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Abstract.  In this study, artificial neural network (ANN) and multiple regression (MR) models were 
developed to predict the critical factor of safety (Fs) of the homogeneous finite slopes subjected to 
earthquake forces. To achieve this, the values of Fs in 5184 nos. of homogeneous finite slopes having 
different slope, soil and earthquake parameters were calculated by using the Simplified Bishop method and 
the minimum (critical) Fs for each of the case was determined and used in the development of the ANN and 
MR models. The results obtained from both the models were compared with those obtained from the 
calculations. It is found that the ANN model exhibits more reliable predictions than the MR model. 
Moreover, several performance indices such as the determination coefficient, variance account for, mean 
absolute error, root mean square error, and the scaled percent error were computed. Also, the receiver 
operating curves were drawn, and the areas under the curves (AUC) were calculated to assess the prediction 
capacity of the ANN and MR models developed. The performance level attained in the ANN model shows 
that the ANN model developed can be used for predicting the critical Fs of the homogeneous finite slopes 
subjected to earthquake forces. 
 

Keywords:  artificial neural networks; critical factor of safety; homogeneous finite slope; pseudo- 
statistic approach; simplified Bishop method 
 
 
1. Introduction 
 

Slope failures are complex natural phenomena that constitute a serious natural hazard in many 
countries (Wang et al. 2005). Hence, it is very important to analysis the stability of slopes and that 
can be defined in terms of a factor of safety (Krishnamoorthy 2007). The analysis is mostly being 
performed under static loading conditions (Krishnamoorthy 2007). However, in a seismically 
active region, earthquakes are a major triggering force behind the instability of slopes (Hack et al. 
2007). Therefore, in these regions, it is also necessary to perform seismic slope stability analysis 
(Krishnamoorthy 2007). The pseudo-static (PS) approach is the most common procedure 
employed for seismic slope stability evaluation even though more advanced and rigorous methods 
of analysis are currently available (Bandini et al. 2005). This approach has been implemented in 
various limit equilibrium methods in which earthquake effects are represented by an equivalent 
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static force (Baker et al. 2006). The limit equilibrium methods, despite having several well-known 
disadvantages, are still commonly used to estimate the stability of slopes (Bakır and Akiş 2005). 
These methods satisfy either some or all of the equilibrium conditions that include: (1) some or all 
interslice forces (Fellenius 1936, Janbu 1954); (2) moment and/or some forces (Taylor 1940, 
Bishop 1955); and (3) moment and all forces (Morgenstern and Price 1965, Spencer 1967, Sarma 
1979). The methods as proposed by Fellenious (1936), Taylor (1940) and Bishop (1955) can be 
utilized for circular slip surfaces while the others can be used for circular and non-circular slip 
surfaces. 

Artificial neural networks (ANNs) are very sophisticated modeling techniques, capable of 
modeling extremely complex functions (Choobbasti et al. 2009). Therefore, ANNs, with their 
remarkable ability to derive a general solution from complicated and imprecise data, can be used 
to extract patterns and detect trends that are too complex to be noticed by either humans or other 
computer techniques (Yilmaz and Yuksek 2008). In this study, an ANN model, with respect to the 
above advantages, and a multiple regression (MR) model were developed to predict the critical 
factor of safety (Fs) of a homogeneous finite slope subjected to earthquake forces. Keeping this in 
view, a computer program with a user interface was developed in the Matlab programming 
environment (Cetin 2010). Two slope parameters (viz., height of the slope, H, and the cotangent of 
the slope angle, cot α, three soil properties (viz., cohesion, c, internal angle of friction, ϕ, and bulk 
unit weight, γ) and two earthquake parameters (viz., magnitude of the earthquake, M, and the 
distance to epicenter, R) were considered as the varying parameters during the slope stability 
analyses. Then, the Fs of the 5184 nos. of homogeneous finite slopes having different slope, soil 
and earthquake parameters were calculated by using the Simplified Bishop method (1955) for each 
trial failure surface. The minimum (critical) Fs value for each case was then determined and used 
in the development of the ANN and MR models. The ANN and MR results were then compared 
with the results obtained from the Simplified Bishop method (1955) in order to assess the 
performance of the prediction capacity of the models. It was found that the ANN model exhibits 
more reliable predictions than the MR model. 
 
