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1. Introduction 
 

In engineering and applied science, the interactive 
mechanism between structural members (e.g., beam, plate, 
shell) and their contacting foundation medium has found a 
wide spectrum of applications (He and Kwan 2001, Civalek 
and Ozturk 2010, Gangadean et al. 2010, Shokrieh and 
Heidari-Rarani 2011, Limkatanyu et al. 2012a, Kim et al. 
2014, Khemis et al. 2016, Ebrahimi and Barati 2017, 
Zarepour et al. 2017, Demir et al. 2018, Bohlooly and Fard 
2019, Jamil and Admah 2019). Several analytical models 
have been proposed to study this interaction mechanism 
with varying levels of mathematical sophistication in 
representing the contacting foundation medium (Selvadurai 
1979). A simple model often referred to as “mechanical 
subgrade model” is to consider the contacting foundation 
medium as a bed of single or combined structural 
components (e.g., spring, shear-layer, membrane) while a 
rigorous model often referred to as “continuum model” is to 
represent the contacting foundation medium by a semi-
infinite continuum body (Mindlin 1936). The pros and cons 
of these two extremes were thoroughly discussed in 
Selvadurai (1979) and Dutta and Roy (2002). Even though 
the continuum model is more realistic and can provide 
detailed analysis results, its use among practicing  
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engineers is still limited due to its complexity and high 

computational effort. On the other hand, the mechanical 

subgrade model is very popular in practicing-engineering 

community due to its simplicity and computational 

efficiency. The Winkler foundation model (Winkler 1867) is 

the most rudimentary mechanical subgrade model in which 

a set of continuously smeared independent springs is 

adopted to represent the contacting foundation medium. 

Even though the Winkler foundation model behaves in a 

peculiar manner for some beam-foundation systems as 

pointed out in Kerr (1964), a countless list of analytical and 

numerical beam-foundation models have been formulated 

using this foundation model due to its simplified 

representation of the foundation-medium response (Hetenyi 

1946, Eisenberger and Yankelevsky 1985, Zhang et al. 

2009, Limkatanyu et al. 2012a, b, Raychowdhury and 

Jindal 2014, Kim et al., 2015). The rudimentary flaw 

inherent in the Winkler foundation model is associated with 

the non-interconnected nature of foundation-spring bed, 

thus completely neglecting the cohesive bonds (continuous 

nature) between foundation-medium.  

To consider the continuous nature of the foundation 

medium, the Winkler foundation model has been enhanced 

with different embedded structural components to introduce 

coupled effects between continuously smeared independent 

springs (Horvath and Colasanti 2011), thus resulting in 

several forms of the enhanced Winkler foundation model. 

More detailed discussions on this enhanced Winkler 

foundation model are found and thoroughly discussed in 
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Dutta and Roy (2002). In the present work, the improved 

Winkler foundation model proposed by Pasternak (1954) is 

of particular interest. This foundation model is called the 

“Winkler-Pasternak” foundation model. An incompressible 

shear layer is inserted between the beam and the Winkler 

foundation springs in this foundation model. Several beam 

elements on Winkler-Pasternak foundation have been 

formulated by various researchers using analytically derived 

displacement shape functions (Zhaohua and Cook 1983, 

Gülkan and Alemdar 1999) or assumed displacement shape 

functions (Zhaohua and Cook 1983, Teodoru and Musat 

2010). However, all aforementioned beam elements are 

valid only for elastic systems. Along with the recently 

adopted performance-based design and assessment 

methodology (ICC 2012), inelastic responses of beam-

foundation systems are essential in analyzing, designing, 

and assessing both existing and newly constructed 

structures under extreme loadings. Unfortunately, only few 

inelastic Winkler-Pasternak based beam-foundation 

elements have been formulated in the literature using the 

finite element technique (Mullapudi and Ayoub 2010, Patil 

et al. 2012, Limkatanyu et al. 2015) and boundary element 

technique (Sapountzakis and Kampitsis 2013). Regarding 

this issue, there is a research opportunity to develop a more 

computationally efficient nonlinear beam-foundation 

model. 

