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Abstract.  Rankine’s theory of earth pressure cannot be directly employed to c- soils backfill with a 
sloping ground subjected to complex loadings. In this paper, an analytical solution for active earth pressures 
on retaining structures of cohesive backfill with an inclined surface subjected to surcharge, pore water 
pressure and seismic loadings, are derived on the basis of the lower-bound theorem of limit analysis 
combined with Rankine’s earth pressure theory and the Mohr-Coulomb yield criterion. The generalized 
active earth pressure coefficients (dimensionless total active thrusts) are presented for use in comprehensive 
design charts which eliminate the need for tedious and cumbersome graphical diagram process. Charts are 
developed for rigid earth retaining structures under complex environmental loadings such as the surcharge, 
pore water pressure and seismic inertia force. An example is presented to illustrate the practical application 
for the proposed coefficient charts. 
 
Keywords:    retaining walls; active earth pressure; Rankine’s theory; coefficient charts; combined 
loadings 
 
 
1. Introduction 
 

In the design of retaining structures such as retaining walls or the stabilization of pile rows 
against sliding, the earth pressures or total forces from soil backfill are generally computed using 
analytical expressions based on Coulomb’s sliding wedge theory or Rankine’s earth pressure 
theory (Kerisel and Absi 1990, Huang et al. 2006, Mylonakis et al. 2007, Das 2008, Feng et al. 
2008, Shukla et al. 2009, Yu et al. 2011, Yap et al. 2012, Iskander et al. 2013a, b, c, Peng and 
Chen 2013, Nian et al. 2014). The former mainly concentrated on cohesionless soils backfill with 
a horizontal or inclined ground surface (Fang and Chen 1995, Peng and Chen 2013, Greco 2013, 
2014). The latter, Rankine earth pressure theory, mainly focused on c- soils backfill with 
horizontal or inclined ground surface. In this theory, a classical graphical diagram procedure using 
Mohr circles graphic geometry (analytical geometry) technique was widely reported by many 
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researchers for obtaining the essential static or dynamic equations of lateral earth pressure in c- 
soils with a horizontal or sloping ground (Mazindrani and Ganjali 1997, Gnanapragasam 2000, 
Lancellotta 2007, Yap et al. 2012, Iskander et al. 2013a, b, c). It seems that the graphical method 
is very popular in the current academic and practical field. However, it becomes rather tedious for 
solving the practical retaining-structure problems, since several Mohr’s circles of stress need to be 
drawn for several points along the back of the retaining walls to determine the lateral active earth 
pressures profiles. Moreover, it is also complicated for the practitioners and not easy to understand 
the procedure under seismic loadings. 

In this paper, a theoretical solution of active earth pressure on retaining structures with c- soil 
backfill on slopes subjected to uniform surface surcharge, pore water pressure and horizontal 
seismic loading is presented, based on the lower-bound approach of limit analysis combined with 
Rankine’s earth pressure theory and the Mohr-Coulomb yield criterion. The analytical procedure is 
described, straightforward coefficient charts for various combinations of backfill inclination β, 
cohesion c/H and internal friction angle  of soils with surface surcharge q/H, pore pressure ratio 
ru or horizontal seismic coefficient kh, are presented to rapidly estimate the generalized active earth 
pressure coefficients or to determine the dimensionless active thrusts on retaining structures for 
practical applications. 

 
 

2. Analytical formulation 
 
Fig. 1(a) shows a typical soil slice element, ABCD, with height z and unit width 1, cut from an 

inclined infinite slope with angle β. The bottom of the soil slice is designed to be parallel to the 
slope surface, and the water table can vary in location between the bottom of the soil slice and the 
slope surface. It is assumed that the effect of the left-hand soil mass of any cross section (i.e., AB) 

 
 

 
Fig. 1 Model of soil slice on an infinite slope subjected to surcharge, pore pressure and seismic forces: 