 
2. Artificial neural networks 

 
Artificial neural networks (ANNs), perhaps the most popular intelligent computational 

paradigms (Tsompanakis et al. 2009), are the form of artificial intelligence which are based on the 
function of human brain and nervous system (Shahin et al. 2001). An ANN consists basically of 
simple highly interconnected processing elements called neurons that are typically arranged in 
layers. An ANNs architecture consists of three or more layers, which contain an input layer, one or 
more hidden layers, and an output layer. The neurons in the input layer receive input from the 
external environment (Choobasti et al. 2009). This layer does not perform any computations 
(Choobasti et al. 2009). Hidden layer, which receives inputs from the input layer, performs 
computation and provides the outputs to output layer (Choobasti et al. 2009). Output layer consists 
of neurons that communicate the output of system to the user of external environment (Guo and 
Uhrig 1992). Each neuron in a given layer is connected to all the neurons in the next layer by 
means of weighted connections. This ANN architecture is commonly referred to as a fully 
interconnected feed-forward multi-layer perceptron (MLP) (Goktepe et al. 2004). 

The usage of a number of hidden layers in the ANN depends on the degree of complexity in the 
pattern recognition problem, and one or two hidden layers are found to be quite useful for most 
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problems (Goh 1994, Orbanić and Fajdiga 2003, Sonmez et al. 2005). The number of neurons in 
the hidden layers also depends on the nature of the problem and plays an important role in ANN 
modeling. If it is too large, the ANN will get an overfit, i.e., the ANN will have a problem in 
generalization (Choobasti et al. 2009). Various methods have been employed by several 
researchers to determine this number (i.e., Hecht-Nielsen 1987, Hush 1989, Kaastra and Boyd 
1996, Kanellopoulas and Wilkinson 1997, Grima and Babuska 1999, Haque and Sudhakar 2002). 
However, these methods present guidelines only for selection of an adequate number of neurons 
(Erzın et al. 2008). 

Learning in a MLP is an unconstrained optimization problem, which is subjected to the 
minimization of a global error function depending on the synaptic weights of the network 
(Goktepe et al. 2004). For a given training data consisting of input-output vectors, values of 
synaptic weights in a MLP are iteratively updated by a learning algorithm to approximate the 
target behavior (Goktepe et al. 2004). This update process is usually performed by 
back-propagating the error signal layer by layer and adapting synaptic weights with respect to the 
magnitude of error signal (Goktepe et al. 2004). Several learning algorithms have been developed. 
The back-propagation learning algorithm is the most commonly used neural network algorithm 
(Singh et al. 2006) and has been applied with great success to model many phenomena in the field 
of geotechnical engineering (Shahin et al. 2001). It is most appropriate for training MLP (Liang 
and Zhang 2010). Each hidden and output neuron processes its input(s) by multiplying each by its 
weight, summing the product, an then processing the sum using a non-linear transfer function, also 
named as activation function, to obtain the desired result (Erzın et al. 2008). The most common 
transfer function implemented in the literature is the sigmoid function. The neural network 
“learns” by modifying the weights of the neurons in response to the errors between the actual 
output and the target output values (Erzın et al. 2008). This is performed through gradient descent 
on the sum of the squares of the errors for all the training patterns (Rumelhart and McClelland 
1986, Goh 1995). The changes in the weights are proportional to the negative of the derivative of 
the error term (Erzın et al. 2008). One pass through the set of training patterns, together with the 
associated updating of the weights, is called a cycle or an epoch (Erzın et al. 2008). Training is 
carried out by repeatedly presenting the entire set of training patterns (updating the weights at the 
end of each epoch) until the average sum squared error over all the training patterns is minimal and 
within the tolerance, specified for the problem (Erzın et al. 2008). 

At the end of the training phase, the neural network should correctly reproduce the target output 
values for training data; provided errors are minimal (i.e., convergence occurs) (Erzın et al. 2008). 
The associated trained weights of the neurons are then stored in the neural network memory (Erzın 
et al. 2008). In the next phase, the neural network is fed a separate set of data. In testing phase, the 
neural network predictions using the trained weights are compared to the target output values 
(Erzın et al. 2008). The performance of the overall ANN model can be assessed by several criteria. 
These criteria contain coefficient of determination, R2, root mean squared error, mean absolute 
error, minimal absolute error, maximum absolute error and variance account for. A well trained 
model should result in an R2 value close to 1 and small values of error terms. 
 
