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Abstract.  The study of the mechanical behavior of rockfill materials under three-dimensional loading 
conditions is a current research focus area. This paper presents a microscale numerical study of rockfill 
deformation and strength characteristics using the Combined Finite-Discrete Element Method (FDEM). 
Two features unique to this study are the consideration of irregular particle shapes and particle crushability. 
A polydisperse assembly of irregular polyhedra was prepared to reproduce the mechanical behavior of 
rockfill materials subjected to axial compression at a constant mean stress for a range of intermediate 
principal stress ratios in the interval [0, 1]. The simulation results, including the stress-strain characteristics, 
relationship between principal strains, and principal deviator strains are discussed. The stress-dilatancy 
behavior is described using a linear dilatancy equation with its material constants varying with the 
intermediate principal stress ratio. The failure surface in the principal stress space and its traces in the 
deviatoric and meridian plane are also presented. The modified Lade-Duncan criterion most closely 
describes the stress points at failure. 
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1. Introduction 
 

The construction of high rockfill dams is becoming increasingly popular because of easily 

available construction materials and their inherent flexibility, capability to absorb large seismic 

energy, and adaptability to various foundation conditions and topography. According to statistics, 

there are approximately 17 rockfill dams over 150 m high planned for the southwest of China, 7 of 

which with heights over 250 m. Construction of rockfill dams of these heights presents numerous 

technical problems; the excessive and uncoordinated deformation of the rockfill dam can impact 

the duration and cost of the entire project, and even compromise dam safety. Thus, the thorough 

investigation of the mechanical behavior of rockfill materials is emphasized in current research 

(Xiao et al. 2011). Valuable research on the shear behavior of rockfill materials under the 

conventional triaxial compression (CTC) stress path has been conducted using the triaxial testing 

apparatus. However, there is limited data on hand to study the shear behavior of rockfill under 
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complex stress conditions due to the current lack of large-scale true triaxial testing facilities. 

Numerous test results for the three-dimensional shear behavior of sand are available in the 

literature (Lade 2006), but these data cannot be easily extrapolated to rockfill materials because 

rockfill assemblies exhibit different structural characteristics and grain-level properties compared 

with sand. 

Some insights can be gained with an alternative approach: the microscale numerical simulation 

using the Discrete Element Method (DEM). The reliability of test results can be maximized by 

using the identical numerical sample in different simulations, with no bias in the initial sample 

fabric and configuration. Moreover, the simulated true triaxial test can be accurately controlled by 

following the prescribed loading path and boundary conditions. To date, only a few studies have 

used DEM to investigate the shear behavior of granular materials under a complex stress path, 

particularly the effect of intermediate principal stress on the shear behavior (Thornton 2000, Ng 

2004, 2005, Mahmud Sazzad et al. 2012, Barreto and O’Sullivan 2012). In these studies, DEM 

simulations of polydisperse spherical particle systems were conducted under constant mean stress 

with varying b values; b describes the relative magnitude of the intermediate principal stress with 

respect to the major and minor principal stresses. The macro- and micro-response of granular 

materials was analyzed to investigate the effect of intermediate principal stress on the shear 

behavior of rockfill materials. 

This paper contributes to the qualitative understanding of the mechanical behavior of rockfill 

materials under three-dimensional stress conditions. Two features unique to this study are the 

consideration of irregular particle shapes and particle crushability. This study involves an 

extensive set of numerical simulations of true triaxial tests using the Combined Finite-Discrete 

Element Method (FDEM). A polydisperse assembly of irregular polyhedra was used to reproduce 

the representative mechanical behavior of rockfill materials subjected to axial compression at a 

constant mean stress for different b values (for a range of intermediate principal stress ratios 

ranging from 0 to 1). 

This paper is arranged as follows. First, the combined simulation approach is outlined. Then, 

the simulation results are presented in terms of both the deformation and strength characteristics, 

including the evolution of the stress-strain-dilation response, the principal strain relationships, the 

principal deviator strains, the stress and strain incremental vectors, the stress-dilatancy behavior, 

and the failure surfaces on the deviatoric and the meridian plane. 

