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Abstract.  The governing equations of wave propagation in one dimension of elastic continuum materials 
are investigated by taking the influence of the initial stress into account. After a short review of the theory of 
elastic wave propagation in a rock mass with an initial stress, results indicate that the initial stress 
differentially influences P-wave and S-wave propagation. For example, when the initial stress is 
homogeneous, for the P-wave, the initial stress only affects the magnitude of the elastic coefficients, but for 
the S-wave, the initial stress not only influences the elastic coefficients but also changes the governing 
equation of wave propagation. In addition, the P-wave and S-wave velocities were measured for granite 
samples at a low initial stress state; the results indicate that the seismic velocities increase with the initial 
stress. The analysis of the previous data of seismic velocities and elastic coefficients in rocks under 
ultra-high hydrostatic initial stress are also investigated. 
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1. Introduction 
 

In underground mining and civil engineering, the problems of tectonic movements involve 

earth masses that are initially under stress (Sharma and Garg 2006). In particular, with the increase 

of mining depth, the initial stress will gradually become high (Tao et al. 2013). The initial stress 

will affect the elastic coefficients and stress wave velocities of rocks. The effect of the initial stress 

or pre-stress on the rock elastic coefficients and wave propagation has been explored by a number 

of scholars. For example, Biot investigated the governing equations of wave propagation in two- 

and three-dimensional pre-stressed fields (Biot 1964). Ogden and Sotiropoulos demonstrated the 

effect of pre-stress on the propagation and reflection of plane waves in incompressible elastic 

solids (Ogden and Sotiropoulos 1995, 1997). However, it is well known that the classical elastic 

theory is restricted to small deformations and rotations. Meanwhile, most of our knowledge of the 

chemical composition, physical state, and structure of the Earth’s interior mainly comes from 

seismic data (Ji et al. 2007). Therefore, laboratory measurements of the elastic coefficients and the 

velocities of elastic waves in rocks are necessary for the interpretation of seismic velocities and 

elastic coefficients in materials (Birch 1960). During the last fifty years, a large number of 
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laboratory measurements of P-wave (Vp) and S-wave (Vs) velocities and their characteristics of 

anisotropy, hysteresis, and splitting have been conducted on various types of rocks. For example, 

Birch (Birch 1960, 1961) measured the velocities of compressional waves in rocks at pressures of 

up to 10 kilobars (1,000 MPa), Christensen (Christensen 1965, 1974) tested the compressional 

wave velocities in metamorphic rocks at pressures of up to 1,000 MPa, and Manghnani and some 

other scholars performed measurements on many type of rocks at ultra-high pressure (Manghnani 

et al. 1974). 

With the increasing depths of underground mining and civil engineering tunneling projects in 

the past decade, more exact and detailed laboratory measurements of the elastic coefficients of 

rocks at high and ultra-high pressure are being conducted. For example, Ji et al. (2007) presented 

some of the available data on the seismic velocities and anisotropy in minerals and rocks (Ji et al. 

2002). Rocks may be elastically nonlinear, hysteretic and splitting (Ji et al. 2007, Sun et al. 2012). 

When rocks are under an initial stress, their elastic properties will be changed. The elastic 

properties of rocks can be determined by static and dynamic tests. Based on acoustic experiments, 

Wang and other researchers determined the Poisson’s ratio of rocks as a function of hydrostatic 

confining pressure (Chevrot and van der Hilst 2000, Wang and Ji 2009). Mohammad et al. studied 

the effect of a confining pressure on compressional and shear wave velocities and on the dynamic 

to static Young’s modulus ratio (Asef and Najibi 2013). 

In the elastic field, after review of the theory of elastic wave propagation in a material with an 

initial stress, this paper presented the relationships of the initial stress with the elastic governing 

equations. In addition, an experimental apparatus is used to investigate the relationships between 

seismic velocities and elastic coefficients with initial stress. Further investigation based on the 

published data confirms the experimental observations in this study regarding the effect of initial 

stress on elastic wave velocities and elastic coefficients. 