 
3. Calculation of factor of safety value of the homogeneous finite slopes subjected 

to earthquake forces 
 
A computer program with a user interface was developed in the Matlab programming 
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environment for estimating factor of safety, Fs, of homogeneous finite slopes subjected to 
earthquake forces (Cetin 2010). Among the limit equilibrium methods, the Simplified Bishop 
method (1955) was selected in this study due to its simplicity which makes it easier for this 
application. In the Simplified Bishop method (1955), it is assumed that the failure surface is 
represented by a circular arch, which has a center represented by O and a radius represented by R 
(Zhu 2008). The soil mass of the chosen failure surface is divided into n vertical slices, as depicted 
in Fig. 1. For the ith slice, the width is bi, the angle of base is αi, the weight is Wi, the horizontal 
interslice forces are Ei and Ei+1, the vertical interslice forces are Xi and Xi+1, the normal force that 
affects the middle of the slice is Ni, the tangential force that affects base of the slice is Ti (Zhu 
2008). Considering the vertical force equilibrium and the moment equilibrium with respect to the 
centre O of circular slip surface, the factor of safety, Fs, is determined using the following equation 
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where c is the cohesion, ϕ′ is the angle of internal friction, u is the pore water pressure at the base, 
and mαi is obtained from the following equation. 
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The Simplified Bishop method (1955) assumes that the contribution of vertical interslice forces 
to the factor of safety is neglected. In this study, it was assumed that the ground water table is deep, 
and so the ground water does not have any influence on the slope stability. Then, Fs values were 
determined using the following equation 

 
 

 

Fig. 1 The forces acting on the slice (Zhu 2008) 
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The pseudo-static (PS) approach, apparently first introduced by Terzaghi (1950), is still the 
widely used in geotechnical engineering practice for the assessment of seismic slope stability due 
to ease of implementation and familiarity (Bakır and Akiş 2005). Therefore, in this study, the PS 
approach was used for considering the effects of an earthquake. This approach is a generalization 
of common limit equilibrium slope stability analysis (Baker et al. 2006). In this approach, the 
earthquake effects are represented by an equivalent static force, the magnitude of which is product 
of a seismic coefficient, k, and the weight, W, of the sliding mass (Baker et al. 2006). The PS 
approach has been implemented in Simplified Bishop method (1955) (Eq. (3)) and the factor of 
safety, Fs, values were then determined by using Eq. (4). 
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In this study, the k value in Eq. (4) was taken as amax /g in which amax is the peak ground 
acceleration and is calculated from the earthquake magnitudes (M) and distances to epicenter (R) 
by using the attenuation relationship (Eq. (5)) as proposed by Campbell (1981). All the 
coefficients in Eq. (5) were found to be statistically significant levels of confidence exceeding 99 
per cent, based on empirical distributions of the coefficients developed using procedures set forth 
by Gallant (1975) (Campbell 1981). 

09.1
max )]700.0exp(0606.0)[868.0exp(0159.0  MRMa              (5) 

Two slope parameters (viz., height of the slope, H and the cotangent of the slope angle, cotα, 
three soil properties (viz., cohesion, c, internal angle of friction, ϕ, and bulk unit weight, γ) and two 
earthquake parameters (viz., magnitude of the earthquake, M, and the distance to epicenter, R) 
were varied during the slope stability analysis. The values of the parameters as used in these 
analyses are given in Table 1. Then, the factor of safety (Fs) for 5182 nos. of homogeneous finite 

 
 
Table 1 Values of the parameters used in the study 

Parameters used Values used 

H (m) 6, 8, 10 

cotα 0.333, 1, 2 

γ (kN/m3) 16, 18, 20 

c (kPa) 0, 10, 20, 50 

ϕ′ (deg) 10, 20, 35, 50 

M 4, 6, 8 

R (km) 5, 15, 25, 40 
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slope having different slope, soil and earthquake parameters were calculated by using Eq. (4) for 
each trial failure surface and the minimum (critical) Fs value was then determined for each case by 
using the written program. 
 
