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Abstract.  In this paper, asymmetric drainage boundaries modeled by exponential functions which can 
simulate intermediate drainage from pervious to impervious boundary is proposed for the one-dimensional 
consolidation problem, and the solution for the new boundary conditions was derived. The new boundary 
conditions satisfy the initial and the steady state conditions, and the solution for the new boundary conditions 
can be degraded to the conventional solution by Terzaghi. Convergence study on the infinite series solution 
showed that only one term in the series is needed to meet the precision requirement for larger degree of 
consolidation, and that more terms in the series for smaller degree of consolidation. Comparisons between 
the present solution with those by Terzaghi and Gray are also provided. 
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1. Introduction 
 

Consolidation theory has been an important topic for soil mechanics since Terzaghi (1925) 
developed the one dimensional consolidation theory. Subsequently, Rendulic (1936) extended the 
consolidation theory to two and three dimensional conditions, and Biot (1941a, b) proposed the 
general consolidation theory based on the principles of effective stress, continuity, and equilibrium, 
and provided solutions to consolidation of semi-infinite foundation under a strip loading at the 
surface. McNamee and Gibson (1960a, b) also developed solutions to a number of consolidation 
problems. In general, Terzaghi’s one-dimensional consolidation theory is applied extensively in 
practice. A number of recent improvements were also developed regarding the characteristics of 
the soil system and loading condition in the one-dimensional consolidation problem (e.g., Zhu and 
Yin 1999, Xie et al. 2008a, b, Huang and Griffiths 2010). Many solutions to consolidation of 
multilayered soil have been developed (e.g., El-Zein 2006, Kim and Mission 2011, Walker et al. 
2012). In addition, finite layer numerical method was also adopted by a number of researchers 
(e.g., Cheung and Tham 1983, Mei et al. 2004, Chen et al. 2005) to the consolidation problem. 

However, only perfectly drained and undrained boundaries were considered in Terzaghi’s 
solution of consolidation equation, and continuous variation between these two extreme boundary 
                                                 
Corresponding author, Assistant professor, E-mail: fstmhl@umac.mo 
a Professor, E-mail: meiguox@163.com 
b, c Research student 



 
 
 
 
 
 

Guo-Xiong Mei, Thomas M.H. Lok, Jun Xia and Sheng Shen Wu 

conditions were not taken into account. In reality, the boundary condition is not exactly drained or 
undrained, which is one of the major limitations for application of Terzaghi’s solution. Gray 
(1944) provided a solution to the consolidation problem with drainage boundary of finite 
permeability. Huang (1982) also proposed the partial drained boundary, but analytical solutions 
are not always achievable due the complexity of the problem. In this study, an asymmetric 
continuous time dependent drainage boundary in form of an exponential function was proposed, 
and the solution to the consolidation equation was developed, which allows the application of the 
consolidation theory to more general conditions. Predictions based on the new solution were 
examined in this paper. 
 
 
2. General boundary conditions 

 
The consolidation equation was proposed by Terzaghi as follows 
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As shown in Fig. 1, the asymmetrical exponential boundary conditions are proposed in this 
study as follows 
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Fig. 1 One dimensional consolidation with asymmetrical exponential drainage boundary 
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In which b, c, B, and C are coefficients that describe the variation of pore pressure at the 
boundary. The values of b, c or B, C can be determined by curve fitting of experimental data. Note 
that the exponential boundary conditions can also be defined in terms of the real time or time 
factor; the latter will be used to simplify the solution during the derivation. The transformation 
between the real time and the time factor follows Terzaghi’s definition. 
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The boundary conditions in Eqs. (4a) and (4b) are inhomogeneous but they satisfy the 
following 

0   for                 )()( 20   tpuu Hzz                     (6a) 

  tuu Hzz    for                 0)()( 20                    (6b) 

As shown in Eqs. (6a) and (6b) and in Fig. 2, the general boundary condition satisfies the initial 
condition and is stable over time. The exponential form was chosen to fit the variation of pore 
pressure generally observed during consolidation. As B, C  , u(t,0) = 0, which is the perfectly 
drained boundary in Terzaghi’s solution. As B, C  0, u(t,0) = p, which is the perfectly undrained 
boundary in Terzaghi’s solution. The exponential boundary condition proposed in this study 
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Fig. 2 Variation of pressure at the exponential boundary with time factor 
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actually provides simulation of the continuous variation between drained and undrained boundary 
conditions, while Terzaghi’s original solution only considers the two extremes, perfectly drained 
and undrained conditions. Therefore, Eqs. (1)-(4) can be considered as the consolidation problem 
with general boundary conditions. 
 