(a) analysis of forces in soil slice element; (b) analysis of element stress and wedge stress 
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in an infinite slope on the right-hand side of the soil slice is replaced by a rigid retaining structure 
(i.e., a retaining wall or a row of stabilizing piles against sliding, as in Fig. 1(a)) with a vertical 
interface, corresponding to the stress conditions analyzed in the limit-equilibrium state based on 
self-weight, surcharge, pore-water pressure and seismic inertia forces in a semi-infinite mass of 
c- soil. Here, the soil-wall mobilized friction angle at the interface is a function of inertial force, 
slope of backfill, inclination of the wall and soil friction angle as pointed out by Iskander et al. 
(2013a). It implies that the soil-wall friction is rather complicated. To facilitate the derivation of 
solution and also to keep consistency with the classical Rankine’s earth pressure theory, the 
soil-wall interface (AB surface, see in Fig. 1(a)) is assumed to be smooth, none of the soil-wall 
friction (δ = 0) is considered. The active earth pressure on retaining wall under complex loadings 
is assumed to be parallel to the inclined backfill surface. Thus, the inclined lateral pressure value 
obtained by analyzing the soil slice element in an infinite slope is equal to the active earth 
pressures acting on a retaining structure with cohesive backfill on an inclined ground surface. 

Building on this idea, the forces per unit length of the slice on a slope due to surcharge, pore 
water and seismic inertia forces, as shown in Fig.1 (a), are described as follows: 

 

(1) Self-weight γz of the soil slice element, where γ is the unit weight of the soils. 
(2) Uniformly distributed load or surcharge q located at the slope surface, which is induced by 

construction loading. 
(3) Pore water pressure u produced at the bottom of the slice, represented by 

 

wwu zγγzru                                (1) 
 
where ru is known as pore pressure ratio, γw is unit weight of water, and zw is the height the water 
table as shown in Fig. 1(a). Because of the difficulty and uncertainty involved in determining the 
earthquake-induced excess pore water pressure, this effect is not included in the analysis to 
maintain the simplicity of the pseudo-static method. 

(4) Horizontal seismic inertia force (towards the wall) of the soil slice element, khγz, where kh 
is the horizontal seismic coefficient. Because it is very common to see only the horizontal 
acceleration coefficient considered in a retaining wall design, the vertical seismic 
coefficient is not involved in the present analysis. 

 
According to the equilibrium conditions of the forces on the bottom surface of the soil element 

(Fig. 1(a)), the normal stress σ and shear stress τ along the bottom surface can be expressed as 
follows 

   cossincoscos 22 zkzqz hu                   (2) 
 

   2coscossin zkqz h                        (3) 
 

According to wedge stress analysis, the normal stress σ and shear stress τ along the inclined 
surface in a soil element can be expressed by combining the lateral stress σx, vertical stress σz and 
shear stress τxz of the soil in the slope in the limit-equilibrium state (see Fig. 1(b)). The following 
relationships can be established based on the stresses on the triangular element 
 

     2sin2cos
2

1

2

1
xzxzxz                   (3a) 
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   2cos2sin
2

1
xzxz                        (3b) 

 
Therefore, substituting the expressions of normal stress  and shear stress  obtained from Eq. 

(2) into Eq. (3), the vertical stress σz and shear stress τxz satisfying the equilibrium conditions can 
be expressed as follows 
 

   tan2cos1tan2 zkrzqz huxz                 (4a) 

 
zkzr huxxz   cossintan                      (4b) 

 
where σx is an unknown variable. 

Further, substituting the vertical stress σz and shear stress τxz into the following equation of the 
major and minor principal stresses gives 
 

    2
2

3

1

2

1

2

1
xzxzxz 








 








                       (5) 

 
The stress field (σ1, σ3) obtained in this way, a function of σx, is an equilibrium equation that 

fulfils both the equilibrium conditions within the soil domain of the slope and the stress boundary 
conditions. In accordance with the lower-bound limit analysis approach (Chen 2007), this stress 
field will be a statically allowable stress field if it does not violate yield conditions such as the 
Mohr-Coulomb criteria. Thus, substituting the stress field (σ1, σ3) obtained with an unknown 
variable σx into the following Mohr-Coulomb failure criteria 
 

 cossin)(
2

1
)-(

2

1
3131 c                       (6) 

 

A quadratic equation based on σx can be built, in which c and ϕ are the cohesion and internal 
friction angle of the soil, respectively. Solving this equation yields two principal values of 
horizontal lateral stress σx in the statically allowable stress field, where the small-value one will be 
the generalized active earth pressures (σag) for retaining structures using c-ϕ soil backfill on an 
inclined surface. Rearranging the forms of σx / cos β, the analytical expression can be rewritten as 
 