 
4. Artificial neural network model 
 

An ANN model was developed to predict the critical factor of safety (Fs) value of the 
homogeneous finite slope subjected to earthquake forces. Two slope parameters (viz., height of the 
slope, H and the cotangent of the slope angle, cotα, three soil properties (viz., cohesion, c, internal 
angle of friction, ϕ, and bulk unit weight, γ) and two earthquake parameters (viz., magnitude of the 
earthquake, M and the distance to epicenter, R) were used as the input parameters in the ANN 
model, whereas, the calculated Fs was the output parameter. The input and output data were then 
scaled to lie between 0 and 1, by using Eq. (6). In Eq. (6), where xnorm is the normalized value, x is 
the actual value, xmax is the maximum value and xmin is the minimum value. 

 
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xx
xnorm 


                           (6) 

As mentioned earlier, over-fitting makes multi-layer perceptrons (MLPs) memorize training 
patterns in such a way that they cannot generalize well to new data (Twomey and Smith 1997, 
Choobbasti et al. 2009). Thus, the crossvalidation technique (Stone 1974), which is considered to 
be the most effective method to ensure over-fitting not to occur (Smith 1993), was utilized as the 
stopping criterion in this study. In this technique (Stone 1974), the database is divided into three 
subsets: training, validation and testing. The training set is used to adjust the connection weights 
(Shahin et al. 2004). The testing set is utilized to check the performance of the model at various 
stages of training, and to determine when to stop training to prevent over-fitting (Shahin et al. 
2004). The validation set is used to predict the performance of the trained network in the deployed 
environment (Shahin et al. 2004). Shahin et al. (2004) obtained the optimal model performance 
when 20% of the data were utilized for validation and the rest data were divided into 70% for 
training and 30% for testing. Therefore, to avoid overfitting, the database was randomly divided 
into three sets: training, testing, and validation. In total, 56% of the data (i.e., 2903 data sets), 24% 
(i.e., 1244 data sets), and 20% (i.e., 1037 data sets) were randomly selected and used for training, 
testing, and validation sets, respectively, in the ANN model developed in this study. 

The neural network toolbox of MATLAB7.0, a popular numerical computation and 
visualization software (Twomey and Smith 1997), was utilized for training, validation, and testing 
of MLPs in the ANN model. The Levenberg-Marquardt back-propagation learning algorithm 
(Demuth et al. 2006), was used in the training stage. One hidden layer with a sufficient number of 
hidden neurons is adequate approximating any continuous function (Hornik et al. 1989). Therefore, 
in this study, one hidden layer was chosen. Then, the optimum number of neurons in the hidden 
layer of the model was determined by varying their number starting with a minimum of 1 then 
increasing in steps by adding 1 neuron each time. Log-sigmoid transfer function, the most 
commonly used to construct the neural networks, was used in the ANN model to achieve the best 
performance in training as well as in testing. Two momentum factors, μ, (equal to 0.01 and 0.001), 
were selected for the training process to search for the most efficient ANN architecture in each 
ANN model. The coefficient of determination, R2, and the mean absolute error, MAE, were utilized 
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to evaluate the performance of each developed ANN model. The performance of the network 
during the training and testing processes was examined for each network size until no significant 
improvement occurred. The optimal ANNs performance was obtained with the model having 5 
neurons in the hidden layer, and a 0.001 momentum factor. 
 
 
5. Multiple regression model 

 
Multiple regression (MR) is a statistical technique that allows us to predict someone’s score on 

one variable on the basis of their scores on several other variables (Auli et al. 2009). The purpose 
of MR is to learn more about the relationship between several independent or predictor variables 
and a dependent or criterion variable (Yilmaz and Yuksek 2008). MR equation takes the form y = 
b1x1 + b2x2 + ………. + bnxn + c where {b1, b2, …….. , bn} are the regression coefficients, x1, x2, x3, 
……. xn are the independent variables and c is y-intercept (Milton, 1997). MR is widely used in 
slope failure and landslides (i.e., Pradhan 2010a, 2010b, Erzın and Cetin 2012a, 2012b). 

MR analysis was carried out by using SPSS 10.0 package to correlate the determined Fs value 
to two slope parameters (H and cotα), three soil parameters (γ, c, and ϕ) and two earthquake 
parameters (R and M). The data used while developing the ANN model (i.e., 5184 nos. of data 
sets) were used in the development of the MR model. The MR model revealed the following 
correlation. 