 
3. Solution to the consolidation problem with general boundary condition 

 
The solution given by Terzaghi for the one-dimensional consolidation equation is as follows 

  ...)5,3,1(     
2

sin
14

, 4

1

22







 





ke
h

zk

k
pztu

vT
k

k




                 (7) 

where Tv is the time factor defined in Eq. (5). 
The solution for the general consolidation problem described by Eqs. (1)-(4) can be derived as 

follows (details shown in appendix) 
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Notice that the solution for the general boundary condition is given in terms of the time factor 
by using the definition of boundary condition in time factor as in Eqs. (4) and (5). 

If B = C, Eq. (8) can be reduced to 
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If B = C  , Eq. (9) can be further reduced to 
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which is the same as Eq. (7). 
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Fig. 3 Comparison between results of present solution and Terzaghi’s consolidation theory (B = C = 1.0) 
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Fig. 4 Asymmetric pressure distribution simulated by the present solution for B = 2 and C = 4 

 
 
4. Study of effects of modeling parameters 
 

4.1 Effects of parameters B, C 
 
To validate the solution, calculations were made based on Eq. (8). When the parameter B = C, 

the pore pressure distribution will be symmetric about the centerline as shown in Fig. 3. As the 
time factor Tv increases, the pore pressure dissipates gradually at the drainage boundary and in the 
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soil. On the contrary, pore pressure at the perfectly drained boundary is always zero from 
Terzaghi’s solution. 

Analysis was carried out with B = 2 and C = 4, and the pore pressure distribution is shown in 
Fig. 4. The slope of pore pressure in the lower part of the soil layer is steeper than that of the upper 
part since the permeability of the bottom boundary is higher with a value of C larger than B. Again, 
this situation of different permeability at top and bottom boundaries cannot be described by 
Terzaghi’s solution properly with only perfectly drained and undrained boundary conditions. As 
illustrated by Fig. 4, more realistic modeling of the permeability of drainage boundaries can be 
achieved with the general boundary conditions. 

As B = C   and B = C  0, the exponential boundary condition is reduced to the perfectly 
drained and undrained boundary, respectively. As shown in Figs. 3 and 4, the exponential 
boundary condition provides prediction for continuous variation of permeability of drainage 
boundary, including the perfectly drained and undrained boundaries by Terzaghi’s solution. By 
adjusting the parameters b and c to model different boundary permeability, unsymmetrical pore 
pressure distribution can be simulated. Therefore, the exponential boundary condition provides 
more general results while Terzaghi’s solution is only a special case of the exponential boundary 
condition. 

 
4.2 Calibration of parameters B, C 
 
In order to calibrate the modeling parameters B and C, consolidation experiments should be 

carried out with measurements of pore pressure in the specimen (e.g., at the mid height). The 
measured pore pressure can be compared with a figure similar to Fig. 3 with certain values of B 
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Fig. 5 Continued 

 
 
and C. The acceptable values of B and C can then be estimated based on the matching of the 
measured and calculated pore pressure. 

 
4.3 Effects of the number of terms in series -- convergence study 
 
Calculations were made with the time factor BTv = CTv = 1.0. As shown in Figs. 5(a) and 5(b), 

only one term is needed to get accurate results for large values of Tv (e.g., Tv =1.0), but more terms 
are needed for smaller Tv (e.g., Tv = 0.01). In general, five terms are enough for all practical 
purposes for calculations of both pore pressure and degree of consolidation. 
 