 

 

2. Combined simulation approach 
 

The first hybridization of the discrete method with the continuous method was realized in the 

Universal Distinct Element Code (UDEC) proposed by Cundall and Hart (1992), and was further 

developed by Munjiza et al. (1995). In the combined FDEM modeling of granular materials, each 

discrete particle is discretized into a finite element mesh as dictated by FEM. The contact between 

interacting particles is defined in a manner similar to DEM. The major difference between a pure 

DEM and a combined FDEM is that the former is based only on the interaction laws, whereas the 

contact (detection and interaction) between individual bodies and the deformability and fracture of 

the bodies are considered in the latter (Munjiza 2004). Two significant benefits of using the 

combined FDEM are that (1) various particle shapes can be easily introduced because both the 

contact detection and interaction algorithms are based on FE discretization instead of particle 

geometry and (2) a vast range of alternative (e.g., nonlinear constitutive or internally fracturing) 
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properties can be introduced for individual particles. 

The combined FDEM modeling of rockfill materials is performed utilizing the explicit module 

of the general-purposed finite element software (ABAQUS/Explicit). The explicit integration 

scheme and general contact capability of this module make it appropriate for a large number of 

actual and potential contacts undergoing large deformations. This combined FDEM modeling 

utilizes the simplest linear contact model with a tension limit for the normal component and a 

coulomb friction limit for the tangential component. Furthermore, the Mohr-Coulomb model with 

tension cut-off is employed to consider the particle geometry change due to the frictional attrition 

(Procopio and Zavaliangos 2005). 

 

 

3. Modeling true triaxial test 
 
3.1 The numerical sample 
 

The assembly representing the rockfill materials consists of 8,927 polyhedral particles. Each 

particle is randomly generated within an ellipsoid by a specially designed and efficient algorithm 

(see Fig. 1). The particle diameter ranges from 10 mm (dmin) to 24 mm (dmax), with a uniform 

distribution by volume fractions (P(d)  d3), giving a mean particle diameter (d50) of 14 mm. The 

particle size distribution for this assembly is shown in Fig. 2. The numerical sample is created by 

initially generating an array of non-contacting particles randomly located in a 400 mm × 400 mm 

× 400 mm cubic cell. The sample is then compressed isotropically to obtain the target void ratio. 

By setting the inter-particle friction coefficient to 0.0 during compression, a relatively dense 

sample with a void ratio of 0.48 is created. The final configuration of the sample is shown in Fig. 3. 

It is also necessary to check for the possible existence of contact orientation anisotropy due to the 

mode of the sample preparation. Fig. 4 displays the contact orientation histograms after the 

preparation process. The degree of anisotropy can be quantified using parameter 𝛼  in the 

following expression (Rothenburg and Bathurst 1989) 

 

 

  
 

Fig. 1 Two realizations of the particle generation algorithm inside an ellipsoid 
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Fig. 2 Particle size distribution 

 

 

Fig. 3 The numerical sample inside the true triaxial test setup 

 

   

(a) XY plane (b) YZ plane (c) ZX plane 

Fig. 4 Distribution of the contact orientation after the preparation process 
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where α is the parameter of anisotropy (a value of zero implies a totally isotropic fabric), and θ0 is 

the major principal direction of the contact orientation anisotropy. The contacts are isotropically 

distributed and the anisotropy parameters in the XY, YZ, and ZX planes are 0.024, 0.039, and 

0.037, respectively, which indicate an almost isotropic state of the sample. 
 

3.2 Modeling procedure 
 

Following the sample generation, the numerical sample is initially loaded hydrostatically to a 

prescribed mean stress p. Subsequently, the sample is subjected to true triaxial shearing along a 

specified stress path, while maintaining a constant mean stress. The intermediate principal stress 

ratio b is kept constant in each test, where b = (σ2 – σ3) / (σ2 – σ3) and indicates the relative 

magnitude of σ2. The value of b varies between 0 in triaxial compression and 1 in triaxial 

extension. The stress paths for these tests are shown in Fig. 5. 

Significant variables commonly used to analyze the true triaxial test results are defined as 

follows: the mean and equivalent deviatoric stress invariants (p, q), volumetric and equivalent 

deviatoric (εv, εd) strains and the octahedral modulus (G), each defined as follows 
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Fig. 5 Stress paths of five true triaxial tests with constant mean stress of 2.4 MPa 
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dqG  /                                 (6) 
 

where σi (i = 1, 2, 3) are the principal stresses and εi (i = 1, 2, 3) are the principal strains. 
 