 

 

2. Elastic theory and governing equations in one dimension 
 

Consider a one-dimensional (1D) bar; the transient motion in the bar may be initiated by an 

impulse applied at one end (Brady 2004). A P-wave travels along the bar, resulting in a transient 

displacement at any point, and the stress-strain equation for an elastic bar is described by 
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where x is the space coordinate measured along the rod, x is the stress, u is the displacement, and 

E is Young’s modulus. The property of displacement is continuous; thus 
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where t is the time, and  is the density of the solid. It is assumed here that the bar is composed of 

a homogeneous elastic media. Hence, E and  are constants, so by combing Eqs. (1), (2) and (3), it 

is found that 
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Because the bar is a homogeneous elastic media, then 
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Eq. (5) is the well-known 1D P-wave equation under un-stressed condition. 

Furthermore, if the bar has an initial stress, i.e., pre-stressed, then the initial stress must have an 

influence on elastic wave propagation. For the 1D stress condition, consider a state of initial stress 

such that a principal direction is always parallel to the x axis. In addition, assume that the initial 

stress in the body is S11; X is the components of the body force per unit mass; ρ and E are the mass 

density and Young’s modulus of the medium before deformation, respectively, when it have initial 

stress, ρ and E will change as ρ′ and E′, respectively. In this case, the initial stress component must 

satisfy the equilibrium condition as 
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In the absence of a change of the cross section induced by the initial stress, equation (1) can be 

written as 
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Thus, the equation of motion has the form of 
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Thus, if the initial stress is homogeneous, then 
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This is the 1D wave equation with homogeneous initial stress. Therefore, the pre-stressed wave 

equation is the same as the un-stressed one. The result indicates that the 1D stress wave theory still 

suits the condition of the sample having initial stress. The influence of the pre-stress appears only 

on the elastic coefficient of material, such as the Young’s modulus and density. 

 

 

3. Governing equations for the stress in two dimensions 
 
3.1 Effect of geotextile reinforcement 
 

In the plane x, y, we consider a position P(x, y), and the initial stresses in the body are S11, S22, 

and S12. In addition, it is assumed that the components of the body force per unit mass are X and Y. 

Under these conditions, in two dimensions, the initial stress components must satisfy the 

governing equations as 
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When a dynamic disturbance occurs in the pre-stressed plane, it will cause a deformation 

increment, assuming the position P(x, y) changes as P′ (ξ, η), and can be written as 
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The displacement filed is represented by the vector of components as 
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Then, the differential relations are as follows (Biot 1964) 
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In addition, the dynamic disturbance will induce rotation, which is approximately given by 
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The stress components after deformation are written as 
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For elastic deformation processes, the components s11, s22, and s12 of the stress increments only 

depend on the strain. Thus, based on the so-called Biot’s first order quantities, the relations of 

stress components are given as (Biot 1964) 
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σxx, σyy and σxy are the stresses at the point (ξ, η) along the x- and y-directions. These stress 

components satisfy the dynamic equilibrium relations as (Biot 1964) 
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Substituting the values of Eq. (6) for σxx, σyy, and σxy and using the coordinate transformation, 

the dynamic governing equation in two dimensions is written as (Biot 1964) 
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where, the notation e is introduced as 
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Alternatively, if the initial stress is assumed to be homogeneous, then there is no body force 

increment and the dynamic Eq. (18) for plane strain propagation becomes 
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Furthermore, if the initial stress is hydrostatic, then 
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As a result, Eq. (20) is written as 
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Obviously, these equations are the same as the classical ones for a body in an unstressed state. 

Thus, the influence of the pressure appears only on the elastic coefficients of the material. In 

addition, because the incremental stress-strain relation is of orthotropic symmetry, we can make 

the following assumption 
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Based on Biot’s order, the existence of a potential strain energy leads to conditions of a general 

type to be satisfied by the coefficients, i.e., 
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Substituting the stresses in Eq. (23) into the dynamical Eq. (20) results in the following (Biot 

1964) 
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Generally, the dynamic disturbance causes two types of deformations: one is anti-symmetric 

corresponding to a bending, i.e., so-called longitudinal wave, P-wave; the other is symmetric and 

called transverse wave, S-wave. 