 
5. Average degree of consolidation for the general boundary condition 

 
5.1 Comparison with Terzaghi’s solution 
 
The average degree of consolidation given by Terzaghi is as follows 
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For the exponential boundary condition, U can also be derived as follows (details shown in 
appendix) 
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when B = C, Eq. (12) can be reduced to 
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Furthermore, as B = C  , Eq. (13) is reduced to 
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which is the same as Eq. (11). 
The average degree of consolidation calculated with Terzaghi’s solution and the new solution 

in this study is presented in Fig. 6. The new solution is asymptotic to Terzaghi’s solution with 
increasing values of B and C. On the other hand, the new solution becomes different from 
Terzaghi’s solution with smaller B and C which implies lower permeability of the drainage 
boundary. Also, when the time factor is smaller, the difference between Terzaghi’s solution and 
new solution is bigger, and the difference becomes negligible for large values of time factor. 

 
5.2 Comparison with Gray’s solution 
 
The degree of consolidation for the case of impeded drainage is given by Gray (1944) as 

follows 











1 2
1

2

2sin

sin
21

2

k nn

n

n

rT

rr

r

r

e
U

nv

                        (14) 

54



 
 
 
 
 
 

One-dimensional consolidation with asymmetrical exponential drainage boundary 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1 10

U
av
g

Tv

Terzaghi

B=1 (exp. B.C.)

B=10 (exp. B.C.)

B=100 (exp. B.C.)

R=1 (Gray)

R=10 (Gray)

R=100 (Gray)

 

Fig. 6 Comparison between degree of consolidation calculated by Gray’s method and the present solution

 
 
where rn is the nth root of the following equation 
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 where Hs, ks, Hd, kd are the thickness, permeability of the soil and the drainage layer, respectively. 
The average degree of consolidation calculated with Gray’s solution and the new solution (with 

B = C) in this study is presented in Fig. 6. Although the two solutions are of different origins, 
interesting similarities can be observed. Both solutions are asymptotic to Terzaghi’s solution for a 
perfectly drained boundary with increasing values of B or R. By observation from Fig. 6, 
approximated results were obtained for Gray’s solution with the new solution by setting R = B. For 
R = B, Gray’s solution provides large degree of consolidation than that of the new solution for 
small Tv but becomes very close to each other for large Tv. 

 
 

6. Conclusions 
 
The solution for the one-dimensional consolidation problem with asymmetrical exponential 

boundary conditions was developed and examined. The following conclusions were drawn from 
this study 

 
(1) The exponential boundary condition satisfies the initial condition of Terzaghi’s 

consolidation theory. It can also simulate the perfectly drained and undrained boundary 
conditions of Terzaghi’s solution. With the exponential boundary condition, variation of 
the boundary permeability can be considered. 

(2) By adjusting the model parameters, different permeability at the top and bottom drainage 
boundaries can be modeled, and, therefore, asymmetric pore pressure distribution can be 
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simulated. 
(3) With the same time factor, the pore pressure from the new solution is generally smaller 

than that of the Terzaghi’s solution which is due to the infinite permeability of the 
perfectly drained boundary assumed in Terzaghi’s solution. 

(4) From the convergence study of the infinite series solution, it was found that only one term 
is needed for large value of Cv. With smaller Cv, more terms are needed to obtain accurate 
results but it is still within reasonably practical computational efforts. 

(5) The solution with exponential boundary condition is a generalization of Terzaghi’s 
solution, which was proved to be a special case of the present solution. 
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Appendix: Derivation of solution for exponential boundary condition 
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The boundary condition can be made homogeneous as 
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Assuming the solution of the form 
 

  





1 2

sin)(,
n

n h

zn
ttzv

                        (A.4) 

 
Substitute into Eq. (A.3) 
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Since the equation is valid for any value of n 
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The solution for this nonlinear ordinary differential equation has two parts. The homogeneous 

solution is 
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Since the equation is valid for any t, one can obtain 
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And the general solution is 
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Using the initial condition, one can obtain 
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Since the equation is valid for any z, one can obtain from each term of the series 
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Using the definition of boundary conditions in terms of time factor (i.e., bt = BTv and ct = CTv), the 

solution can also be expressed in terms of time factor 
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One-dimensional consolidation with asymmetrical exponential drainage boundary 
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The average degree of consolidation can then be expressed as 
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