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Abstract.  The kinematical approach of limit analysis is used to estimate the three dimensional stability 
analysis of rock slopes with nonlinear Hoek-Brown criterion under earthquake forces. The generalized 
tangential technique is introduced, which makes limit analysis apply to rock slope problem possible. This 
technique formulates the three dimensional stability problem as a classical nonlinear programming problem. 
A nonlinear programming algorithm is coded to search for the least upper bound solution. To prove the 
validity of the present approach, static stability factors are compared with the previous solutions, using a 
linear failure criterion. Three dimensional seismic and static stability factors are calculated for rock slopes. 
Numerical results of indicate that the factors increase with the ratio of slope width and height, and are 
presented for practical use in rock engineering. 
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1. Introduction 
 

As well known, Mohr-Coulomb (MC) failure criterion has been extensively used in stability 
analysis of rock engineering. This may be due to the fact that most computer codes, design 
practice and standards, which are currently employed for evaluating the stability of rock structures, 
are formulated in terms of a MC failure criterion. With the MC criterion, it is supposed that, on 
failure plane the relationship between normal and shearing stress is linear. However, much 
evidence shows that the strength envelops of almost all geomaterials are nonlinear (Agar et al. 
1985, Cai 2007, Cai et al. 2007, Lade 1977). The friction angle decreases in most geomaterials 
with increasing confining pressure in tests, and Mohr’s envelope is curved. In the past, many 
researches were performed on nonlinear failure criterion. Various strength envelopes were 
proposed to represent nonlinear strength envelopes. For example, a power law criterion was 
presented by Hobbs (1966) based on triaxial test and had been successful applied to stability 
analysis for mine tunnel. Ladanyi (1974) proposed a nonlinear failure criterion on the basis of 
Griffith crack theory. The well known Hoek-Brown (HB) failure criterion, concluded on the 
results for a large amount of rock test, is also nonlinear (Hoek and Brown 1980). 
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Limit analysis is an effective approach to stability problem of geotechnical engineering, by 
which many scholars study the slope stability (Zhang et al. 2014, Zhu et al. 2010, 2011, 2012). 
However, these researches are mainly carried out based on plain strain analysis, with little 
utilization of three-dimensional (3D) analysis. Baligh and Azzouz (1975) considered a cylindrical 
and spherical mechanism and analyzed the stability of cohesive slope under undrained condition. 
Michalowski (1989) proposed a 3D multi-blocks mechanism, based on limit analysis method. The 
slip mass was divided into a series of blocks. For each of block, the velocity field was constructed 
in two-dimensional (2D) condition. Farzaneh and Askari (2003) applied this mechanism into the 
3D stability of inhomogeneous slope. An effective iterative algorithm was discussed for searching 
the optimum least upper bound solutions. Furthermore, Michalowski and Drescher (2009) 

proposed a 3D mechanism reflecting the relationship between slope depth and stability factor, 
which was composed of a rotation mechanism and a plane insert mechanism. These 3D works are 
performed with a linear MC failure criterion. Consequently, a question, which often arises in 
practice and theoretical study, is how to determine 3D stability of rock slopes using a nonlinear 
failure criterion. 

In the presented study, the 3D stability of rock slopes, subjected to earthquake forces, is 
analyzed with the nonlinear HB failure criterion. Earthquake forces, regarded as external forces, 
are calculated using a seismic coefficient. The upper bound theorem of limit analysis is applied to 
estimate the seismic and static stability problem of rock slopes. To avoid the difficulty resulting 
from the nonlinear HB failure criterion, generalized tangential technique is used to formulate the 
3D stability problem as a classical nonlinear programming problem. A nonlinear programming 
algorithm is coded to search for the least upper bound solution. In order to see the validity of the 
presented approach, stability factors are compared with the solutions of Michalowski and Drescher 
(2009), when the nonlinear failure criterion reduces into MC one. This paper extends the work for 
calculation of the 3D static stability analysis using linear MC yield criterion by Michalowski and 
Drescher (2009) to that using nonlinear criterion under earthquake. 