First, we consider plane P-waves propagating in the elastic medium. For example, consider a 

P-wave propagating in the x direction. 
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Substituting Eqs. (26) into (25) results in the following 
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Similarly, a P-wave propagating in the y direction is governed by the equation 
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and the velocity of P-wave is 
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Obviously, these governing equations have the same form as those for the unstressed medium. 

The initial stress influences the propagation only through its effect on the magnitudes of the elastic 

coefficients B11 and B22 and the density ρ. 

Second, we consider S-waves. An S-wave propagating in the x direction is represented by 
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This equation satisfies identically the first of Eq. (25), and the second equation reduces to 
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Therefore, the velocity Vx is 
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Similarly, an S-wave propagating in the y direction is represented by 
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Substituting Eq. (33) into Eq. (25) results in equation as 
 

 
2

2

2

2

1122
2

1

t

u

x

u
SSQ

















                       (34) 

 

The velocity Vy is given by 
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Therefore, for S-waves, the results indicate that the important factor of the acoustic propagation 

under initial stress is fundamentally different from the stress-free case and cannot be represented 

by simply introducing into classical theory stress-dependent elastic coefficients. 

 

 

4. Dynamic elastic coefficients 
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The elastic coefficients include Young’s modulus E, shear modulus G, bulk modulus K, 

Poisson’s Ratio v, and others. If any two elastic coefficients are determined, then the rest of them 

can be determined. Meanwhile, the previous theory indicated that the elastic coefficients have 

relationships with the initial stress, which can be determined from acoustic experiments. For 

example, the Poisson’s Ratio and dynamic Young’s modulus can be determined by the elastic 

wave velocity as follows 
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In addition, the relationship of density and initial stress can be approximated by using the 

following equations in Birch’s paper (Birch 1961). 
 

p395.00                                (38) 

 

where wave velocities Vs and Vp and the density ρ can be obtained by experiment. Thus, 

experiments will further verify the wave velocities and elastic coefficients in the following 

sections. 

 

 
5. Experimental study of stress wave propagation in the low pre-stressed rock sample 

 

The previous theoretical derivations are based on the continuous and elastic mechanics, but 

rock is typically discontinuous, nonlinear and inelastic. Therefore, to more directly and reasonably 

verify this problem, the experimental method is used to reveal the relationship between the initial 

stress and the stress wave velocities. 

For a P-wave, it is easy to measure the velocity by using two perpendiculars P-wave probes. 

The velocity of an S-wave can be measured with the probes for a P-wave in a rock block with a 

large plane. The two probes for a P-wave are coupled in parallel over a distance on the same plane 

of the rock block via grease. The transmitting probe produces a pulse that causes a P-wave in the 

normal direction of the plane and simultaneously an S-wave in its shear direction. Therefore, three 

P-wave probes can be used to measure the P-wave velocity and the S-wave velocity. Fig. 1 shows 

the experimental set-up, where the size of the specimen is 200 × 100 × 100 mm. 

The experiments are conducted using an Instron 1346 hydraulic servo-controlled machine. The 

experimental system is controlled by a computer, and the load-deformation data are acquired 

automatically. The several groups of uniaxial pre-stressed specimens are examined using the 

Instron 1346 machine, which has a load capacity of 2,000 kN. The experimental system is shown 

in Fig. 2. 

Uniaxial compression test is first conducted to obtain the basic mechanical properties of granite 

in the un-stressed state, which provided some rock properties, as presented in Table 1. 

The initial stresses of 5 MPa, 10 MPa, 15 MPa, 20 MPa, 25 MPa and 30 MP are set to measure 

the relationship of the velocities of P-waves and S-waves; the results are presented in Fig. 3. 
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Fig. 1 Determination of the velocities of P-waves and S-waves using P-wave probes 

 

 

 

Fig. 2 The velocity determination system 

 

 
Table 1 Material properties of rock 

No. Poisson’s ratio Density / (Kg·m-3) Uniaxial compression strength / MPa 

T1 0.19 2685 152.7 

T2 0.18 2669 151.1 

T3 0.21 2608 148.7 

T4 0.20 2589 147.3 
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(a) P-wave variation with initial stress 
 