3.3 Parameter calibration 
 

In a combined FDEM modeling of rockfills, the parameters for FE calculations can be 

determined by the laboratory tests conducted on the parent rock of blasted rockfill grains. The 

discrete element parameters, including the inter-particle friction coefficient μ, normal and 

tangential contact stiffness, Kn and Ks respectively, need to be calibrated. Thus, a trial-and-error 

procedure was adopted for the calibration of the micro-parameters such that the numerical 

simulation yields macroscopic behavior similar to that of laboratory tests reported by Yangtze 

River Scientific Research Institute (Cheng et al. 2010). After a series of trials, the final simulation  

 

 
Table 1 Set of parameters used in the simulations 

 Parameter Value 

Basic parameter Mass density (kg/m3) 2600 

Finite element related 

(including the parameters of 

the Mohr-Coulomb model 

with tension cut-off) 

Elastic modulus (GPa) 30 

Poisson’ s ratio 0.2 

Tensile strength (MPa) 15 

Cohesion strength (MPa) 34.97 

Internal friction angle (°) 45 

Discrete element related 

Inter-particle friction coefficient 0.40 

Normal contact stiffness (N/m3) 30e9 

Stiffness ratio Ks / Kn 0.5 

Particle/wall friction coefficient 0.0 

 

  

(a) Deviatoric stress versus axial strain (b) Volumetric strain versus axial strain 

Fig. 6 Parameter calibration by matching the numerical simulation results with experimental reports 
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parameters are listed in Table 1. Fig. 6 shows the numerical results obtained using the micro- 

parameters reported in Table 1 for the confining pressures of 0.8 and 1.6 MPa. The results indicate 

that the non-linear stress-strain behavior of rockfills, including dilatancy, is covered by the 

numerical model. The combined finite-discrete approach makes it possible to approximately 

simulate the mechanical response obtained experimentally. These results demonstrate that the 

model is predictive and can reproduce the typical mechanical behavior of rockfills. 
 

 

4. Numerical simulation results 
 

4.1 Stress-strain characteristics 
 

A series of combined FDEM simulations of true triaxial tests with constant mean stress (p = 0.8, 

1.6, 2.4, 3.2, 4.8, and 8.0 MPa) is conducted by varying b from 0 to 1, with a step size 0.25. For 

each test, the initial sample configuration is identical and has an initial isotropic fabric. The 

simulated stress-strain curves, volume changes, and principal strain relationships at a constant 

mean stress of 2.4 MPa are shown in Figs. 7 and 8. The arrow on each curve indicates the variation 

trend of b. It should be noted that the contraction and dilation are presented in the negative and 

positive, respectively. 

As b increases from 0, the stress-strain behavior becomes increasingly stiff, both the deviator 

stress and the axial strain to failure decrease (see Fig. 7(a)). The maximum deviator stress is 

mobilized in the triaxial compression condition where b = 0, whereas the minimum mobilized 

deviator stress is observed for b = 1 in the triaxial extension condition. This result is in agreement 

with all DEM and experimental studies available. Fig. 7(b) illustrates the evolution of the 

volumetric strain against the major principal strain for different b values. It clearly reveals that the 

volumetric response differs depending on the value of principal ratio b. Following an initial small 

contraction, the sample consistently behaves in dilation and gradually trends to a stationary value 

for all stress paths. To further explore the stress-strain characteristics, the deviator stress and 

volumetric strain are plotted against the deviator strain in Fig. 8. There is a small difference in the 

 

 

  

(a) Deviator stress versus major principal strain (b) Volumetric strain versus major principal strain 

Fig. 7 Simulated behaviors for different b values with constant mean stress of 2.4 MPa 
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(a) Deviator stress versus deviator strain (b) Volumetric strain versus deviator strain 

Fig. 8 Simulated behaviors for different b values with constant mean stress of 2.4 MPa 

 

  

(a) ε2 versus ε1 (b) ε3 versus ε1 

Fig. 9 Relations between principal strains for different b values 

 

 
initial tangential slope of the q~εd curves, which suggests that the initial shear modulus G0 seems 

to be independent of b (see Fig. 8(a)). Additionally, the evolution of the volumetric strain with the 

deviator strain shows little influence from the variations in b, indicating the existence of a 

one-to-one relationship (mapping correspondence) between the volumetric and deviator strains, 

irrespective of the value of the principal stress ratio b (see Fig. 8(b)). The same results were 

reported by Thornton (2000), Mahmud Sazzad et al. (2012), Barreto and O’Sullivan (2012). 