 
 

2. Generalized tangential technique 
 
According to a large number of triaxial experiments on a variety of rock types with varying 

degrees of fracturing, failure criteria are nonlinear. Hoek and Brown presented a modified HB 
failure criterion, which can be described by the following equation (Hoek and Brown 1997, Hoek 
et al. 2002) 
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where σ1 and σ3 are minimum and maximum principal stresses, and σc is the uniaxial compressive 
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Fig. 1 Tangential line to the modified Hoek-Brown failure criterion 
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where mi is the Hoek-Brown constant of instant rock, D is a disturbance coefficient, and GSI is 
geological strength index that depends on geological environment, rock structural features and 
surface characteristic. 

A limit load computed from a convex failure surface, which always circumscribes the actual 
nonlinear failure surface, will be an upper bound on the actual limit load. This is due to the fact 
that the strength of the convex failure surface is equal to or larger than that of the actual failure 
surface. By introduing tangential technique into limit analysis, Collins et al. (1998), and Drescher 
and Christopoulos (1988) used tangential line instead of curve to solve this problem successfully. 
The tangential line to the curve at location of tangency point M, is shown in Fig. 1. The tangential 
line is described by following equation (Zhang and Chen 1987) 
 

tntc  tan                                (5) 
 
where φt  and ct  are the tangential friction angle and the intercept of the straight line with τ-axis 
respectively. ct takes the following form (Sun and Zhang 2012, Sun and Liang 2013, Sun and Qin 
2014) 
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From Fig. 1, it can be seen that the strength of the tangential line equals or exceeds that of the 

nonlinear yield criterion at the same normal stress. Thus, the linear yield criterion represented by 
the tangential line will give an upper bound on the actual load for the material, whose failure is 
governed by the nonlinear yield criterion. In the following part, the tangential line is employed to 
calculate the rate of external work and internal energy dissipation. 

 
 

3. Kinematical analysis of 3D rock slope 
 
A homogenous rock slope with angles α and β is considered in the present study, as shown in 
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Fig. 2 Three-dimensional rotational mechanism (Michalowski and Drescher 2009) of slope with 
inclined angle 

 
 
Fig. 2. The slope is subjected to earthquake forces, which is described by a seismic coefficient. 
The earthquake forces are regarded as external forces, and the rock masses of the slopes are rigid. 
The internal energy is only dissipated along sliding surface, while the external rate of work is done 
by the rock weight and earthquake forces. The 3D failure mechanism proposed by Michalowski 
and Drescher (2009) is employed in the present limit analysis. Therefore, the following derivation 
and some equations are same as those of Michalowski and Drescher (2009). Others are improved, 
since the nonlinear HB failure criterion, earthquake forces, and inclined angle α are considered in 
the present analysis. For the sake of completeness, those expressions are all reported in the 
Appendix of this paper. 
 

3.1 Description of 3D failure mechanism 
 
The 3D failure mechanism proposed by Michalowski and Drescher (2009) has the shape of a 

curvilinear cone with apex angle, as shown in Fig. 2. Only a portion of this failure mechanism 
intersects the slope, and has one symmetry plane passing the toe point C. The discontinuity surface 
on the symmetry plane is described by two log-spirals 
 

terr  tan)(
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terr  tan)(
0

0                               (8) 
 
where OA = r0, O′A′ = r′0. The cross-section of cone is circle of radius R, and the distance between 
axis of cone and rotation center O is rm. R and rm vary with θ 
 

)(2/)( 10 frrrrm                              (9) 
 

)(2/)( 20 frrrR                             (10) 
 
where the expressions for f1 and f2 are reported in the Appendix of this paper. 

In above 3D rotation failure mechanism, the critical height is determined by three independent 
variables θ0θh and r′0 / r0. Calculations for the mechanism in Fig. 3(a) have shown the minimum 
stability factor. Previous experience has shown that critical height is related with the width of 
sliding block, not only with slope angle and strength parameter (Michalowski and Drescher 2009). 
To make the result consistent with practice, the three-dimensional failure patterns are modified  
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Fig. 3 Schematic diagram of three-dimensional mechanism (Michalowski and Drescher 2009) 
with inclined angle 
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with a plane insert, by splitting and separating laterally the halves of the 3D surface, as illustrated 
in Fig. 3(b). 