 

(b) S-wave variation with initial stress 

Fig. 3 The relationship between initial stresses and the wave velocity 

 

 
The results indicate that the velocities of P-waves and S-waves rapidly increase with the initial 

stress; thus, the experimental work indicated that the initial stress affects the material properties of 

rock. For the P-wave velocity increase with the initial stress, considering Eq. (29), the increase 

verifies that the initial stress has more effect on the elastic coefficients B11 or B22 than on the 

density ρ. In addition, for the S-wave, Eqs. of (32) and (35) indicate that the wave velocity not 

only has a relationship with the elastic coefficients but also depends on the initial stress because 

the S-wave velocity increases with the initial stress; thus, the increment of the elastic coefficients 

Q increase is greater than the increments of the initial stress increment and density. 
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6. High and ultra-high initial stress measurement procedure 
 

High and ultra-high pressure velocity measurements using the standard pulse transmission 

method were performed by Birch and other researchers (Birch 1960, 1961, Shaocheng et al. 1993, 

Ji et al. 2007, Wang et al. 2009, Sun et al. 2012). In this experimental apparatus, a rectangular 

electrical pulse was applied to a barium titanate transducer, imparting a pulse to one face of the 

sample. The mechanical pulse was received by an identical transducer and converted into an 

electrical signal, which was amplified and displayed onto a dual-trace oscilloscope. The P-waves 

were generated and received by lead zirconate transducers, and S-waves were generated and 

received using lead zirconate titanate transducers (Sun et al. 2012). Based on this apparatus or an 
 

 

 

(a) P-wave variation with initial stress 
 

 

(b) S-wave variation with initial stress 

Fig. 4 The relationship of the initial stresses with the wave velocity under ultra-high initial stress conditions 
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Fig. 5 Mean dynamic Young’s moduli variation with the initial stress 

 

 

Fig. 6 Poisson’s ratio as a function of the initial stress 

 

 

equivalent apparatus, during the past 50 years or so, tremendous progress has been made in 

studying the stress wave velocity of rocks in relation to the initial stress. Many results have 

appeared in earlier publications, for example, the results of Manghnani et al. (1974). 

Based on the data of Manghnani (Manghnani et al. 1974), the relationships of the seismic 

velocities with the initial stresses are verified, as shown in Fig. 4. 

The results also indicated that the seismic velocities increase with the initial stress, even when 

the initial stress is ultra-high; the increasing trend does not change, but the increasing velocity 

trends are not as rapid when the initial stress is higher than 200 MPa. 

Based on Eqs. (36), (37) and (38), the elastic coefficients can be calculated using the P-wave 

and S-wave velocities; the Young’s modulus and Poisson’s ratio for different values of the initial 
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stress are shown in Figs. 5 and 6. 

The results also indicated that the seismic velocities increase with the initial stress, even when 

the initial stress is ultra-high; the increasing trend does not change, but the increasing velocity 

trends are not as rapid when the initial stress is higher than 200 MPa. 

Based on Eqs. (36), (37) and (38), the elastic coefficients can be calculated using the P-wave 

and S-wave velocities; the Young’s modulus and Poisson’s ratio for different values of the initial 

stress are shown in Figs. 5 and 6. 
 

 

7. Conclusions 
 

This study derived the governing equations for acoustic waves propagating in a pre-stressed 

one dimension elastic field, and the results indicated that the influence of the initial stress is only 

on the elastic coefficient of material. Meanwhile, based on the previous classic theoretical results, 

this paper presented that the initial stresses have different influence on P-waves and S-waves. 

In addition, in the laboratory, we conducted an experiment on the wave velocity measurement 

for rock under a low pre-stressed state; and the experimental results demonstrated that Vp and Vs 

increase rapidly with the increase of the initial stress. Furthermore, using the previously published 

laboratory data of seismic velocity and elastic coefficients of rock under ultra-high hydrostatic, the 

seismic velocity and elastic coefficients of rocks under different initial stress were investigated. 

The results demonstrated that the initial stress affected the seismic velocities and elastic 

coefficients of rocks. 
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