In these simulations, together with the work of Thornton (2000), Mahmud Sazzad et al. (2012), 

Barreto and O’Sullivan (2012), slight post-peak strain softening and negligible strength reduction 

occur after failure, and shear bands are not observed. There are two possible explanations for these 

results. All simulations are conducted on samples with a slenderness ratio of 1.0. Lade has 

investigated the influence of the sample slenderness ratio on the occurrence of shear banding; he 

noted that the shear bands in specimens with H/D = 1.0 always intersect at the lubricated cap and 
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(a) e2 versus e1 (b) e3 versus e1 

Fig. 10 Relations between principal deviator strains for different b values 

 

 
base (Lade 2006). The intersection of shear bands with the end platens enhances uniform strains 

compared with tall specimen, before any gross shear banding develops in the short specimen. The 

particle interlocking effect, resulting from the irregular particle shapes, provides a more stable 

micro-structure in the post-peak regime. 

The relationship between the principal strains is depicted in Fig. 9. The corresponding relation- 

ship for the principal deviator strains is shown in Fig. 10. The evolutions of both the minor and 

intermediate principal strains are nonlinearly related to the major principal strain. The minor 

principal strain is always extensive, and the rate of expansion increases with increasing b. The 

normal strain response in the σ2 direction is highly dependent on the b value. In the plane strain 

condition, the sample does not expand or contract in the σ2 direction; the principal stress ratio in 

this condition is denoted as bPS. If b < bPS, the ε2 response is extensive. If b > bPS, then ε2 

demonstrates contractive behavior. By contrast, the corresponding relationship for the principal 

deviator strains is almost linear. The same tendency was reported in Suzuki and Yanagisawa (2006) 

and Mahmud Sazzad et al. (2012). In this study, the relationship between each principal deviator 

strain under a constant mean stress condition can be expressed as follows 
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The predicated values based on the above expressions fit well with the simulation results for all 

variations of b value. 
 

4.2 Shear dilatancy behavior 
 

The shear dilatancy behavior of the modeled materials is characterized in terms of the stress 

ratio q / p and the incremental strain ratio dεv / dεd. It should be noted that the incremental strains 
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dεv and dεd consist of both elastic and plastic components. A fundamental reference for materials 

that dissipate energy in a frictional mode is presented by Roscoe et al. (1963). The dilatancy is 

simply expressed as 





 M

d

d
d

p
d

p
v                               (9) 

 

where 
p

vd and 
p
dd are the plastic incremental volumetric and deviator strains, η = q / p, and M is 

the stress ratio corresponding to zero dilatancy, also known as the slope of phase transformation 

line (Chang and Yin 2009). 

Rowe analyzed the dilatancy of granular materials and reached the conclusion that the dilatancy 

parameter d can be written as (Rowe 1962) 
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In Roscoe’s stress-dilatancy equation, the rate of change of d with η is 1, which results in a 

discrepancy in fitting the experimental results. To address this limitation, a constant λ, such as the 

constant proposed by Nova (1982), Jefferies (1993), Gajo and Muir Wood (1999), Li et al. (1999), 

and Yang and Muraleetharan (2003), is often added to Eq. (9), which results in 
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Lagioia et al. (1996) proposed a more flexible dilatancy law 
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Where α and λ are parameters. When η tends to zero, d tends to infinity, which implies a pure 

volumetric deformation under isotropic loading. 

Eqs. (9), (10), (11), and (12) do not consider the effect of density or confining pressure on the 

dilatancy behavior. Different initial densities are implicitly considered as different material 

constants (Alonso et al. 2007). Additional enhancements of this limitation are included in the work 

by Cui and Delage (1996), Wan and Guo (1998). A more general approach is to alter the material 

constants as functions of the density state, e.g., Manzari and Dafalias (1997). 

The dilatancy equations and the simulated results for a triaxial compression test (b = 0) with 

constant mean stress of 2.4 MPa are compared in Fig. 11. Using Roscoe’s dilatancy Eq. (9), the 

dilatancy curve is a linear line with a slope of 1. According to Rowe’s Eq. (10), the dilatancy curve 

is slightly nonlinear. The two equations poorly predict the dilative and contractive deformation. 