853.0

179.0012.0033.0040.0039.0088.0cot551.0359.1
2 


R

MRcHFs 
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In Eq (7), H is in meters, γ in kN/m3, c in kN/m2, α and ϕ in degrees, and R in kilometers. 
 
 
6. Results and discussion 
 

The Fs values calculated from the Simplified Bishop method were compared with the Fs values 
predicted from the ANN model, as depicted in Figs. 2, 3, and 4 for training, validation, and testing 
samples, respectively. It can be noticed from the figures that the predicted values of Fs are quite 
close to the calculated values of Fs, as their R2 values are much close to unity. A paired t-test, a 
statistical test, utilizes the mean of the difference between the observations in one group and the 
matched observations in the other group. A paired t-test is carried out to determine if there is a 
significant difference between two observations. A paired t-test result can be expressed in terms of 
a p-value, which represents the weight of evidence for rejecting the null hypothesis (Ott and 
Longnecker 2001). The null hypothesis is the equality of mean of difference between comparisons 
(Ceylan et al. 2010). The null hypothesis can be rejected, that is, the mean of difference between 
comparisons are significantly different, if the p-value is less than the selected significance level 
(Ceylan et al. 2010). A significance level of 0.05 is used for all paired t-tests (Ceylan et al. 2010). 
Thus, p>0.05 meant there was not a meaningful difference and p  0.05 meant there was a 
meaningful difference (Tüysüz 2010). In this study, a paired t-test was performed by using the 
SPSS 10.0 package to look for a statistically significant difference between calculated and 
predicted Fs values. p-value was found as 0.329, indicating no significant difference in Fs between 
the calculated and predicted values. Therefore, the critical Fs value of the homogeneous finite 
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Fig. 2 The comparison of the calculated Fs values with the predicted Fs values from the ANN 
model for training samples 

 

Fig. 3 The comparison of the calculated Fs values with the predicted Fs values from the ANN 
model for validation samples 

 
 
slope considered in this study could be predicted using trained ANN structures as quite easily and 
efficiently. 

A comparison between the Fs values as calculated from the Simplified Bishop method and the 
Fs values as predicted from the MR model is shown in Fig. 5, for all the samples. It can be noted 
from the figure that the predicted Fs values from the MR model are not in good agreement with the 
calculated Fs values, as R2 value is 0.8335. A paired-t test using the SPSS 10.0 package was also 
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performed to determine whether there is a significant difference between calculated and predicted 
Fs values. p-value was found as 0.000, indicating a meaningful difference between the calculated 
and predicted Fs values. Therefore, the use of the MR model is not recommended at the 
preliminary stage of designing the homogeneous finite slope subjected to earthquake forces. 

In fact, the coefficient of correlation between the measured and predicted values is a good 
indicator to assess the prediction performance of the any model developed. In this study, variance 

 
 

Fig. 4 The comparison of the calculated Fs values with the predicted Fs values from the ANN 
model for testing samples 

 

Fig. 5 The comparison of the calculated Fs values with the predicted Fs values from the MR 
model for all samples 
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VAF, given by Eq. (8), and the root mean square error RMSE, given by Eq. (9), were also 
computed to control the performance of the prediction capacity of predictive models developed in 
the study, as employed by previous researchers (Erzın 2007, Erzın et al. 2008, 2009, 2010, Erzın 
and Cetin 2012a, 2012b, Erzın an Gunes 2011). 
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where var denotes the variance, y is the measured value, ŷ is the predicted value, and N is the 
number of the sample. If VAF is 100 % and RMSE is 0, the model is treated as excellent. The 
performance indices calculated for the ANN and MR models developed in this study are given in 
Table 2. As seen from Table 2, the ANN model has exhibited higher prediction performance than 
the MR model based on the computed performance indices. 

In addition to the performance indices, a graph between the scaled percent error, SPE, (as given 
by Eq. (10) and employed by Kanibir et al. (2006) and Erzın et al. (2012)) and the cumulative 
frequency was also drawn as shown in Figs. 6 and 7 for the ANN and MR models, respectively, to 
show the performance of the models. 