The introduction of plane insert adds a variable b in the optimization of critical height. The sum 
of rotational mechanism width and plane insert mechanism subject to a limitation imposed on the 
aximum of slope width. The external work rate and internal energy dissipation of rotating 
mechanism and plant insert are calculated separately, and the former of which needs complicated 
integral, while the latter can be obtained by the product of insert width b and those of 2D situation. 

 
3.2 Calculations of external work rate 
 
A local coordinate system x, y is introduced, as shown in Fig. 2. The work rate of rock weight 

for rotation mechanism is (Michalowski and Drescher 2009) 
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where ω is the angular velocity, and γ is the unit weight of rock masses. 22*
1 aRx  , 

22*
2 dRx  , 22* xRy  , a and d are found from the geometrical relations 
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Angle θB is found from the geometrical relations 

 





 





)cos(

)sin(
arctan

0

0
B                       (14) 

 

)sin(
sinsin

sinsin

sin

)sin( 0
tan)(

0
0




















h
h

h

h

h
the

               (15) 

 
Integration in Eq. (11) is performed analytically with respect to y and x, and only integration 

over θ is evaluated using a numerical method. Thus, Eq. (11) is 
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The work rate of weight for plane insert mechanism is similar with that of plane strain 
condition. It need multiply the width b. It is expressed as 
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Previous research shows that in most earthquake zones, the vertical acceleration effect is only 
40-50% of the horizontal one, so only the horizontal seismic coefficient kh is considered in the 
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present study, which is in the range of 0.0 to 0.2. The work rate of rotation mechanism due to 
earthquake forces is expressed as 
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Eq. (18) can be written as 
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The work rate of plane insert mechanism due to earthquake can be expressed as 
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Thus the external work rate of total failure mechanism can be expressed as 
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3.3 Calculations of internal energy dissipation 
 
The work dissipation rate can be more specifically written as the integrals over the surface at 

the top of the slope and the face of the slope, indicated by DAB and DBC respectively. The internal 
energy dissipation can be expressed as 
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Thus the total rate of energy dissipation of rotation mechanism is 
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Eq. (24) can be also written as 
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The energy dissipation of plane strain insert can expressed as 
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Thus, the total energy dissipation of plane insert is 
 

insertBCinsertABinsert DDD                          (28) 
 

Eq. (28) can also be written as 
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The formulations of f1(θ) ‒ f4(θ) and g1 (θ0, θh, b/H) ‒ g6 (θ0, θh, b/H) are presented in the 

Appendix. Thus the total rate of work dissipation of failure mechanism is 
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Equating internal energy dissipation to external work rate, the critical height of rock slope 
under earthquake forces can be obtained 
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where ct is determined by Eq. (6). The minimum upper solution of 3D seismic critical height of 
rock slope is obtained by optimization to Eq. (31). 

 
3.4 Optimization for slope stability factor 
 
Based on nonlinear HB failure criterion, cirtial height of rock slope under earthquake forces is 

related to these parameters: θ0, θh, r′0 / r0, b / H, φt. In order to make failure mechanism have 
geometric meaning, the above paramters must satisfy the following constraint conditions. 
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where B′max is the maximum width of rotation mechanism and B is the finite width of slope. When 
finding the minimum of objective function, the variables are changed sequentially in a single 
computational loop. The procedure is repeated until the least upper bound solution is obtained. The 
increments applied to the independent variables are reduced, and the process is repeated. The 
process is stopped when the increments used in optimisation reached 0.01 for θ0 and θh, and 0.001 
for r′0 / r0, b / H, φt. 
 
 
4. Numerical results 
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Table 1 Comparison between present stability factors and solutions of Michalowski and Drescher (2009) 

B / H  
β 

45° 60° 75° 90° 

0.8 
Present solutions 63.887 27.085 17.492 12.760 

Michalowski 63.604 27.664 17.827 12.348 

1.0 
Present solutions 55.822 23.810 14.972 10.825 

Michalowski 54.850 23.835 14.701 11.028 

2.0 
Present solutions 43.330 18.946 11.874 8.270 

Michalowski 42.732 19.103 12.109 8.604 

5.0 
Present solutions 38.640 17.088 10.611 7.241 

Michalowski 37.994 17.063 10.628 7.266 

10.0 
Present solutions 37.331 16.576 10.263 6.961 

Michalowski 36.703 16.527 10.265 6.944 

 
 
