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Abstract.  The softening hyperelastic model based on the strain energy limitation is of clear concepts and 
simple forms to describe the failure of materials. In this study, a linear and a nonlinear softening hyperelastic 
model are proposed to characterize the deformation and the failure in granular materials by introducing a 
softening function into the shear part of the strain energy. A method to determine material parameters 
introduced in the models is suggested. Based on the proposed models the numerical examples focus on 
bearing capacity and strain localization of granular materials. Compared with Volokh softening 
hyperelasticity and classical Mohr-Coulomb plasticity, our proposed models are able to capture the typical 
characters of granular materials such as the strain softening and the critical state. In addition, the issue of 
mesh dependency of the proposed models is investigated. 
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1. Introduction 
 

Granular materials, though extensively existing in nature and widely used in engineering, are 
not always well understood. There are many problems remain unresolved, such as the static stress 
distribution (De Gennes 1996) and the nonlinear stress-strain relationship (Duncan and Chang 
1970). Granular materials under small strain and static conditions are generally considered as 
elasticity or isotropic linear elasticity in engineering fields. However, the stress-strain relationship 
of granular materials is nonlinear on macro scale according to the Hertz contact theory (Johnson 
1985), and it is also proved by numerous experiments. But, it is difficult to find an appropriate 
theoretical expression to describe their nonlinear behaviors. An earlier attempt on adopting 
nonlinear stress-strain relationship or stress-dependent elastic modulus was made by Boussinesq, 
who thought the elastic modulus was related to the square root of the trace of the small strain 
tensor. Duffy and Mindlin (1957) extended the Hertz model by considering the tangential forces, 
while it could not well be applied to describe the elastic behavior of granular materials due to its 
path dependence. Zytynski et al. (1978) first pointed out the theoretical problems existing in the 
former nonlinear models, as the elastic modulus was not derived from an appropriate free energy, 
the elastic response was not always conservative. In order to avoid such problems, several 
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nonlinear hyperelastic models for granular materials were proposed in recent years, for example, 
the granular elasticity model (GE model) (Jiang and Liu 2003). It was established by multiplying 
the elastic strain energy with Δa (where a is the power of volumetric strain) based on the 
Helmholtz free energy. Such a model will give elastic modulus that is power law function of the 
strains. Jiang and Liu considered that GE model is a special case of granular solid hydrodynamics 
(GSH) (Jiang and Liu 2009, Gudehus et al. 2011) under static condition, and they examined the 
validity of the GE model on the description of mechanics behavior for granular media in a series of 
papers (Jiang and Liu 2007, Jiang et al. 2012). In addition, there are several analogous models, 
such as the EP model (Einav and Puzrin 2004) based on the Gibbs free energy and the HAR model 
(Houlsby et al. 2005). Comparison between the recent nonlinear hyperelastic models and 
experimental data was made by Humrickhouse et al. (2010), and the advantages and the 
limitations of them were expounded respectively. Studies have shown that these nonlinear 
hyperelastic models can well describe some characteristics of granular materials, such as the 
inability to take tension, the loss of stability and the Reynolds dilatancy. 

However, the traditional hyperelastic strain energy will increase to infinity with the strain 
increase, this makes such models cannot well describe the failure behavior of real materials. To 
account for materials failure a softening hyperelastic model targeted to brittle materials and soft 
hyperelastic materials was proposed by Volokh (2007). The softening is controlled by a constant Φ, 
the critical failure energy, which can also be interpreted as the material “toughness” similar to the 
critical energy release rate in the classical fracture mechanics. Volokh model can simulate the 
softening failure behavior of brittle materials effectively. And it will not produce physically 
meaningless results due to the inexistence of the surface energy and the length-dependence 
compared with the classical fracture mechanics. 

