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Abstract.  The factor of safety is the most common measure of the safety margin for slopes. When the 
traditionally defined factor is used in kinematic approach of limit analysis, calculations can become 
elaborate, and iterative methods have to be used. To avoid this inconvenience, the safety factor was 
defined in terms of the work rates that are part of the work balance equation used in limit analysis. It 
was demonstrated for two simple slopes that the safety factors calculated according to the new 
definition fall close to those calculated using the traditional definition. Statistical analysis was carried 
out to find out whether, given normal distribution of the strength parameters, the distribution of the 
safety factor can be approximated with a well-defined probability density function. Knowing this 
function would make it convenient to calculate the probability of failure. The results indicated that the 
normal distribution could be used for low internal friction angle (up to about 16) and the Johnson 
distribution could be used for larger angles ϕ. The data limited to two simple slopes, however, does not 
allow assuming these distributions a priori for other slopes. 
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1. Introduction 
 

Among different parameters used for assessment of the safety of slopes, such as critical height, 
limit inclination, or critical acceleration, it is the factor of safety that is most often used by 
engineers. Historically, the definition of the safety factor was specific to the methods of solution; 
for instance, one of the earlier proposals was the ratio of the resisting moment to the moment of 
gravity forces (e.g., Taylor 1948, Lambe and Whitman 1968). This definition was the outcome of 
the use of circular failure surfaces employed in safety assessment. As the methods of analysis 
evolved, a more popular definition of the factor of safety used today relates material strength 
properties of the soil comprising the slope 
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to maintain limit equilibrium of the slope. The definition in Eq. (1) is the most common definition 
of the factor of safety for slopes used today. 

The use of this definition, however, can be intricate in methods where the internal friction angle 
affects the solution implicitly, for instance through the kinematics relations that enter the energy 
considerations in limit analysis. An effective, but mathematically inconvenient method, is one 
where the true strength properties of the soil are reduced successively to reach the failure state 
when the respective ratio is equal to the factor of safety. This method was used by Michalowski 
(1989) in relation to slopes, and it has been termed in the literature the strength reduction method. 

When results of a stability analysis are reported for a wide range of parameters, recovering the 
safety factor, as defined in Eq. (1), requires an iterative technique. A way to avoid this 
inconvenience is to report results as a function of a parameter that is independent of the safety 
factor. An early proposal of such presentation is due to Bell (1966) in the context of a slice method 
analysis, and the chosen dimensionless parameter independent of the safety factor was c/γH tan, 
where γ is the soil unit weight and H is the slope height. An efficient application of this method 
was shown by Michalowski (2002, 2010) who reported results of limit analysis in charts that are 
iteration-free for both two-dimensional and three-dimensional failures. A different approach to 
presenting the safety factor was shown recently by Klar et al. (2011). For a slope of given 
geometry and given unit weight, they constructed a graph with limit state combinations of strength 
parameters, and the safety factor can be found as a ratio of two collinear vectors (magnitudes) on 
that graph. 

Limit analysis in stability calculations of earth structures becomes increasingly popular, and 
this note is focused on the development of a measure of safety that is directly related to the energy 
terms embedded in the kinematic approach of limit analysis. A similar attempt was made earlier by 
Karal (1977), Izbicki (1983), and Derski et al. (1988), but it did not materialize in an accepted 
measure of safety for slopes. 
 