In the present work, a newly proposed model for 

inelastic analysis of beam-foundation systems is constructed 

within the framework of flexibility-based finite element 

formulation. Up to date, the flexibility-based finite element 

formulation has gained growing interests in establishing a 

more efficient computational platform for inelastic analysis 

of structures and has been proved to remedy several flaws 

inherent in the standard stiffness-based finite element 

formulation (Spacone et al. 1996a, Neuenhofer and 

Filippou 1997, Salari et al. 1998, Limkatanyu and Spacone 

2002a, Limkatanyu and Spacone 2006, Jafari et al. 2009, 

Zendaoui et al. 2016, Feng et al. 2019). The enhanced 

performance of the flexibility-based model is due to the 

merits of employed force shape functions. These merits 

stem from two main observations; (a) in certain structural 

elements, the internal force distributions along the element 

length can be determined exactly, thus resulting in the 

“exact” finite element model; and (b) along the element 

length, the internal force distributions are generally 

smoother than the internal deformation distributions which 

drastically vary across the inelastic regions (e.g., plastic 

hinge). For the present beam-foundation system, the 

determination of internal force distributions is not 

straightforward due to its internally statically indeterminate 

feature. Consequently, certain internal force distribution has 

to be assumed, thus resulting in the internally statically 

determinate beam-foundation system. This internal-force 

determination procedure follows those employed by 

Limkatanyu and Spacone (2002a) for the reinforced 

concrete beam with bond interfaces; and by Limkatanyu 

and Spacone (2006) for the beam resting on Winkler 

foundation. 
The presentation of the paper is in the following order. 

First, the system basic equations (strong form) are 
presented. Then, the flexibility-based beam-foundation 

model (weak form) is formulated within the framework of 
the matrix virtual force principle. The general procedure of 
both strong and weak forms of the problem are compactly 
depicted in Tonti’s diagrams. The derivation of equilibrated 
force shape functions and the general procedure for the 
element state determination are presented as well. 
Assessment of model validity and demonstration of model 
effectiveness are finally shown via three numerical 
simulations. The first two simulations focus on elastic 
beam-foundation systems and show the model accuracy in 
representing responses at both global and local levels. The 
last simulation emphasizes on an inelastic beam-foundation 
system. Convergence studies of the proposed model are 
carried out at both global and local levels and its accuracy 
and efficiency are confirmed by comparing their global and 
local responses with those obtained with stiffness-based 
models.  Effects of different foundation models on the 
system responses are also addressed. All mathematical 
symbols in this paper are formulated from Mathematica 
software package (Wolfram 1992). 
 

 

2. Basic equations of beams on Winkler-Pasternak 
foundation (strong form) 
 

2.1 Equilibrium 
 

A Winkler-Pasternak based beam-foundation system is 

shown in Fig. 1 and the free body diagram of its differential 

segment consists of two parts. The first shown in Fig. 2(a) 

presents the beam differential segment interacting with an 

underlying shear layer while the second shown in Fig. 2(b) 

presents the shear-layer differential segment sandwiched 

between the beam and the Winkler-spring bed. Following 

the infinitesimal deformation hypothesis, all of equilibrium 

equations are written with respect to the undeformed 

configuration. Considering moment and vertical 

equilibriums of the beam component of Fig. 2(a) yields the 

following expressions: 

 
 

0
B

B

dM x
V x

dx
 

 

(1) 

 
2 ( ) ( ) 0

B

y

dV x
D x p x

dx
   

 

(2) 

with VB(x) being the beam-section shear force; MB(x) being 

the beam-section bending moment; D2(x) being the 

foundation-interactive force acting at the beam bottom face; 

and py(x) being the transverse distributed load. 