 2

2

2
22 4)1(tan4

cos

4
)1(cos

cos
DAD

C
AJJzKzσ ag

x
ag 







  (7a) 

 
where 
 












 2

2

2
22 4)1(tan4

cos

4
)1(cos DAD

C
AJJKag 


           (7b) 

 

in which 
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  



tan21
1

1

cos

cos2
1

2

2

D
A

B
AJ 













                    (7c) 

 




tan2cos hu kr
z

q
A                           (7d) 

 




tanhu kr
z

q
B                             (7e) 

 

hu krC   cossin                            (7f) 
 

0,  z
z

c
D


                              (7g) 

 

0,  z
z

q
E


                              (7h) 

 

where Kag is the generalized active earth pressure coefficient under complex circumstances, 
including c-ϕ soil backfill on an inclined ground surface and combined loadings involving 
surcharge, pore water pressure and seismic inertia forces, the other parameters are defined earlier. 
In particular, analytical expressions for generalized active earth pressure (σag) at z = 0 can be 
rewritten as 
 

   
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   (8a) 

 

where 
 

    


















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


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


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
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
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The parameter z in D and E (defined in Eq. (7)) is replaced by the height H of the retaining wall. 
When q = 0, Eqs. (8a) and (8b) can be reduced to the following form 
 

  


 cos
cos

1-sin
2cos4tan2tan2

0
22 cccc

zag 




 


          (8c) 

 
To verify the analytical solution, a special case involving backfill composed of cohesive soils 

on a sloping surface without surcharge, pore water or horizontal seismic loading is adopted: β ≠ 0, 
c ≠ 0, ϕ ≠ 0, q = 0, ru = 0 and kh = 0. From Eqs. (7), q = 0, ru = 0 and kh = 0. Eq. (7b) reduces to 
 

 










cos
cossincos8cos4

coscoscos4
sincos2cos2

cos

cos
2

1

222

222
2

2































DD
DKag   (9) 

 
Eq. (9) is identical to that presented by Mazindrani and Ganjali (1997) using the graphic 

geometry procedure. 
   If β = 0, Eq. (9) can be rewritten as 

 

 
  

 
   aaag KDKDK 2

sin1sin1

sin-1
2

sin1sin1

sin-1 22














        (10) 

 
In which Ka is the active earth pressure coefficient based on Rankine’s theory, and is 

conventionally expressed as 



sin1

sin1




aK . Hence, Eq. (7a) at β = 0 with a static loading condition 

can be transformed into 

aaagag KczKzKσ 2                         (11) 

 
Eq. (11) is the classical Rankine solution of active earth pressures for the case of cohesive (c- 

soils) backfill with a horizontal ground surface, vertical wall and static loading (Das 2008). 
Similarly, if  = 0 and c = 0, Eq. (7a) can also be rewritten as 
 

aagag γzKγzKσ                              (12) 

 
Eq. (12) is the classical Rankine solution of active earth pressures for the case of cohesionless 

(c = 0) backfill with a horizontal ground surface, vertical wall and static loading (Das 2008). 
 
 

3. Distribution of generalized active earth pressure under combined loadings 
 
Consider the following details for a rigid retaining structure supporting c- soil backfill on a 

sloping ground subjected to surcharge, pore water pressure and seismic inertia forces. The material 
properties and loading parameters are listed in Table 1. 

466



 
 
 
 
 
 

Coefficient charts for active earth pressures under combined loadings 

Table 1 Material properties and loading parameters for a typical retaining structure 

γ (kN/m3) c (kPa) ϕ (°) H (m) β (°) q (kPa) ru kh 

Soil unit 
weight 

Soil 
cohesion 

 Soil friction 
angle 

Wall 
height

Slope 
angle

Surcharge
Pore pressure 

ratio 
Horizontal seismic 

coefficient 

18.0 21.6 35 12 10 43.2 0.25 0.2 

 

 

Fig. 2 Distribution of generalized active earth pressure along the wall depth 
 
 

Using Eq. (7), calculations are performed to obtain the generalized active earth pressures on 
retaining structures subjected to surcharge, pore-water and pseudo-static seismic loading. The 
distribution of generalized active earth pressure along the wall depth is shown in Fig. 2. It can be 
observed from Fig. 2 that the generalized active earth pressure has a triangular (linear) distribution, 
and a tension crack zone (negative active earth pressure) exists within the critical depth zc of the 
retaining wall. 
 