Table 2 The stability factors for mi = 7, β = 60°,α = 0° 

kh B / H 
Parameter GSI 

10 20 30 40 50 60 70 80 

kh = 0.00 

0.8 9.91 16.85 18.97 18.21 16.46 14.67 13.04 11.47 

1.0 8.54 14.63 16.48 15.81 14.30 12.74 11.35 9.98 

2.0 7.06 11.97 13.48 12.94 11.70 10.43 9.11 8.02 

5.0 6.33 10.76 12.12 11.63 10.51 9.37 8.15 7.17 

10.0 6.13 10.43 11.75 11.28 10.19 9.08 7.88 6.93 

kh = 0.05 

0.8 8.07 14.11 16.07 15.42 13.94 12.43 11.18 10.21 

1.0 6.65 11.64 13.56 13.21 11.95 10.64 9.58 8.52 

2.0 5.32 9.32 10.86 10.73 9.70 8.65 7.78 7.01 

5.0 4.87 8.52 9.93 9.78 8.84 7.88 7.09 6.39 

10.0 4.73 8.28 9.64 9.48 8.57 7.64 6.87 6.16 

kh = 0.10 

0.8 6.76 11.83 13.79 13.38 12.10 10.78 9.70 8.94 

1.0 5.23 9.16 10.67 10.58 9.93 9.12 8.20 7.53 

2.0 4.29 7.51 8.75 8.68 8.14 7.30 6.57 6.05 

5.0 3.94 6.90 8.04 7.97 7.45 6.64 5.98 5.51 

10.0 3.85 6.74 7.85 7.79 7.29 6.50 5.85 5.38 

kh = 0.15 

0.8 5.82 10.18 11.87 11.77 10.69 9.53 8.57 7.90 

1.0 4.24 7.35 8.80 8.72 8.18 7.63 7.03 6.48 

2.0 3.53 6.12 7.24 7.18 6.73 6.27 5.66 5.21 

5.0 3.18 5.52 6.64 6.62 6.21 5.78 5.23 4.82 

10.0 3.08 5.35 6.43 6.39 5.99 5.59 5.07 4.67 
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Table 2 Continued 

kh B / H 
Parameter GSI 

10 20 30 40 50 60 70 80 

kh = 0.20 

0.8 5.06 8.77 10.36 10.27 9.58 8.54 7.68 7.08 

1.0 3.44 5.96 7.18 7.42 6.95 6.96 6.15 5.67 

2.0 2.72 4.72 5.68 5.88 5.67 5.28 4.97 4.58 

5.0 2.47 4.28 5.15 5.33 5.11 4.77 4.52 4.20 

10.0 2.39 4.15 4.99 5.17 4.95 4.61 4.38 4.05 

 
 