Following the Euler-Bernoulli beam theory adopted in 

the present work, the beam-section shear force VB(x) plays 

no role in the model formulation. As a result, Eqs. (1) and 

(2) are written together as: 

 
 

2

2 2
( ) 0

B

y

d M x
D x p x

dx
  

 

(3) 

Vertical equilibrium of the shear-layer component of 

Fig. 2(b) leads to the following expression: 
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 
2 1( ) ( ) 0

SdV x
D x D x

dx
  

 

(4) 

where D1(x) is the Winkler-foundation interactive force 

acting at the shear-layer bottom face and Vs(x) is the shear-

layer section shear force. Eq. (4) presents the equilibrium 

relation between the foundation internal forces (D1(x), 

D2(x), and Vs(x)) and is also observed by Ghosh et al. 

(2017). 

Substituting Eqs. (4) into (3) leads to one single 

expression as: 

2

12

( )( )
( ) ( ) 0SB

y

dV xd M x
D x p x

dx dx
   

 

(5) 

Eq. (5) presents the governing equilibrium equation for 

the problem of Winkler-Pasternak based beam-foundation 

systems and is expressed in the matrix form as: 

     T T

B B F Fx x x  L D L D p 0
 

(6) 

with     
T

B Bx M xD  being the beam-section force 

vector;       1

T

F Sx D x V xD being the foundation-

section force vector; and     
T

yx p xp  being the 

element force vector. The beam BL  and foundation FL  

differential operators are expressed as: 

2

2

1

; andB F

d
d

dx
dx

 
        

 

L L

 

(7) 

From Eq. (5), the beam-foundation system is inherently 

statically indeterminate. At any system section, there are 3 

unknown internal forces (MB(x), D1(x), and Vs(x)) while 

only one equilibrium condition of Eq. (5) is accessible. 

Consequently, only equilibrium consideration is not 

sufficient to determine all unknown internal forces. This 

issue is to be discussed subsequently in the paper. 

Furthermore, the eliminated beam-section shear force VB(x) 

and the eliminated foundation interactive force D2(x) can 
be retrieved from Eqs. (2) and (4), respectively once all 

remaining unknown internal forces (MB(x), D1(x), and Vs(x)) 

are obtained. 
 

2.2 Compatibility 
 

At any section of the beam-foundation system, the beam  

 

 

and foundation deformations and the beam transverse 

displacement are related through the sectional compatibility 

conditions. The beam-section deformation vector dB(x) 

collects the beam-section bending curvature κB(x) as: 

    
T

B Bx xd
 

(8) 

The beam displacement vector u(x) collects the beam 

transverse displacement vB(x) as: 

    
T

Bx v xu
 

(9) 

Following the infinitesimal-deformation hypothesis, the 

compatibility relation between the beam-section bending 

curvature κB(x) and the beam transverse displacement vB(x) 

as: 

 
2

2

( )B
B

d v x
x

dx
 

 

(10) 

Eq. (10) can be expressed in the matrix form as: 

   B Bx xd L u
 

(11) 

The Winkler-spring deformation vs(x) and the shear-

layer section shear strain γs(x)
 

define foundation 

deformations. Following the Winkler-Pasternak foundation 

model, the foundation compatibility conditions are: 

( )
( ) ( ); ( ) B

S B S

dv x
v x v x x

dx
 

 

(12) 

Eq. (12) can be written in the matrix form as: 

   F Fx xd L u
 

(13) 

with    ( ) ( )
T

F S Sx v x xd . 

Eqs. (11) and (13) define governing compatibility 

equations for the Winkler-Pasternak based beam-foundation 

system. Furthermore, it is observed that the dualism 

between equilibrium and compatibility relations is 

confirmed by comparing Eq. (6) with Eqs. (11) and (13). 

 
2.3 Sectional force-deformation relations 
 

In the present study, the sectional constitutive laws can 

be expressed in consistent linearized incremental matrix 

forms as: 

 

Fig. 1 A beam on Winkler-Pasternak foundation 

 

Beam

Shear-Layer
Winkler-Spring Bed

373



 

Worathep Sae-Long et al. 

 

 

       

       

0 0

0 0

;B B B B

F F F F

x x x x

x x x x

  
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D D k d

D D k d
 

(14) 

with D0
B(x) and D0

F(x) being the initial beam-section and 

foundation forces, respectively; k0
B(x) being the beam-

section tangent stiffness matrix; and k0
F(x) being the 

foundation tangent stiffness matrix. 