 
4. Total active thrusts acting on retaining structures 
 

Fig. 2 shows a triangular active earth pressure distribution with a tension crack in the range of 
the critical depth zc. It can be observed from Fig. 2 that the critical depth zc can be obtained when 
the generalized active earth pressure σag = 0. A quadratic equation involving z can be built using 

Eq. (7a) with 0
cos


β

σ
σ x

ag  and rearranging the formula after opening the brackets and 

embedding into the square root. By solving this quadratic equation, the critical depth value zc of 
the tension crack can be given as follows 
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      
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
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









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






2

2
2

222

cos

4
1cos

tan21411cossin2

C
EA

CEAEAHD
zc      (13) 

 
where λ = E / 2D and the parameter z in A~E (defined in Eq. (7)) is replaced by the height H of the 
retaining structure. 

When combined with Eq. (1), the static water pressure induced by groundwater, Pw, acting on a 
retaining structure with height H can be written as follows 
 

22

2

1

2

1
u

w
wwww r

γ

γ
γHzzγP                          (14) 

 
Thus, the generalized total active thrust, Pag, acting on the retaining wall per unit length can be 

expressed as 
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1
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u
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u
w

c
HzagwcHzagag

r
H

z
KH

r
γ

γ
H

H

z
KγHPzHσP




        (15) 

 
where  / w is approximately equal to 2.0. Considering the dimensionless parameter (called the 

generalized active earth pressure coefficients),
)( 2

2
1 H

P
K ag*

ag 
 , Eq. (15) can be represented in the 

following form 

2
2

2
1

21
)( u

c
Hzag

ag*
ag r

H

z
K

H

P
K 






  

                    (16) 

 
 

5. Comparison of solutions and discussions 
 
A series of comparisons between the present analytical results and those available in the 

published work (NCHRP report 611 by Anderson et al. 2008, Mylonakis et al. 2007, Iskander et al. 
2013a, b, c) have been made to validate the proposed analytical approach. 

Based on Eqs. (7) and (16), the variations of generalized active earth pressure coefficient 
)( *

agK  with the horizontal seismic coefficient (kh) under different soil friction angles (), and 
dimensionless cohesions (c / H) are presented in Fig. 3(a). In order to validate the analytical 
approach, the results from the new approach in certain situations are also compared with those 
from the Mononob-Okabe (M-O) equations (NCHRP report 611, Anderson et al. 2008). It can be 
seen from Fig. 3(a) that the 

*
agK  values obtained using the present solution without considering the 

wall friction (δ = 0) are generally lower than those obtained using the M-O approach considering 
the wall friction (δ =  / 2), but the differences of the calculated results by these two approaches are 
within 5%. 
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(a) Variations of 

*
agK  with kh under different soil friction angle  

 
 

(b) Variations of 
*
agK  with kh under different 

backfill inclination  
(c) Variations of *

agK  with c / H under different 
soil friction angle  

Fig. 3 Comparisons of the present analytical approach and the existed methods 
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To further verify the present solutions, the representative data from M-O solutions without 
considering the wall friction ( = 0) for the cohesionless soils with internal friction angle  = 40° 
under horizontal seismic loading (Mylonakis et al. 2007) are also plotted in Fig. 3(a). It can be 
seen that given the existence of a uniform Rankine stress field, the derived solutions by the present 
approach are almost identical to those from M-O solutions for the earth pressure on the wall, when 
the same soil wall friction angle  = 0 is used in both solutions. Therefore, the new analytical 
approach is valid for practical use. 