Considering that the failure behavior of granular materials is mainly caused by shear, classical 
elastic-plastic theory, such as the Mohr-Coulomb and the Drucker-Prager yield criteria, mainly 
focus on the shear yielding. Even though the compression can also result in granular material 
failure, it remains relatively difficult to occur. It means that shear deformation plays a more 
significant role in the failure progress of granular materials. However, the softening hyperelastic 
model proposed by Volokh brings the softening mechanism in the whole elastic strain energy, 
resulting in that the material softening is controlled by only one constant Φ, which indicates that 
the shear part and the volume part of the strain energy on materials failure are equally important in 
Volokh model. Based on the failure characters of granular materials, a model with two different 
energy limiters introduced in the shear part and the volume part of the strain energy respectively 
may be more appropriate. In the present work, for simplicity, we temporarily only consider the 
shear failure. A linear and a nonlinear hyperelastic model are modified by introducing a softening 
function into the shear part of the strain energy based on the softening mode proposed by Volokh. 
This means that there is a limitation of the shear strain energy, however the volumetric strain 
energy can increase unlimitedly. Two additional parameters are introduced in the proposed models, 
namely a shearing strain energy limit Φ and a proportionality constant α, which can be regarded as 
parameters controlling materials softening and the critical state. The method to determine these 
parameters is suggested. The proposed models are compared with the classical Mohr-Coulomb 
model and the Volokh model. In addition, the issue of mesh dependency of the proposed models is 
investigated. 

 
 

2. Linear hyperelastic models 
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2.1 Linear hyperelastic model for ideal materials 
 
The strain energy for linear isotropic hyperelastic model (denoted as LH-0 in the paper) can be 

written as 

22

2

1
sGuKF                                   (1) 

 
where K is the bulk elastic modulus, G is the shear elastic modulus, Δ is the volumetric strain, and 
us is the equivalent strain. 
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where Δ = ‒ εii is positive in compression. The elastic modulus tensor is given as 
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The stress invariants are expressed as 
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2.2 The softening hyperelastic model proposed by Volokh 
 
A softening hyperelastic model applied to many kinds of isotropic linear materials was 

proposed by Volokh, we call it as LH-Volokh in the present paper. 
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where Φ is the critical failure energy which indicates the maximum strain energy that the 
infinitesimal material volume can sustain without failure and it controls material softening. F is the 
strain energy as shown in Eq. (1). The elastic modulus tensor can be expressed as 
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Similarly, the stress invariants are given by 
 

 KFp )exp(                                  (8) 
 

sGuFq 2)/exp(                                 (9) 
 
2.3 The modified model 
 
In this section, we present a modified softening hyperelastic model based on the softening 

mode proposed by Volokh. 
 
2.3.1 The modified strain energy 
The failure and softening behavior of granular materials are mainly caused by the shearing 

deformation, just as the classical Drucker-Prager and Mohr-Coulomb yield criterions described. 
Therefore we try to introduce a softening function into the shear part of the strain energy 
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This model is denoted by LH-M. Similar to the previous, the elastic modulus tensor and the 
stress invariants can be written as 
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where Eq. (13) is the total form of q, the resulting curve of q ~ us is shown as Fig. 1(a), it can 
represent the softening failure of brittle materials just as what Volokh held. However, numerous 
researches have shown that granular materials have the critical state and the residual strength 
(Schofield and Worth 1968). 

We find that a q ~ us curve like Fig. 1(b) can be obtained from the modified incremental form 
of q as Eq. (14b) shown, which is modified by cutting out the rightmost term of incremental form 
of Eq. (14a). 
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+ =

(a) total form qT  (b) modified incremental form qI  (c) superposed form q 

Fig. 1 The method of curve superposition for q ~ us 

 
 

Considering the mechanical properties of real materials, we suggest taking a superposition like 
Eq. (15) of the total form qT shown in Eq. (13) and the modified incremental form qI shown in Eq. 
(14b), and a curve of q ~ us like Fig. 1(c) is obtained (here α = 0.5). Thus the modified model can 
simulate brittle materials with α = 1.0, materials like loose sand with α = 0 and materials like dense 
sand with α = 0 ~ 1. 

IT qqq )1(                                 (15) 
 

2.3.2 Determination of Φ and α 
According to Eq. (15) and Figs. 1(a)-(c), the residual strength of q is supposed to be (1 ‒ 

α)(qI)max, strictly speaking the peak value of qI does not exist known from Eq. (14b), here we 
consider the peak value in Fig. 1(b), or say the critical value in Fig. 1(c), can be obtained when the 
following condition is satisfied. 
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Then parameter Φ can be calculated as the following 
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 can be obtained from the experimental stress–strain responses as shown in Fig. 2. 
Parameter α can be determined from the extreme condition by taking derivative to Eq. (12) 
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where δqT and δqI are given respectively as Eqs. (14a) and (14b), substituting them in Eq. (18) 
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Thus, for a given G, substituting (us)gmax and Eq. (17) in Eq. (19), where (us)gmax
 can be obtained 
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Fig. 2 The sketch of q ~ us curve 

 

Fig. 3 Comparison of q ~ us curves with different Φ (α = 0.5) 