The consistent inverse of Eq. (14) is required in the 

flexibility-based finite element formulation and can be 

expressed as: 

       

       

0 0

0 0

= ;B B B B

F F F F

x x x x

x x x x

 

  

d d f D

d d f D
 

(15) 

with d0
B(x) and d0

F(x) being the initial beam-section and 

foundation deformations, respectively; f0
B(x) being the 

beam-section tangent flexibility matrix; and f0
F(x) being the 

foundation tangent flexibility matrix. 

For the problem of Winkler-Pasternak based beam-

foundation systems, governing equations comprised of 

equilibrium condition (Eq. (6)), compatibility conditions 

(Eqs. (11) and (13)), and constitutive relation (Eq. (14)) can 

be compactly presented in the classical Tonti’s diagram of 

Fig. 3 (Tonti 1976). To envisage the whole picture of finite 

element formulation process, this diagram is to be modified 

later. 
 

 

3. Flexibility-based finite element formulation of 
beams on Winkler-Pasternak foundation (weak form) 
 

3.1 Formulation 
 

The Winkler-Pasternak based beam-foundation element 
proposed herein is constructed within the framework of 
flexibility-based finite element formulation. The root of the 
proposed model stems from the composite beam element 
with deformable shear connectors (Salari et al. 1998), the 
reinforced concrete frame element with bond-interfaces 
(Limkatanyu and Spacone 2002a), and the beam resting on 
Winkler foundation (Limkatanyu and Spacone 2006). 

In the flexibility-based finite element model, the 

element sectional forces DB(x), DF(x) serves as primary 

variables and can be related to the element nodal forces  

 

 

through equilibrated force shape functions. The derivation 

of such force shape functions is associated with enforcing 

the system equilibrium condition of Eq. (6) and will be 

discussed subsequently in the paper. Therefore, the system 

equilibrium condition of Eq. (6) is enforced in the strong 

sense. In opposition, the beam-section compatibility of Eq. 

(11) and foundation compatibility of Eq. (13) are satisfied 

in the weak sense. In the modified Tonti’s diagram of Fig. 

4, general framework of the flexibility-based formulation of 

the proposed beam-foundation model is summarized. 

The weighted residual statement of Eqs. (11) and (13) is 

expressed as: 

            0T T

B B B F F F

L L

x x x dx x x x dx           D d L u D d L u

 
(16) 

where δDB(x) and δDF(x) represent statically admissible 

virtual beam-section and foundation-interface force fields, 

respectively. Substituting the linearized deformation-force 

relations of Eqs. (15) into (16) leads to: 

     

     

0 0

0 0

( ) ( )

( ) ( ) 0

T

B B B B B

L

T

F F F F F

L

x x x x x dx

x x x x x dx





    

      





D d f D L u

D d f D L u

 

(17) 

Applying integration by parts to Eq. (17) moves the 

differential operators LB and LF from the displacement 

vector u(x) to the virtual force vectors δDB(x) and δDF(x) 

and leads to the following virtual force expression: 

   

   

     

 

0 0

0 0

( ) ( ) ( ) ( )

( ) ( )

T T

B B B F F F

L L

T T

B B F F

L L

T T T

B B F F

L
x

x x x dx x x x dx

x x dx x x dx

x x x dx



 

 
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  

 

 
 

   
 
 

 

 


p

D f D D f D

D d D d

P U u L D L D

 

(18) 

where δPTU are the boundary terms associated with 

integration by parts and represents the external virtual work 

done by the virtual element nodal forces δP on the element 

nodal displacements U. It can clearly be observed that Eq. 

(18) presents the virtual force statement of the problem. 