In order to investigate the variations of generalized active earth pressure coefficient 
*
agK  with 

horizontal seismic coefficient kh under different backfill inclination , the present analytical 
approach and some existed methods, such as the M-O analysis (Mylonakis et al. 2007), 
kinematical limit analysis (Chen and Liu 1990), stress limit analysis or alternative M-O analysis 
(Mylonakis et al. 2007) and conjugate stress limit analysis (Iskander et al. 2013a), are employed to 
achieve the values of 

*
agK  under different backfill inclination . The results from the present 

solutions in certain situations ( = 40°,  = 0) are compared with those from the existed methods 
for the case of  = 40° and  =  / 2 under different inclined backfill ( = 0° and  =  / 2), and the 
charts of comparative analysis by the several methods can be found in Fig. 3 (b). It can be shown 
that the 

*
agK  values obtained using the present solution without considering the soil-wall friction 

are generally less than those obtained using the other approaches considering the soil-wall friction 
(δ =  / 2) under different horizontal seismic coefficients kh and lower inclined backfill (e.g.,  < 
10°). However, under higher horizontal seismic coefficients kh (e.g., kh > 0.2) and rather larger 
inclined backfill (e.g.,  = 20°) the obtained results using the present approach without considering 
the wall friction is evidently higher than those using the other two methods (M-O analysis and 
kinematic limit analysis) considering the wall frictions, but the differences of the calculated results 
by these several approaches are in general within 5%. In short, the proposed solutions based on the 
conventional Rankine’s earth pressure theory have a relatively good agreement with those based 
on the existed methods under the same backfill inclination. 

Comparison between the proposed method and the conjugate stress limit analysis solutions 
(Iskander et al. 2013b, c) for c- soils is also made for different dimensionless cohesion c / H 
(from 0 to 0.25 with an interval of 0.05) and soil friction angle  (from 10° to 30° with an interval 
of 10°) under a horizontal seismic coefficient of kh = 0.15 in Fig. 3(c). It can be seen that the 
present results agree well with those from the previously published work. Particularly, Fig. 3(c) 
also shows that the generalized active earth pressure coefficient values decrease sharply with the 
increase of dimensionless cohesion c / H or soil friction angle ϕ when the environmental loadings 
are given. 

 
 

6. Design charts 
 
A computer code is developed to calculate the generalized active earth pressure coefficients 

*
agK  or dimensionless active thrusts 

)( 2
2
1 H

Pag


 on retaining structures based on Eqs. (7), (15) and 

(16). However, from a practical viewpoint, it would be inconvenient for engineers to obtain these 
calculated results in scenarios where they do not have access to computers, and it would also be 
difficult to examine the distribution characteristics of active earth pressures or lateral active thrusts 
under various loadings. Therefore, a design procedure based on coefficient charts is becoming 
more necessary in practice. 
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Coefficient charts for active earth pressures under combined loadings 

 
(a) (b) (c) 

  

(d) (e) (f) 

 

(g) (h) (i) 

Fig. 4 Coefficient charts for generalized active earth pressure under surcharge 
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(a) (b) (c) 

 

(d) (e) (f) 

   

(g) (h) (i) 

Fig. 5 Coefficient charts for generalized active earth pressure considering pore pressure 
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Coefficient charts for active earth pressures under combined loadings 

 
(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

Fig. 6 Coefficient charts for generalized active earth pressure under seismic forces 
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A set of coefficient charts for generalized active earth pressures or total active thrusts have 
been created and are shown in Figs. 4, 5 and 6 for three slope inclinations ( = 0°, 10° and 20°) 
under uniform surface surcharge (q / H), pore water pressure (ru) and horizontal seismic forces 
(kh), respectively. 

It can be observed in Fig. 4 that generalized active earth pressure coefficients 
*
agK  decreases 

nonlinearly with the increase of soil friction angle  under a given dimensionless cohesion c / H, 
slope inclination  and uniform surface surcharge q/H. Similar changes are also observed 
between 

*
agK  and c / H when soil friction angle , slope inclination  and surface surcharge q/H 

are fixed. On the contrary, the values of 
*
agK  increase with the increase in surcharge q / H. It can 

also be observed by comparison with Figs. 4(a), (d) and (g), or Figs. 4(b), (e) and (h), or Figs. 4(c), 
(f) and (i) that 

*
agK  increases with the increase in slope inclination . 