 
 
from experimental data as shown in Fig. 2, we can get the value of α as follows 
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As an example, the experimental data of true triaxial tests on prismatic specimens of dense 

Santa Monica Beach sand with a confining pressure σ3 of 49 KPa and b-Values of 
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according Eqs. (17) and (20) respectively as: Φ = 0.692238 × 10‒2 MJ/m3 and α = 0.07832. 
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2.3.3 Parametric study 
In this section, the influence of Φ and α on materials constitutive behavior will be investigated. 
As mentioned, Φ is the ultimate value of the shear strain energy density that represents the 

strength of granular materials. Fig. 3 shows the q ~ us curves corresponding to α = 0.5 and Φ = 0.5 
× 10‒2 MJ/m3, 1.0 × 10‒1 MJ/m3 and 2.0 × 10‒2 MJ/m3. It can be seen that parameter Φ has a 
significant effect on the peak stress and the residual stress and it controls the materials softening. 

Comparison of q ~ us curves with different α is shown in Fig. 4. Parameters adopted are Φ = 1.0 
× 10‒2 MJ/m3 and α = 0.3, 0.5 and 0.7. We can know that α and 1 ‒ α respectively represent the 
proportion of qT and qI in Eq. (15), the peak stress and the residual stress will decrease as the 
parameter α increases. Hence, α can be regarded as another strength parameter. 

 
2.3.4 Remarks 
In Section 2.3, a modified hyperelastic model intended to simulate the mechanical behavior of 

granular materials is presented. A softening function is introduced in the shear part of the strain 
energy, and a superposition of total form and modified incremental form for stress is adopted. 
Thus, there are 4 parameters for the proposed model, namely, K, G, Φ, α, the latter two can be 
regarded as parameters which control materials strength and softening, and an approach to 
determine them according to the experimental data is suggested. Based on the investigation on 
constitutive behavior of the proposed model, it can be seen that the proposed models can well 
reflect some typical characteristics of granular materials, such as the strain softening and the 
critical state. 

 
 

3. Nonlinear hyperelastic models 
 
3.1 GE-C model 
 
The following nonlinear hyperelastic strain energy has been proposed by Jiang and Liu (2003) 

for granular materials. 
 
 

Fig. 4 Comparison of q ~ us curves with different α (Φ = 1.0 × 10‒2 MJ/m3) 
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Here ξ, a are material constants, κ is dependent on material density. Jiang and Liu take a = 1 / 2 
(consistent with Hertz contact and K, G ~ p1/3), and call it as “granular elastic” or GE. 
Humrickhous et al. (2010) suggest a = 1 as a large body of experimental data has shown, which is 
referred to as GE-cubic or GE-C. Some other researchers also have explored the issue that what 
value a should be taken (Goddard 1990, De Gennes 1996). In this paper we consider the GE-C 
model and denoted it as NLH-GEC. The elastic modulus of NLH-GEC is given as 
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The stress invariants are written as 
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3.2 The modified model 
 
A similar softening mode used in the linear modified model is introduced in the nonlinear 

model. 
 
3.2.1 The modified strain energy 
We suggest the following softening model and call it as NLH-M 
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The elastic modulus is given as follows 
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The stress invariants are given by 
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Where Eq. (28) is the total form of q, the modified incremental form is shown as Eq. (29) 
similar to Eq.(14), and the calculation of q is the same as Eq. (15) in Section 2.3.1. 
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3.2.2 Determination of Φ and α 
The determination of Φ and α of the NLH-M model is similar to that of the LH-M model in 

Section 2.3.2, and the only difference is the existence of the coupling term Δa. A same assumption 
used in the LH-M model is adopted here, viz, It is assumed that the peak value of qI can be 
obtained when Eq. (30) is satisfied 
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Then according to the values for Δgcr
 and (us)gcr

 at the critical point of q ~ us curve as Figs. 
5(a)-(b) shown, the parameter Φ can be calculated 
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The parameter α can be derived based on the condition similar to Eq. (18) in Section 2.3.3, we 
can get Eq. (32) 
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Substituting Φ, Δqmax
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 in Eq. (32), where Δqmax
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 can be determined from 
experimental stress–strain responses as shown in Fig. 5, we obtain 
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Noticing that a = 1 / 2 in the NLH-M model, which requires Δ ≥ 0. This implies that current 
version of NLH-M only can capture the shear contraction characteristic of some geomaterials. As 
an example, experimental data obtained from the drained triaxial tests on cylinder specimens (98 
mm in diameter) of stiff fissured clays are employed to calculate Φ and α (Marsland 1972). With a 
confining pressure of 67.66 KPa the values of the two parameters are: Φ = 5.46623 × 10‒4 mJ/m3, 
α = 0.1975. 
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(a) q ~ us (b) Δ ~ us 