 
2. Factor of safety in terms of work rate 
 

Limit analysis was developed in structural engineering primarily for estimates of limit loads, 
but it is equally applicable for calculations of bounds on other critical parameters, such as the 
critical height, or the safety factor. Earlier attempts to extract the factor of safety from the 
kinematical approach of limit analysis (Karal 1977, Izbicki 1983, Derski et al. 1988) proposed the 
factor of safety to be calculated as a ratio of the rate of work dissipation to the rate of work of 
external forces. However, such a safety factor becomes zero if the material does not dissipate 
energy when subjected to plastic deformation. First, we will arrive at this factor (F1) directly from 
the work rate balance equation written for a stable slope 
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The left-hand side of Eq. (2) represents the rate of work dissipation, and the two terms on the 
right-hand side denote the work rate of the soil weight (with unit weight γ) and the work rate of the 
given distributed load pi on boundary S [see Michalowski (2010) for definition of other symbols in 
Eq. (2)]. Because the slope is stable, the available dissipation is larger than the work of the forces 
driving the collapse, and factor F1 is the measure of the safety margin, interpreted as the factor of 
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safety. Consequently, the definition of F1 can be written as the ratio of the rate of plastic work D 
(dissipation) to the rate of the external work Wγ and Wp (gravity and boundary loads), all 
corresponding to the respective integrals in Eq. (2) 
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This definition works best for undrained soil ( = 0), or the short-term analysis (Karal 1977), 
and it is equivalent to the definition in Eq. (1) for undrained analysis. For frictional soils, however, 
it yields factors different than those from Eq. (1), and it fails when c = 0, since it implies D = 0 for 
soils governed by the Mohr-Coulomb yield condition and the associative flow rule. 

It is proposed that the work rate balance in Eq. (2) be modified to reflect that part of the soil 
weight (in volume V -) may be doing negative work during collapse (resisting failure), 
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with factor F2 being the new measure of the margin of safety. Replacing now the respective terms 
in Eq. (4) with W–

γ, W
–
p and W+

γ, W
++
p the following definition of safety factor F2 results 
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The safety factor modified in this manner is applicable to cases of c = 0, and the formula in 
Eq. (5) defines the safety factor essentially as the ratio of the resisting work to the work causing 
the collapse. Note that the non-dissipative terms in the numerator of Eq. (5) are negative, thus they 
are algebraically added to the dissipation rate D. 

It needs to be emphasized that the concept behind the definition in Eq. (5) is conceptually very 
different from that based on the mobilized strength in Eq. (1). The new definition has more in 
common with the very traditional definitions based on separation of moments (or forces) causing 
failure and those resisting collapse (see, e.g., Lambe and Whitman 1968), here, it is the respective 
work rates of moments (or forces). 

The new definition, while convenient in calculations, has two drawbacks. First, it cannot be 
applied to slopes when c = 0. This is because the critical mechanism in such cases tends to a single 
block (with vanishing volume) moving down the slope, leading to a singularity in Eq. (5). The 
second drawback is its applicability in limit analysis only. This is because this safety factor is 
defined in terms of the work rates, and more traditional methods do not call for calculation of work 
rates in the analysis. 

As the definition in Eq. (5) is new, there may be some reluctance using it in practice until more 
experience is gained regarding its performance, i.e., the ability to depict the true margin of safety. 
However, it has a computational advantage over the definition in Eq. (1). For a given mechanism, 
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this definition does not require iterative procedures to calculate F2 as the work rate terms on the 
right-hand-side are all independent of F2. Calculating the factor of safety according to the 
definition in Eq. (1), on the other hand, requires iterative procedures (unless ϕ = 0). This is because 
the geometry of the collapse mechanism is an implicit function of the internal friction angle (no 
matter whether the mechanism is constructed analytically or numerically). This is a result of the 
kinematic constraints that follow from the flow rule associated with the Mohr-Coulomb yield 
condition. Consequently, some iterative method (such as the strength reduction procedure) is 
needed to calculate the safety factor according to definition in Eq. (1). This is independent of 
whether a semi-analytical solution technique is used or the numerical technique based on finite 
elements. The definition in Eq. (5) does not call for iterative procedure, but it does require 
separation of the rate of work of external forces into positive and negative components. When 
semi-analytical rigid-block analysis is used, this separation is straightforward. It is equally 
straightforward in numerical methods once the nodal velocities are determined. However, both 
definitions of the factor of safety require iterative trials in the optimization procedure needed to 
identify the most critical collapse mechanism, but this is independent of the definition of the factor 
of safety. 
 