Fig. 5 shows the relationship between *
agK and soil friction angle  under three slope 

inclinations ( = 0°, 10° and 20°) and three pore pressure ratios (ru = 0, 0.25, 0.50). It can be 
observed by comparing with Figs. 5(a), (b) and (c), or Figs. 5(d), (e) and (f), or Figs. 5(g), (h) and 
(i) that the values of *

agK increase significantly with the increase in pore pressure ratio ru. When the 
pore pressure ratio ru is not equal to zero (assuming the existence of groundwater), the cohesion c 
and soil friction angle  can be replaced by the effective cohesion c′ and the effective internal 
friction angle  ′ of soils, respectively, and a higher active thrust can be achieved. This will lead to 
a more realistic solution for active thrust on retaining structures. 

Fig. 6 shows the design charts for dimensionless active thrust on retaining structures subjected 
to horizontal seismic loadings with three horizontal seismic coefficients (kh = 0.1, 0.2, 0.3) under 
different slope inclinations ( = 0°, 10° and 20°). It can be observed by comparing with Figs. 6(a), 
(b) and (c), or Figs. 6(d), (e) and (f), or Figs. 6(g), (h) and (i) that *

agK increases significantly with 
the increase in the horizontal seismic coefficient kh. When the backfill slope inclination reaches 
20° (see the dashdotted line in Figs. 6(g), (h) and (i)), or a combination of rather bigger slope 
inclination of  = 10° and higher horizontal seismic coefficient of kh = 0.3 is achieved (see the 
dashdotted line in Fig. 6(f)), a lower soil friction angle  is incapable of producing a reasonable 
active thrust to resist the failure (sliding or overturning) of retaining structures. In other words, a 
design using a lower friction angle  in a seismic active zone is not feasible. 

The design charts achieved above are applied to a representative reinforced concrete retaining 
structure with a vertical and smooth back-face. The wall has a height of H = 12 m, and the width 
of the base and top are B = 3 m and b = 1.5 m, respectively. It is built of a uniform soil characterised 
by ϕ = 35°, c = 21.6 kPa, and  = 18 kN/m3. The soil backfill is inclined at  = 10° to the horizontal 
ground (Table 1) and the friction coefficient at the contact surface between the wall base and soil 
is μ = 0.4. What would the safety factor of this retaining wall against sliding under an active state 
be if the magnitude of the horizontal acceleration were 0.2 of the gravity acceleration? First, 
calculate c / H = 0.1; next, read *

agK from Fig. 6(e) ( *
agK = 0.2). It should be noted that when the 

backfill inclination β is not equal to 0°, 10° or 20° (i.e., 0° < β < 10°, 10° < β < 20°), the interpolation 
method in mathematics can be employed to achieve the generalized active earth pressure 
coefficient under a specified backfill inclination β. Then, calculate the gravity of the retaining wall, 

G = 594 kN, and finally, solve for the safety factor against sliding: Fs =
 

βP

βPG

ag

ag

cos

sin
 = 1.0. 

Consequently, the retaining wall is at the critical active state against seismic loading. Without 
considering the external loading, the generalized active earth pressure coefficient of this retaining 
wall can be found from Fig. 5(d), *

agK = 0.11. The safety factor of the retaining wall against 
sliding under these conditions has a high value of Fs = 1.7. 
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However, this retaining wall would also be on the verge of sliding failure (the factor of safety 
against sliding being about Fs = 1.0) if it were subjected to either a uniform construction loading 
equivalent to those described by q = 43.2 kPa or pore water pressure equivalent to ru = 0.25. 
However, it should be noted that when the effective cohesion c′ and the effective internal friction 
angle ϕ′ of a soil are adopted under pore water pressure (ru = 0.25), a lower safety factor against 
sliding (Fs < 1.0) will be yielded. In other words, the present solution, without considering the 
effective shear strength, is a rather unconservative estimate of the safety factor. 

 
 

7. Conclusions 
 
A set of charts was produced for estimating the generalized active earth pressure coefficients or 

dimensionless total active thrusts on the rigid frictionless retaining structures. The data were 
obtained from calculations based on the lower bound approach of limit analysis. These charts can 
be used for the design of retaining structures using c- soil backfill on the sloping ground 
subjected to surcharge, pore water pressure and horizontal seismic forces. The charts are in a 
convenient-to-use format for direct application in engineering work, and evaluating the 
generalized earth pressures does not require a tedious calculation process. However, these charts 
are not intended for soil backfills with a rather steep slope and a low frictional component of 
strength. 
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