The results of the two modified versions of Roscoe’s dilatancy Eqs. (11) and (12) compare well 

with the simulated dilatancy behavior of modeled materials. For its simplicity and acceptable 

predictive accuracy, Eq. (11) is used to characterize the relation between the stress ratio η and 

dilatancy parameter d in the ensuing discussion. 

Fig. 12 shows the simulated relationship between the stress ratio and the incremental strain 

ratio from different stress paths, with a constant mean stress of 2.4 MPa. A linear relation between 
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Fig. 11 Dilatancy in Roscoe et al. (1963), Rowe (1962), Nova (1982), and Lagioia et al. (1996) models 

 

 
the stress ratio and the incremental strain ratio is observed for all constant b tests. The 

stress-dilatancy Eq. (11) is used to fit the simulated results and plotted in each subplot of Fig. 12. 

The intersection point along the η-axis is labeled M and corresponds to zero dilatancy. The slope 

of the line is λ. Values of M and λ are obtained by the least square fitting of simulated results at 

different intermediate principal stress ratios. The collective fitting lines in Fig. 12(f) demonstrate 

that the observed trends from these simulated results vary with the intermediate principal stress 

ratio b. As shown in Fig. 12, the characteristic stress ratio M decreases, while λ increases, with the 

increasing b values. Based on the observed trends, the stress-dilatancy behavior of rockfill 

materials can be described by altering the values of M and λ in Eq. (11) as functions of the 

intermediate principal stress ratio. The stress ratio corresponding to zero dilatancy at different 

Load angles is denoted as Mθ. The slope of fitting line at different stress paths is expressed as λθ. 

Figs. 13(a) and (b) show the variation of M
θ and λθ, along with the load angle in the polar coordinate 

system. M θ and λθ, as functions of the Lode angle θ, are expressed as follows 
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where M0 and λ0 are values of Mθ and λθ, for the Lode angle θ = 0. g(θ) in Eqs. (13) and (14) is the 

shape function; it equals 1 when the Lode angle θ = 0. A unified shape function g(θ) for both Mθ 

and λθ is described as follows 
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where a is the fitting parameter, K is the ratio of characteristic stress ratio in triaxial extension to 

its counterpart in triaxial compression. 
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Fig. 12 Stress-dilatancy relations along different stress paths with constant mean stress of 2.4 MPa 

 

 
4.3 Failure surface 
 

Four strength criteria are used to fit the stress state at failure: Durcker-Prager, Mohr-Coulomb, 

Matsuoka-Nakai (Matsuoka and Nakai 1974) and Lade-Duncan (Lade and Duncan 1975, Lade 

1977). These criteria have been selected because their model parameters can be determined using 

the triaxial compression test alone. The Lade-Duncan and Matsuoka-Nakia criteria, expressed in 

terms of stress invariants at failure, are as follows 
 

1

3

3
1 k

I

I
                                  (16) 

 

2

3

21 k
I

II
                                 (17) 

 

where I1, I2, I3 are the first, second and third invariants of the stress tensor, respectively. pa is the 

atmospheric pressure in the same units as the stress, m and η are Lade-Duncan parameters 

determined from triaxial compression tests, and k2 is the Matsuoka-Nakai parameter. 

For each true triaxial test with constant mean stress and b value, the state of stress 

corresponding to failure is identified, and the peak friction angle is defined as φ = sin–1((σ1 – σ3) / 

(σ1 + σ3)). The peak friction angle as a function of b is presented in Fig. 14. It is clear from 

previous DEM simulations and experimental research that the friction angle in triaxial extension is 
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(a) M θ (b) λθ 

Fig. 13 Comparison of dilatancy parameters between predictions and simulated results 

 

 

Fig. 14 Evolution of peak friction angle with the intermediate principal stress ratio b 

 

 
slightly higher than in triaxial compression and a smoothly and non-monotonously varying relation 

in between. As b increases from the triaxial compression condition (b = 0) to the plane strain 

condition (bPS = 0.355), the friction angle increases. Subsequently, the friction angle continues to 

increase at a decreasing rate until b is near 0.68, after which it decreases slowly until b is 1.0. The 

shape of the φ~b relationship falls into the first category of representative φ~b relationships for 

sands sorted by Lade (2006). 