Enforcing the equilibrium condition of Eq. (6) and 

 
 

(a) Beam (b) Shear layer 

Fig. 2 A differential segment cut from the beam and shear layer 
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arbitrarily selecting the virtual element distributed load 

vector δP(x)=0, Eq. (18) can be simplified in the matrix 

form as: 

 

 

00

00

( ) ( ) ( )( )

( ) ( ) ( )( )

T T

B B B FTB

F F F FFL L

x x x xx
dx dx

x x x xx

 


 

         
         

          
 

D D D df 0
P U

D D D d0 f  
(19) 

To gain the discrete form of Eq. (19), the beam-section 

force DB(x) and the foundation-interactive force DF(x) are 

interpolated in terms of the element nodal variables using 

equilibrated force shape functions. In the present work, the 

element nodal variables consist of the element nodal forces 

P and the foundation-interactive forces PF at the selected 

reference points along the element length. Thus, the 

interpolation expression between the internal forces (DB(x) 

and DF(x)) and the nodal forces (P and PF) is: 

( ) ( ) ( )

( ) ( ) ( )

B BB BF

F FFB FF

x x x

x x x

    
    

    

D PN N

D PN N
 

(20) 

where NBB(x) and NBF(x) contain the beam-section force 

shape functions associated with the element nodal forces P 

and the reference foundation-interactive forces PF, 

respectively; and NFB(x) and NFF(x) collect the foundation-

interactive force shape functions associated with the 

element nodal forces P and the reference foundation-

interactive forces PF, respectively. The derivation of these 

force shape functions is to be presented in a subsequent 

subsection. 

Substituting Eqs. (20) into (19) and accounting for the 

arbitrariness of δP and δPF lead to the following element 

flexibility expression: 

0 0 0

0 0 0

( ) ( )

( ) ( )

BB BF

FFB FF F

x x

x x

    
    

    

PF F U r

PF F r
 

(21) 

where F0
BB(x), F0

BF(x), FF
B(x), and F0

FF(x) are the following 

flexibility terms: 
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L
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L
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
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





F N f N N f N

F N f N N f N

F F

F N f N N f N

 

(22) 

The element displacement r0 and foundation 

displacement r0
F vectors are compatible with the beam-

section deformation d0
B(x) and foundation deformation 

d0
F(x) vectors via the following integral expression as: 

        

          

0 0 0

0 0 0

( )
T T

T T

BB B FB F

L

F BF B FF F

L

x x x x x dx

x x x x x dx

 
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



r N d N d

r N d N d

 

(23) 

It is interesting to observe from the terms on the right-

hand side of Eq. (21) that U−r0

 
defines the element nodal 

displacement residuals associated with the element 

flexibility equation while r0
F represents the known 

foundation displacements at selected reference points 

similar to a prescribed support condition in the method of 

consistent deformations. With the known foundation 

displacements rF
0, the reference foundation force vector 

ΔPF 
serving as the redundant-force unknowns can be 

eliminated using the second equation in Eq. (21). 

   
1

0 0 0

F FF FB F



    P F F P r
 

(24) 

Substituting Eq. (24) into the first relation of Eq. (21) 

results in the condensed matrix compatibility equation as: 

 0 0 0

B F   F P U U U
 

(25) 

where  
1

0 0 0 0 0

BB BF FF FB



 F F F F F  represents the 

element flexibility matrix; and U0
B and U0

F are the nodal 

displacement vectors compatible with the beam-section 

deformation d0
B(x) and foundation deformation d0

F(x)  

vectors, respectively and are defined as: 

        

        

1
0 0 0 0

1
0 0 0 0

T T

T T

B BB BF FF BF B

L

F FB BF FF FF F

L

x x x dx

x x x dx





 

 





U N F F N d

U N F F N d

 

(26) 

It is worth pointing out that the term  0 0

B F U U U  

on the right-hand side of Eq. (25) defines the element nodal 

displacement residual vector and is associated with the 

integral statement of the beam-section and foundation 

compatibility conditions (Eqs. (11) and (13)). This residual 

vector becomes vanishing once the element compatible 

configuration is obtained during the incremental-iterative 

solution process. 

In the present study, the general-purpose finite element 

platform FEAP (Taylor 2000) is employed to host the 

proposed beam-foundation element. The platform architect 

of FEAP is constructed within the framework of stiffness-

based finite element formulation, thus rendering FEAP 

natural to the stiffness-based finite element model. 