 
3. Application example 

 
To illustrate the application of this definition, two simple examples in Figs. 1(a) and (b) are 

considered. The hodograph for describing the magnitudes of blocs and their relative velocities is 
presented in Fig. 1(c). Collapse mechanisms are also illustrated in Figs. 1(a) and (b). These are 
relatively simple failure mechanisms, but the purpose of this note is only to illustrate the 
application of the new definition of the safety factor. Applying the definition of the factor of safety 
in Eq. (3), the following expression results after substituting the specific terms representing the 
work dissipation rate and the work rate of the external forces 
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where vi = velocity magnitude of block i, vXX = velocity jump magnitude on discontinuity XX, 
lXX = length of discontinuity XX, and Vi = volume of block i. 

When the safety factor for the given example is taken as in Eq. (5), the calculations can be 
carried out according to the following expression 
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where symbols min() and max() denote the algebraic minimum or maximum of zero and the dot 
product in the parentheses; this assures that the negative terms are added to the numerator and the 
positive ones are embedded in the denominator. 

As this approach yields an upper bound to the factor of safety, we search for the minimum and 
F2, with the lengths of discontinuities AB, BC, CD, BF, and CE being varied. Deterministic results 
for the two examples of slopes in Fig. 1 are presented in Fig. 2 as functions of the internal 
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(a) 

 

 
(b) (c) 

Fig. 1 Example mechanisms of collapse: (a) slope A; (b) slope B; and (c) hodograph 

 
 

friction angle of the soil in the slopes. Cohesion and the unit weight of the soil are characterized 
with dimensionless parameter c/γH equal to 0.125 and 0.25. In addition to safety factors calculated 
according to definitions in Eqs. (3) and (5), the common definition in Eq. (1) was used, and this 
factor is denoted in the figures as F*. All of the definitions yield a similar magnitude of the safety 
factor for undrained analysis ( = 0), but the safety factor defined in Eq. (3) increases with an 
increase in the internal friction angle at a much larger rate than the other two. It is rather 
interesting to notice that for slope A (the gentler of the two) the classical definition in Eq. (1) tends 
to give slightly higher values of F than that in Eq. (5), whereas this trend is reversed for the steeper 
slope B. Still, the new definition in Eq. (5) and the classical one in Eq. (1) yield the values of F 
fairly close to one another. This comparison indicates that the new definition might be an 
acceptable alternative to that commonly used in practice in Eq. (1), when the limit analysis is used. 
 
 
4. Probabilistic considerations 
 

The calculations in the previous section were performed for a set of unique material properties 
of the soil and they led to a well-defined deterministic value of the factor of safety. However, the 
strength parameters and unit weight of the soil vary in the field, and while deterministic analyses 
have prevailed in practice, it is natural to ask how the uncertainties in the material properties affect 
the outcome of the analysis (Christian et al. 1994). An approach that considers uncertainties will 
not result in one well-defined factor of safety; rather, it will lead to a probability of the loss of 
stability pf 
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      (a) 

      (b) 

Fig. 2 Comparison of Safety Factors F*, F1 and F2 [Eqs. (1), (3) and (5))]: (a) slope A; and (b) slope B 

 
 

]1[  FPPF                                (8) 

defined as the probability P that the safety factor F will reach or drop below 1. This probability 
should not exceed some postulated value, which for slopes with insignificant consequences of 
failure may be set as large as 10-2, and be orders of magnitude smaller for slopes with severe 
consequences of failure. If the probability density function fF of the factor of safety is known, then 
the loss of stability can be expressed as 





1

]1[ dFfFPP FF                            (9) 

Distribution fF is not known in slope stability problems, and Monte Carlo simulations can be 

490



 
 
 
 
 
 