Also shown in Fig. 14 are traces of the above mentioned four criteria. The parameters for these 

criteria are determined by using the stress state at failure of the triaxial compression condition (b = 

0). These criteria are then used to predict the friction angles for other constant b tests. As seen, the 

Drucker-Prager model grossly overestimates the effect of the intermediate principal stress and may 

result in non-sensible strength predications, whereas the Mohr-Coulomb model is too conservative, 

329



 

 

 

 

 

 

Gang Ma, Xiao-Lin Chang, Wei Zhou and Tang-Tat Ng 

 

Fig. 15 Failure surface in the principal stress space 

 

  

(a) In the deviatoric plane with mean stress of 2.4 MPa (b) In the p-q plane 

Fig. 16 Trace of failure surface 

 

 
 

(a) In the deviatoric plane (b) In the p-q plane 

Fig. 17 Variation of parameter k1 with mean stress 
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because it neglects the strengthening effect of intermediate principal stress. Consequently, both 

models have poor predictive capability of the shear strength of rockfill materials. However, the LD 

and MN models account for the effect of the intermediate principal stress on the shear strength, 

and show relatively good predictive capability, but both models underestimate the friction angles. 

The stress states at failure for different constant-b and constant-p tests are plotted in the 

principal stress space (see Fig. 15). As seen, the failure surface is smooth and plots as a convex 

cone. The projection of the failure surface on the deviatoric plane, based on different constant b 

tests with a mean stress of 2.4 MPa is shown in Fig. 16(a). The trace of the failure surface on the 

deviatoric plane is not circular, but a convex curvilinear triangle; the coordinate of the surface 

from the hydrostatic axis depends on the b values, thus showing the stress path dependency. 

Among the four strength criteria, the Lade-Duncan provides the closest match with the combined 

FEM/DEM simulation results. The failure surface superimposed on the meridian plane is a curved 

line, which bends down along with the increase of the mean stress (see Fig. 16(b)). The 

Mohr-Coulomb, Drucker-Prager, and Matsuoka-Nakai criteria are not capable of capturing the 

curved shape of the failure surface on the meridian plane. The additional enhancements of these 

three criteria are not in the scope of this discussion. The exponential term m in the Lade-Duncan 

criterion allows for the consideration of the nonlinear strength in the meridian plane (Lade 1977). 

Figs. 17(a) and (b) shows the p~k1 relationship, where p is the mean stress and k1 is the Lade- 

Duncan parameter determined by stress state at failure obtained from the triaxial compression 

condition of each constant-p test. The expression in Eq. (16) is then used to fit this relation, and 

parameters m and η are derived by a least square approach. As shown, the Lade-Duncan criterion 

can capture the curvature of the failure surface. 
 

 

5. Conclusions 
 

Using combined FDEM modeling of true triaxial tests, an alternative way to evaluate the 

mechanical behavior of rockfill materials has been presented. The stress-strain characteristics, 

stress-dilatancy behavior and failure surface of rockfill materials under three-dimensional stress 

conditions are presented separately. The primary findings drawn from this qualitative study are the 

following: 
 

 The stress-strain behavior becomes increasingly stiff, and both the deviator stress and the 

axial strain to failure decrease with the increasing b values. There is a small difference in the 

initial tangential slope of the q~εd curves, which suggests that the initial shear modulus is 

independent of b. Additionally, the evolution of the volumetric strain with the deviator 

strain is not significantly influenced by the variations in b. 

 A linear relation between the stress ratio and the incremental strain ratio is observed for all 

constant-b tests. The trends observed from these simulated results vary with the intermediate 

principal stress ratio b. 

 Comparison of the four existing dilatancy functions indicates that the two modified versions 

of Roscoe’s dilatancy Eqs. (11) and (12) compare well with the simulated dilatancy 

behavior of modeled materials. For its simplicity and acceptable predictive accuracy, Eq. 

(11) is used to characterize the shear dilatancy behavior, and a shape function is added into 

Eq. (11) to reflect the influence of the intermediate principal stress. 

 The shape of the φ~b relationship falls into the first category of representative φ~b 

relationships for sands sorted by Lade. The failure surface is smooth and plots as a convex 
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cone. The trace of the failure surface on the deviatoric plane is not circular but a convex 

curvilinear triangle, and the coordinate of the surface from the hydrostatic axis depends on 

the b values, which shows the stress path dependency. The failure surface superimposed on 

the meridian plane is a curved line, which bends downward with the increase of the mean 

stress. Among the four strength criteria, the Lade criterion provides the closest match to the 

combined FDEM simulation results. 
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