Therefore, a special procedure for the element state 

determination is required for the proposed beam-foundation 

element formulated within the framework of flexibility-

based finite element model. Fortunately, the state-of-the art 

procedure for implementing the flexibility-based finite 

element model into the stiffness-based computational 

platform was proposed by Spacone et al. (1996b) and 

Limkatanyu and Spacone (2002b). This procedure is 

adopted in the present work and is briefly discussed herein. 

For a given current nodal displacement increment, the 

current nodal force increment is computed using the initial 

(last iterative step) element stiffness matrix and is used to 

update the nodal force vector. Then, the current section 

force increment associated with the current nodal force 

increment is computed using the force shape functions and 

the section force vector is updated accordingly. Next, the 

current section deformation increment associated with the 

current section force increment is computed using the initial 

(last iterative step) section flexibility matrix and the section  
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deformation vector is updated accordingly. With the current 

(updated) section deformation vector, the associated section 

force vector and the associated section stiffness (flexibility) 

matrix can be obtained via the section constitutive relations. 

Generally, the current section force vector obtained from 

the section constitutive relations is not in equilibrium with 

the current nodal force vector, thus resulting in the 

unbalanced section force vector and the associated residual 

section deformation vector. The residual nodal  

 

 

 

displacement vector is computed from the residual section 

deformation vector using the integral expression of element 

compatibility. Finally, the unbalanced nodal force vector is 

computed from the residual nodal displacement vector and 

is passed from the element level to the structural level 

during the incremental-iterative solution process. More 

details on the above-discussed element state determination 

procedure can be found in Spacone et al. (1996b) and 

Limkatanyu and Spacone (2002b). 

 

Fig. 3 Tonti’s diagram for beam element on Winkler-Pasternak foundation: governing differential equations (Tonti 1976) 

 

Fig. 4 Tonti’s diagram for force-based beam element on Winkler-Pasternak foundation 
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It is worthy to point out that the element stiffness matrix 

K can simply be obtained by inverting the element 

flexibility matrix F due to the presence of the underlying 

foundation. Therefore, the transformation between the 

complete and basic systems as required in a typical 

flexibility-based frame model is not necessary for the 

present problem. 

 

3.2 Derivation of equilibrated force shape functions 
 

Unlike in the case of an internally statically determinate 

beam, the internal force distribution of an internally 

statically indeterminate beam cannot be obtained solely 

from equilibrium consideration.Several researchers (Salari 

et al. 1998, Limkatanyu and Spacone 2002a, 2006) have 

attempted to formulate the flexibility-based finite beam 

elements to model these internally statically indeterminate 

beams by assuming certain internal force distribution, thus 

resulting in the internally statically determinate beams. In 

the present work, this assumed internal-force concept is 

adopted and extended to the flexibility-based finite element 

formulation of Winkler-Pasternak based beam foundation 

systems. 

As indicated in Eq. (5), the problem of Winkler-

Pasternak based beam-foundation systems is internally 

statically indeterminate. Thus, considering solely 

equilibrium condition is insufficient to determine three 

internal force fields, namely: beam-section bending MB(x), 

Winkler-foundation interactive force D1(x), and shear-layer 

section shear force Vs(x). To render the Winkler-Pasternak 

based beam-foundation system internally statically 

determinate, Winkler-foundation interactive force D1(x), 

and shear-layer section shear force Vs(x) are selected as 

redundant forces and their distributions are to be assumed. 