Factor of safety in limit analysis of slopes 

0,3 0,4 0,5 0,6 0,7 0,8 0,9

Factor of Safety 

0

500

1000

1500

2000

N
u

m
b

er
 o

f 
S

im
u

la
ti

o
n

s

 
(a) 

 

0,3 0,4 0,5 0,6 0,7 0,8 0,9

Normal Theoretical Quantile

-4

-2

0

2

4

S
am

p
le

 Q
u

an
ti

le

 
(b) 

Fig. 3 (a) Histogram of F2 from Monte Carlo simulations for c = 10 kPa and φ = 0 with the normal 
distribution fit; and (b) simulation versus normal distribution quantiles indicating good fit 

 
 
 

carried out to gain insight into the statistical distribution of F. To shed some light on the statistical 
behavior of the factors of safety in Eqs. (3) and (5), we repeat the analysis for 110 pairs of strength 
parameters c and  treated as random variables with normal distributions and coefficient of 
variation of 0.1 (unit weight γ was assumed not to vary). A Monte Carlo simulation was carried 
out, where samples of 10,000 safety factors F1 and F2 (Eqs. (3) and (5)) were generated for each 
pair of c and  for slopes in Fig. 1. Acceptable magnitude of probability of failure was set to 10-3, 
and the results for the slope in Fig. 1(a), in terms of probabilities 
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(b) 

Fig. 4 (a) Histogram of F2 from Monte Carlo simulations for c = 10 kPa and φ = 36° with the normal 
distribution fit; and (b) simulation versus normal distribution quantiles indicating unacceptable fit 
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are indicated in Table 1 for the stability loss defined as F1 ≤ 1, and in Table 2 for F2 ≤ 1.  
Calculated probabilities for both definitions of the safety factor are similar, with values of P (F1 ≤ 
1) being only slightly larger than P (F2 ≤ 1) for the slope in Fig. 1(b). 
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There is a merit in trying to find probability density functions for factors of safety, as the 
probability of failure can be calculated easily from Eq. (9) for known distributions, without a need 
for Monte Carlo simulations. Monte Carlo simulations can be cumbersome if the problem requires 
sophisticated analysis. Therefore, we will try to assess whether the distribution of the probability 
density function for the safety factor expressed in Eq. (5) can be predetermined (based on known 
distributions of c and ϕ), and the probability of stability loss can be calculated directly from 
Eq. (9), without Monte Carlo simulations. 

Probabilities of failure generated in Monte Carlo simulation for the first slope (Fig. 1(a)) were 
subjected to statistical analysis; only the results for the pairs of parameters with average cohesion c 
= 10 kPa are presented. Based on the Kolmogorow-Smirnow test, the probability distribution of F1 
was found to be approximately normal only for results with ϕ less than about 8° to 10°, depending 
on the value of c. For larger ϕ, the Johnson distribution was found acceptable up to about ϕ = 16°, 
but beyond this value, no acceptable fit was found into any standard distribution. Coefficient F2 
conformed to the normal distribution for ϕ up to about 12°. An example of the histogram of the 
simulated factor of safety (Monte Carlo simulations) and its normal distribution approximation are 
illustrated in Fig. 3(a), with the quantiles for the two sets of data compared in Fig. 3(b). 

For larger ϕ, leptokurtic and asymmetric properties of the distribution became evident, and an 
attempt to fit the normal distribution into the Monte Carlo simulation data failed, which is 
illustrated in Fig. 3. However, a fit of the simulated data with the Johnson distribution was found 
acceptable for the entire range beyond ϕ = 12°, this is illustrated in Fig. 3(a), with the comparison 
of the respective quantiles in Fig. 5(b). Comparison of probabilities of failure from Monte Carlo 
simulations and those approximated by normal and Johnson distributions, with failure defined by 
F2 ≤ 1, are illustrated in Table 3. Based on this limited attempt, we conclude that the probability 
density function cannot be assumed a priori, and the normal distribution of the strength parameters 
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Fig. 5 (a) Histogram of F2 from Monte Carlo simulations for c = 10 kPa and φ = 36° with the Johnson 
distribution fit; and (b) simulation versus Johnson distribution quantiles indicating good fit 
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(b) 