Fig. 5 The sketches of q ~ us and Δ ~ us 

 

Fig. 6 The plate model 

 
 
4. Numerical examples 
 

The former sections have made an analysis to behaviors of linear and nonlinear hyperelastic 
models for granular materials, and in this section we will compare their performance of modeling 
boundary value problem. In addition, the mesh dependence of the modified models will be 
investigated. 

We take the plain strain model with a scale of 0.6 × 0.8 m2 as shown in Fig. 6. The upper and 
bottom are rigid. The DOF in x direction of the upper and bottom boundary is fixed, DOF in y 
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direction of the bottom boundary is fixed too, and the left and right boundary is free. The plate is 
under pressure via a vertical displacement in the middle node of the top rigid plate. 

 
4.1 Comparison of the linear hyperelastic models 
 
The q ~ us curves and the load-displacement curves of the three linear models proposed in 

Section 2 are shown in Figs. 7 and 8 respectively with parameters K = 60 MPa, G = 30 MPa, Φ = 
1.0 × 10‒2 MJ/m3, α = 0.5, and loading displacement u = ‒ 0.03 m. Where the q ~ us curves are 
drawn from the integration point located in the top left corner of the panel and can represent the 
material response in the shear band. It can be seen that curves of model LH-0 keep straight lines in 
the whole loading process, which correspond to the ideal materials. The equilibrium iteration of 
 
 

Fig. 7 Comparison of the q ~ us curves for the three linear models 

 

Fig. 8 Comparison of the load-displacement curves for the three linear models and the M-C model 
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the softening model proposed by Volokh cannot converge when loading displacement increase to 
‒ 0.006 m, which can be observed both from Figs. 7 and 8, so its performance is somewhat weak 
compared with other models under the same condition. Although the curves of the M-C model and 
the proposed model are very close before softening, the classical M-C model cannot well simulate 
the critical state of granular materials. 

Noting that the proposed models have introduced two new parameters Φ and α, we consider 
they may have some potential links with the parameters of c and φ (the cohesion and the angle of 
internal friction) in the M-C model. Further study is needed to carry out this possible relation. 

 
4.2 Comparison of the nonlinear hyperelastic models 
 
The q ~ us curves and the load-displacement curves of the two nonlinear models are shown in 

Figs. 9 and 10 respectively. Parameters used in the models are κ = 30 MPa, ξ = 5/2, a = 0.5, Φ = 
0.5 × 10‒5 MJ/m3 and α = 0.5. Similar to Section 4.1, the modified nonlinear softening model can 
well simulate some characteristics of granular materials. 

Compared with the LH-M model which is relatively simple without considering the nonlinear 
characteristics of the elastic stage and can capture both of shear contraction and dilatancy, the 
NLH-M model can effectively reflect the nonlinear feature of the stress-strain relation even in 
small strain due to the coupling of Δa in the strain energy. It must be noted that a = 1/2 in the 
NLH-M model, which requires Δ ≥ 0, this means current version of the NLH-M model is only 
applicable to describe the shear contraction behavior of granular materials. However, it is well 
known that the dilatancy behavior of granular materials is very complex, and that shear contraction 
or dilatation appears depends on the initial state and confining pressure, and has important role on 
capacity and deformation of granular materials (Chu et al. 2012). 

 
4.3 Investigation of the mesh dependence 
 
According to the classical elastic-plastic theory, the phenomenon of strain softening is usually 

 
 

Fig. 9 Comparison of the q ~ us curves for the two nonlinear models 
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Fig. 10 Comparison of the load-displacement curves for the two nonlinear models 

 

Fig. 11 Meshes used for investigation of mesh alignment 

 
 
accompanied with strain localization, and the subsequent loss of ellipticity or hyperbolicity of the 
governing equations with softening will lead to the pathological mesh-dependency problem. 
Volokh (2007) implied that the mesh dependency may exist in the softening hyperelastic model, 
and he gave some approaches to solve this problem in the discussion part. In this section, the mesh 
dependency of the proposed models is investigated. Three types of mesh alignment are considered. 