Table 3 The stability factors for mi = 15, β = 60°, α = 15° 

kh B / H 
Parameter GSI 

10 20 30 40 50 60 70 80 

kh = 0.00 

0.8 24.32 38.37 40.59 36.94 31.86 26.95 22.72 19.27 

1.0 20.43 32.23 34.73 31.91 27.52 23.28 19.63 16.64 

2.0 17.11 26.99 28.45 25.89 22.33 18.89 15.93 13.50 

5.0 15.32 24.16 25.76 23.45 20.22 17.10 14.25 12.23 

10.0 14.84 23.41 25.03 22.78 19.65 16.62 14.01 11.88 

kh = 0.05 

0.8 19.63 30.96 33.36 31.00 27.01 22.84 19.26 16.33 

1.0 15.61 25.55 27.53 25.59 22.43 19.30 16.60 14.07 

2.0 12.81 20.38 21.96 20.41 17.90 15.40 13.25 11.35 

5.0 11.73 18.51 19.95 18.54 16.25 13.93 12.03 10.24 

10.0 11.41 18.00 19.40 18.03 15.80 13.60 11.70 9.95 

kh = 0.10 

0.8 16.45 25.95 27.96 25.98 22.78 19.60 16.71 14.17 

1.0 11.03 18.51 20.69 19.74 17.60 15.14 13.03 11.35 

2.0 9.34 15.66 17.51 16.40 14.38 12.37 10.64 9.27 

5.0 8.67 14.54 16.16 15.02 13.17 11.33 9.75 8.49 

10.0 8.48 14.23 15.76 14.64 12.84 11.04 9.50 8.28 

kh = 0.15 

0.8 14.16 22.33 24.06 22.36 19.61 16.87 14.52 12.51 

1.0 8.53 14.31 16.00 15.26 13.71 12.13 10.71 9.33 

2.0 7.07 11.87 13.27 12.66 11.37 10.06 8.79 7.66 

5.0 6.36 10.66 11.92 11.37 10.22 9.04 8.02 6.99 

10.0 6.16 10.34 11.56 11.03 9.91 8.77 7.76 6.76 

kh = 0.20 

0.8 12.43 19.60 21.21 19.63 17.21 14.80 12.74 11.10 

1.0 6.95 11.67 13.04 12.44 11.18 9.89 8.82 7.92 

2.0 5.44 9.12 10.20 9.73 8.74 7.73 6.90 6.28 

5.0 4.91 8.24 9.21 8.79 7.90 6.99 6.23 5.68 

10.0 4.77 8.00 8.95 8.54 7.67 6.79 6.05 5.51 
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When n = 1, Eq. (1) is written as σ1 = sσc + (1 + m)σ3. Let 
 

)sin1/()cos2(   cs c                           (33) 
 

)sin1/()sin1(1   m                           (34) 
 

Then nonlinear HB failure criterion degenerates to linear MC criterion. With the nonlinear HB 
failure criterion, the stability factor is defined as 
 

)/( 5.0
ccn sHN                               (35) 

 
4.1 Comparisons 
 
To prove the validity of the present solution, the numerical results, when n = 1, α = 0° and kh = 

0, are compared with the results of Michalowski and Drescher (2009). In the calculations, φ = 30°, 
β varies from 45° to 90°, and B / H = 0.8, 1.0, 2.0, 5.0, 10.0. The comparisons are shown in Table 1. 
From the Table 1, it is found that the maximum difference is less than 4%. The agreement shows 
that the present method is an effective approach to estimate the 3D stability of rock slopes. 

 
4.2 Design tables 
 
According to upper bound theorem, the stability factor Nn satisfying kinematical admissible 

condition is the best solution for this failure mechanism. 
The strength parameters in HB failure criterion vary with the magnitude GSI, and earthquake 

forces may affect the stability of rock slopes. Tables 2-3 present the values of seismic and static 
stability factors for two types of rock, with the parameters β = 60°, α = 15°, D = 0, and kh varying 
from 0.00 to 0.20, respectively. 

From the Tables 2-3, it is found that and the kh, B / H, and GSI have great influence on rock 
slope stability. Numerical results are presented for practical use in rock engineering. 
 
 
5. Conclusions 

 
The upper bound theorem of limit analysis is applied to the seismic and static stability problem 

of rock slopes with the modified HB failure criterion, employing the 3D failure mechanism 
proposed by Michalowski and Drescher (2009). With the generalized tangential technique, a linear 
failure criterion that is tangential to the actual modified HB failure criterion is used to calculate the 
rate of external work and internal energy dissipation. Equating the work rate of external forces to 
the internal energy dissipation rate, the objective function is presented. The upper function is 
obtained by minimizing the objective function with respect to θ0, θh, r′0 / r0, b / H, φt. Based on the 
analysis above, the conclusions are drawn: 

 

(1) When n = 1, the nonlinear HB failure reduces to a linear MC failure criterion, and the 
static calculation results agree well with solutions of Michalowski and Drescher (2009), 
with the maximum difference being less than 4%. The agreement shows that the present 
method is an effective approach to estimate the 3D stability of rock slopes. This paper 
extends the static 3D stability calculation by Michalowski and Drescher (2009) using a 
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linear MC failure criterion to seismic analysis using the nonlinear HB failure criterion 
under earthquake forces. 

(2) Based on upper bound theorem, the proposed method is an effective technique for 
evaluating the 3D stability of rock slopes with nonlinear yield criterion. Due to the usage 
of the tangential line, the proposed method retains the advantages of kinematical approach, 
and avoids the difficulty of the calculation of external work rate and energy dissipation 
rate for varying φt. Numerical results for different GSI rock slopes are presented for 
practical use in rock engineering. 
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