Fig. 5 Continued 
 
 
does not imply the normal distribution of the safety factor. A similar test was performed on the 
factors of safety defined in Eq. (1) and obtained from Monte Carlo simulations of slopes with 
cohesion in the range from 1 to 25 kPa, and internal friction angle from 0 to 45°. The outcome 
indicated that the factor of safety defined by Eq. (1) can be described with the normal distribution 
in a wider range of ϕ, i.e., up to about 25°-27°, depending on cohesion. Beyond this limit, Johnson 
distribution describes well the safety factor distribution. 

 
 
Table 1 Calculated probabilities for loss of stability of slope A using Monte Carlo simulations and 

definitions of F in Eqs. (3) and (5) 

P (F1 < 1) 
() 

0° 5° 10° 15° 20° 25° 30° 35° 40° 45° 

c 
(k

Pa
) 

0 1 1 1 1 0.9785 0.5045 0.0241 0.0008 0.0001 0 

5 1 1 1 0.8453 0.0402 0 0 0 0 0 

10 1 1 0.8536 0.0153 0 0 0 0 0 0 

15 1 0.9873 0.0437 0 0 0 0 0 0 0 

20 0.9998 0.2926 0.0002 0 0 0 0 0 0 0 

25 0.8383 0.0091 0 0 0 0 0 0 0 0 

30 0.2032 0 0 0 0 0 0 0 0 0 

35 0.0174 0 0 0 0 0 0 0 0 0 

40 0.0008 0 0 0 0 0 0 0 0 0 

45 0 0 0 0 0 0 0 0 0 0 

50 0 0 0 0 0 0 0 0 0 0 
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Table 1 Continued 

P (F2 < 1) 
() 

0° 5° 10° 15° 20° 25° 30° 35° 40° 45° 

c 
(k

Pa
) 

0 1 1 1 1 0.986 0.5132 0.0311 0.0008 0 0 

5 1 1 1 0.8434 0.0018 0 0 0 0 0 

10 1 1 0.8386 0.0003 0 0 0 0 0 0 

15 1 0.9769 0.0314 0 0 0 0 0 0 0 

20 0.9998 0.275 0 0 0 0 0 0 0 0 

25 0.8416 0.002 0 0 0 0 0 0 0 0 

30 0.1984 0.0001 0 0 0 0 0 0 0 0 

35 0.0144 0 0 0 0 0 0 0 0 0 

40 0.0001 0 0 0 0 0 0 0 0 0 

45 0.0001 0 0 0 0 0 0 0 0 0 

50 0 0 0 0 0 0 0 0 0 0 

 
 
Table 2 Calculated probabilities for loss of stability of slope B using Monte Carlo simulations and 

definitions of F in Eqs. (3) and (5) 

P (F1 < 1) 
() 

0° 5° 10° 15° 20° 25° 30° 35° 40° 45° 

c 
(k

P
a)

 

0 1 1 1 1 1 0.9999 0.9989 0.9086 0.5829 0.473

5 1 1 1 1 1 0.9042 0.4536 0.0678 0 0 

10 1 1 1 0.9973 0.6487 0.0863 0.0013 0.0001 0 0 

15 1 1 0.9796 0.3472 0.0104 0.0005 0 0 0 0 

20 1 0.9682 0.2665 0.0063 0 0 0 0 0 0 

25 0.9942 0.3528 0.0064 0 0 0 0 0 0 0 

30 0.6451 0.0269 0 0 0 0 0 0 0 0 

35 0.1349 0.0006 0 0 0 0 0 0 0 0 

40 0.0114 0.0001 0 0 0 0 0 0 0 0 

45 0.0015 0 0 0 0 0 0 0 0 0 

50 0 0 0 0 0 0 0 0 0 0 

P (F2 < 1) 
() 