Types A consist of elements with equal height and width, type B consists of rectangular 
elements with double the height( stretched vertically) and type C consists rectangular elements 
with double the width(stretched horizontally). In addition, for each mesh alignment, three types of 
mesh density are also considered, they are 24 × 32, 30 × 40, 60 × 80 for alignment A, 48 × 32, 60 
× 40, 120 × 80 for alignment B, and 24 × 64, 30 × 80, 60 × 160 for alignment C. Fig. 11 shows the 
example of mesh types used in the analysis. 

Figs. 12 and 13 show the equivalent strain distribution of different meshes from the linear and 
nonlinear modified models respectively. We set the color of the equivalent strain (us as shown in 
Eq. (2b)) above 0.1 as red and below 0 as blue in the legend for the linear modified model, and set 
it above 0.02 as red and below 0 as blue for the nonlinear modified model. It can be observed that 
the distribution pattern of the equivalent strain is about the same either for different mesh 
alignment or for different mesh size. The width of shear band remains nearly the same. However, 
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(a1) 24 × 32 (a2) 30 × 40 (a3) 60 × 80 

 
 

 

  

(b1) 48 × 32 (b) 60 × 40 (b3) 120 × 80 
 
 

 

  

(c1) 24 × 64 (c2) 30 × 80 (c3) 60 × 160 

Fig. 12 Comparison of the equivalent strain distribution for the linear modified model with different mesh 
alignment and density (Alignment A (a); Alignment B (b); Alignment C (c)) 
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(a1) 24 × 32 (a2) 30 × 40 (a3) 60 × 80 

 
 

 
(b1) 48 × 32 (b2) 60 × 40 (b3) 120 × 80 

 
 

 
(c1) 24 × 64 (c2) 30 × 80 (c3) 60 × 160 

Fig. 13 Comparison of the equivalent strain distribution for the nonlinear modified model with different 
mesh alignment and density ((a) Alignment A; (b) Alignment B; (c) Alignment C) 
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there is an increase of the maximum equivalent strain with the increase of mesh density both for 
linear and nonlinear models. 

The load-displacement curves for the linear modified model with different meshes are 
presented in Fig. 14. It is remarkable that the load-displacement curves almost overlap on each 
other, the bearing capacity is not sensitive to both of the mesh alignment and the mesh size. The 
load-displacement curves for the nonlinear modified model are shown in Fig. 15. We can see that 
the bearing capacity of the nonlinear modified model has a slight increase as the mesh density 
increases, but it is not sensitive to the mesh alignment. 

 On the whole the proposed constitutive models are not sensitive to the alignment and the size 
of the rectangular mesh. The possible reason is supposed to the introduction of the potential 
function in the strain energy, and the stress component is obtained by taking derivation to the 
strain energy, which is similar to the hyperelasticity to some extent and is different from the 
classical elastic-plastic approaches. 
 
 

(a) Alignment A (b) Alignment B 

(c) Alignment C 

Fig. 14 Comparison of the load-displacement curves for the linear modified model with different mesh 
alignment and density 
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(a) Alignment A (b) Alignment B 

(c) Alignment C 

Fig. 15 Comparison of the load-displacement curves for the nonlinear modified model with different mesh 
alignment and density 

 
 
5. Conclusions 

 
In the present work, a linear hyperelastic model and a nonlinear hyperelastic model are 

modified to simulate granular materials based on the concept of softening hyperelasticity presented 
by Volokh. The modification is made by introducing a softening function in the shear part of the 
strain energy. The materials strength and softening are controlled by parameters Φ and α, and the 
approach to determine them is suggested. At the same time, comparisons of hyperelastic models 
with softening and without softening are made both for linear and nonlinear models. Results show 
that the modified models can well describe some typical characteristics of granular materials, such 
as the strain softening, the critical state and the strain localization. Investigation on the mesh 
dependency shows that the proposed models are not sensitive to the alignment and the size of the 
rectangular mesh. Compared with classical elastic-plastic theory, which describes the material 
failure through the yield function and the flow rule, the proposed constitutive models do that by 
introducing a softening function in the strain energy. To some extent, they are two different ways 

351



 
 
 
 
 
 

Jiangfang Chang, Xihua Chu and Yuanjie Xu 

to describe the mechanical behavior of granular materials. 
It should be noted that the proposed models are apply to isotropic materials, the anisotropic 

properties of granular materials is not taken into account. In addition, we mainly focus on the 
influence of the shearing deformation on the material failure, the volume part has not yet been 
considered temporarily. So, further studies aimed at these aspects will be the next work. 
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