kinetic energy starts to increase due to the 
gravity driven, and then to decreases when the influence of basal friction force exceeds the gravity 
force. The areas of energy change rate are the decrement or increment of energy during a time step, 
the kinetic energies of initial and final conditions both equal zero, thus, the areas of kinetic energy 
between the positive and negative regions are equal. It should be noted that the potential and 
dissipative energies keep negative or positive work. As similar with energy exchange laws, the 
energy change rate laws are very close between the Coulomb and Voellmy models. 

The continuum assumption is not accurate in the instances that individual particles rolled along 
the bed and over each other proposed by Savage and Hutter (1989). The energies show significant 
changes when the moving time range from 3.0 to 5.0, i.e., the dynamical processes of granular 
materials moving from inclined plane to horizontal plane. Three basal resistance terms are adopted 
to simulate the motion of granular flow in the paper, and all models show excellent agreement 
with the experiment results. The energy exchanges and energy change rates, however, show 
apparent differences for VDFM by comparisons with the other models. It is a really challenge to 
describe the physical mechanisms of granular materials, especially for the natural rock avalanches 
and landslides. 

 
 

6. Conclusions 
 
Depth-averaged equations are widely used to simulate the motion of granular flows, basal 

resistance terms play an important role for the flow characteristics. Several typical basal resistance 
terms are summarized, and their effects on the key parameters in the motion such as runout 
distances and travel times are analyzed by performing the numerical simulations. 

Numerical results for Coulomb model indicate that the bed friction angle significantly 
influences the dynamic characteristics such as runout distance, moving time. Similar founding was 
reported by Hutter et al. (1995) and Hungr (2008). Meanwhile, both the internal and basal angles 
have remarkable influences on earth pressure coefficient and the profile shape of granular 
materials. 
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For Voellmy model, the predicted results of rock avalanche and landslide conducted by Hungr 
and Evans (1996) and Chen and Lee (2003) performs quite well, except for several notable exceptions, 
but the predicted position heights are unrealistic (McClung and Mears 1995). Numerical results 
show the front and rear end positions, runout distances and moving times increase with increasing 
turbulent coefficient, the higher value of turbulent coefficient than reality may obtain more 
reasonable predicted runout for the small-scale avalanche or granular flow. 

The simple Coulomb friction law may reflect the complex flow characteristics, especially for a 
thin layer steady flow, two friction coefficients of critical angle fitted by experiments are adopted 
in VDFM. We found that the effect of earth pressure coefficients on the motion of granular flow 
cannot be ignored, although it has moderate influence on the runout distance and moving time of 
granular flow. The numerical models with hydrostatic-isotropic assumption has a deeper profile at 
the rear end than that of Coulomb model. Although the moving time and runout distances of three 
basal resistance terms are very close, the energy exchange laws show that the flow characteristics 
have apparent differences between them, especially for VDFM. 
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