0° 5° 10° 15° 20° 25° 30° 35° 40° 45° 

c 
(k

Pa
) 

0 1 1 1 1 1 1 0.9985 0.9974 0.8886 0.4236

5 1 1 1 1 0.9999 0.882 0.4577 0.0001 0 0 

10 1 1 1 0.9957 0.6381 0.0495 0 0 0 0 

15 1 1 0.9768 0.3446 0.0033 0 0 0 0 0 

20 1 0.9649 0.2544 0.0018 0 0 0 0 0 0 

25 0.9912 0.3533 0.0022 0 0 0 0 0 0 0 
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Table 2 Continued 

c 
(k

P
a)

 

30 0.6337 0.0247 0 0 0 0 0 0 0 0 

35 0.1304 0.0004 0 0 0 0 0 0 0 0 

40 0.0116 0 0 0 0 0 0 0 0 0 

45 0.0008 0 0 0 0 0 0 0 0 0 

50 0 0 0 0 0 0 0 0 0 0 

 
 
Table 3 Probability of failure (F2 ≤ 1) from simulation and from fitted distributions for c = 1.0 kPa 

 (o) 
Calculated by 

Monte Carlo simulation 
Estimated using 

normal distribution 
Estimated using 

Johnson’s distribution 

10 1 1 1 

12 1 1 1 

14 1 0.999996 0.999986 

16 0.9915 0.993553 0.991062 

18 0.8400 0.835516 0.837534 

20 0.4546 0.439733 0.455624 

22 0.1582 0.158657 0.156857 

24 0.0421 0.050883 0.041154 

26 0.0075 0.016099 0.008622 

28 0.0020 0.006571 0.004581 

30 0.0004 0.003402 0.000541 

32 0.0001 0.002188 0.000901 

34 0 0.001700 0.000246 

36 0 0.001908 0.000008 

38 0 0.002449 0.000005 

 
 
5. Conclusions 
 

A successful attempt was made at defining the factor of safety in terms of the work rate 
components written for an incipient collapse mechanism of a slope. Defining the safety factor as a 
ratio of all work resisting the collapse to that causing the failure allows one to remove the 
peculiarities from an earlier definition that took the ratio of the internal work rate (dissipation) to 
the work rate of all external forces. It was also shown that the safety factor calculated for two 
slopes using the new definition in terms of the work rate components falls closely to the 
commonly used definition in terms of soil strength parameters. The new definition was found to 
slightly underestimate the classical one for a gentle (1:2) slope, and it marginally overestimated 
the classical value for a steeper (1:1) slope. The new definition, however, has advantages when 
applied in the kinematic approach of limit analysis, as the solution procedures in limit analysis 
require explicit formulation of the work rate terms, and these terms are used directly in the new 
definition. 
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The factor of safety is a deterministic measure of the safety margin, whereas the properties of 
the soil are variable throughout the field. To reconcile this inconsistency a probabilistic assessment 
of the slope stability was attempted, with the cohesion and internal friction angle assumed to have 
normal distributions with the coefficient of variation of 0.1. Monte Carlo simulations were then 
carried out to assess whether the probability density function of the factor of safety, calculated 
according to the proposed definition, can be described with a standard distribution that might be 
determined a priori, without the need for the elaborate Monte Carlo simulations. If such a 
description was possible then the probability of loss of stability (safety factor reaching or dropping 
below unity) could be calculated easily through analytical means, by integrating the probability 
density function in the range of -∞ to 1. For the proposed definition of the safety factor, the Monte 
Carlo-simulated factor of safety could be approximated with the normal distribution only for rather 
small internal friction angles (less than 12°), whereas the Johnson distribution could be used for 
larger angles ϕ. These are very limited results for two slopes, but based on this outcome, it is 
unlikely that the probability of slope collapse could be determined with acceptable confidence 
based on known distributions of the strength properties alone. 
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