 
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FF
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




                      
 (10) 

where Fsp and Fsc are the predicted and the calculated factor of safety values; and (Fsc)max and 
(Fsc)min are the maximum and minimum calculated factor of safety values, respectively. It can be 
observed from Fig. 6 that about 99% of factor of safety values predicted from the ANN model 
developed fall into  5 % of the SPE indicating a perfect estimate for the Fs value of the slope. As 
depicted in Fig. 7, about 98% of factor of safety values predicted from the MR model developed 
fall into – 60% of the SPE indicating a poor estimate for the Fs value of the slope. From here, it 
can be concluded that the Fs value of the homogeneous infinite slope subjected to earthquake 
forces could be predicted from two slope parameters (H and cotα), three soil parameters (γ, c, and 
ϕ) and two earthquake parameters (R and M) using trained ANNs values, with acceptable accuracy, 
at the preliminary stage of designing the homogeneous finite slope. 

 
 
 
Table 2 Performance indices of the ANN and MR models developed 

Model Data R2 (%) RMSE MAE VAF (%) 

ANN 

Training set 98.60 0.13 0.10 98.67 

Testing set 98.60 0.13 0.10 98.60 

Validation set 98.50 0.13 0.11 98.50 

MR All set 83.30 0.43 0.33 85.28 
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Fig. 6 Scaled percent error of the factor of safety values predicted from the ANN model 

 

 

Fig. 7 Scaled percent error of the factor of safety values predicted from the MR model 

 
 

The effectiveness of the ANN and MR models developed was also checked by receiver 
operating characteristics (ROC), as employed by Pradhan et al. (2010), Oh and Pradhan (2011), 
Pradhan (2011), Erzın and Cetin (2012b). The ROC curve is a useful method of representing the 
quality of deterministic and probabilistic detection and forecast systems (Swets 1988). The ROC 
curve plots the false positive fraction (FPF = 1-specificity) on the X-axis and true positive fraction 
(TPF = sensitivity) on the Y-axis. It shows tradeoff between the two rates (Negnevitsky 2002). The  
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Fig. 8 Receiver operating characteristics (ROC) curves showing the area under curve (AUC) for 

the ANN and MR models 

 
 
area under the ROC curve (AUC) characterizes the quality of a forecast system by describing the 
system’s ability to anticipate correctly the occurrence or nonoccurrence of predefined “events” 
(Negnevitsky 2002). The range of the AUC is 0.5 to 1.0. The result of test is considered perfect if 
AUC = 1.0, good if AUC = 0.8 to 1.0, moderate if AUC = 0.6 to 0.8, poor if AUC = 0.5 to 0.6, an 
AUC value of 0.5 reflects a random model (Metz 1986). The results of the ROC curve were 
obtained for validation samples for each model by using SPSS 10.0 package and shown in Fig. 8. 
The AUC values were obtained as 0.85 and 0.65 for the ANN and MR models, respectively. The 
results of the ANN model are considered as good and the results of the MR model are considered 
as moderate based on these AUC values. These indicate that ANN model has higher prediction 
performance than MR model, which indicates the usefulness of the ANN model. 
 
 
7. Conclusions 

 
In this study, the prediction of the critical Fs value of the homogeneous finite slopes subjected 

to earthquake forces has been investigated by artificial neural network (ANN) and multiple 
regression (MR) models. To achieve this, with the written program, the Fs values of 5184 nos. of 
homogeneous finite slopes having different slope, soil, and earthquake parameters were calculated 
by using the Simplified Bishop method and the minimum (critical) Fs value for each case was 
determined. Two slope parameters (H and cotα), three soil properties (γ, c, and ϕ), and two 
earthquake parameters (R and M) were used as input parameters in the ANN and MR models. The 
determined critical Fs value was used as output parameter in both the models. The results as 
obtained from the ANN and MR models were compared vis-à-vis those obtained from the 
calculations. It is found that the ANN model exhibits more reliable predictions than the MR model. 
Therefore, the critical Fs value of the homogeneous finite slope considered in this study could be 
predicted using trained ANN structures, as quite easily and efficiently. 
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To check the prediction performance of the ANN and MR models developed, several 
performance indices such as R2, VAF, MAE, RMSE, and SPE were calculated. Also, ROC curves 
were drawn, and the AUC values were calculated. The ANN model has shown higher prediction 
performance than the MR model on the basis of performance indices and the AUC values. The 
performance level attained in the ANN model has shown that the ANN model is generalized 
enough and can be employed quite easily and accurately for estimating the critical Fs value of the 
homogeneous finite slope subjected to earthquake forces. 
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