In the proposed beam-foundation model, the distributions of 

Winkler-foundation interactive force D1(x) and shear-layer 

section shear force Vs(x) is represented by a third-order 

polynomial function. The degree of indeterminacy, 

however, is still infinite due to the continuous nature of the 

foundation-force distributions. This difficulty can be 

overcome by defining the foundation-force distributions in 

terms of a finite number of foundation-force distributions at 

selected reference points. Therefore, as shown in Fig. 5(a) 

and 5(b), Winkler-foundation interactive force D1(x) and 

shear-layer section shear force Vs(x) are related to 

foundation forces at reference points in the following 

fashion: 

 

 

 

 

1

2

1 1 2 3 4

3

4

( ) ( ) ( ) ( ) ( )
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 
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(27) 

 

1
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3

4

( ) ( ) ( ) ( ) ( )
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s

S s s s s
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V

V
V x x x x x
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 
 
 

      
 
    

(28) 

where Φs1(x), Φs2(x), Φs3(x), and Φs4(x) are third-order 

polynomial shape functions and can define as: 

   

   

2 3 2 3

2 3 2 31 2

3

2 3 2 3

2 3 2 34

11 9 9 9 45 27
1 ; ;

2 2 2 2

9 18 27 9 9
;

2 2 2 2

s s

s s

x x

x

x x x x x x

L L L L L L

x x x x x x

L L L L L L
x

      

      

 

 
 

(29) 

The Winkler-foundation interactive forces at reference 

points Ds1, Ds2, Ds3, and Ds4 and the shear-layer section 

shear forces at reference points Vs1, Vs2, Vs3, and Vs4 are not 

entirely independent since two of them can be expressed in 

terms of the remaining six reference forces and of the beam 

nodal forces after enforcing the external (global) 

equilibrium conditions of the beam component of the beam-

foundation element (Fig. 6(a)). 

Considering the moment equilibrium condition of the 

beam component (Fig. 6(b)) leads to the following 

expression: 

 2 4 3 4 2 ( ) 0s

L

P P P V L xD x dx    
 

(30) 

Employing Eqs. (27) and (28) and enforcing the 

equilibrium condition of Eq. (4), Eq. (30) becomes: 

2 4 1 2 3 4

1 2 3 4 3 4

( (2 9 36 13 )
120

15( 3( ) 7 )) ( ) 0

s s s s

s s s s s

L
P P L D D D D

V V V V L P V

    

      
 

(31) 

Considering the vertical equilibrium condition of the 

beam component (Fig. 6(b)) yields the following 

expression: 

1 3 1 4 2 ( ) 0s s

L

P P V V D x dx    
 

(32) 

  
(a) Winkler-foundation interactive force (b) Shear-layer section shear force 

Fig. 5 Cubic foundation-force distributions along the element length 
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Using Eqs. (27) and (28) and enforcing the equilibrium 

condition of Eq. (4), Eq. (32) becomes: 

1 3 1 2 3 48 8 ( 3( ) ) 0s s s sP P L D D D D     
 

(33) 

Based on Eqs. (31) and (33), two reference foundation 

forces Ds4 and Vs4 are related to remaining six reference 

foundation forces and element nodal forces as: 

1 3 1 2
4

38 8 ( 3( ))s
s

s sP P L D D

L
D

D   


 

(34) 

2

2 4 1 2 3

3 1 2 3

4

4120 120 (2 9 36 13 )1

15 15 (8 3( ))

s s s s

s s

s

s

P P L D D D D

L L P V V
V

V

      
  

      

(35) 

Substituting Eqs. (34) and (35) into Eqs. (27) and (28), 

the foundation-section force vector DF(x) can be expressed 

as: 

  ( ) ( )FB FF FF xx x N P N PD
 

(36) 

where  1 2 3 4

T
P P P PP  is an array containing the 

element nodal forces; and PF={Ds1 Ds2 Ds3 Vs1 Vs2 Vs3}T is an 

array collecting the reference foundation-interactive forces. 

The expression for each foundation-force shape function in  

 

 

 

 

matrices NFB(x)  and NFF(x)  is given in Appendix. 

Considering the moment equilibrium of Fig. 7, the 

sectional moment MB(x) becomes: 

     2 1 1 2 2( ) s

x x

BM x x xx D dx P V x P x D dx     
 
(37) 

Employing Eqs. (27) and (28) and enforcing the 

equilibrium condition of Eq. (4), Eq. (37) can be written in 

the matrix form as: 

     BB BF FB x x x N P N PD
 

(38) 

The expression for each beam-section force shape 

function in matrices NBB(x) and NBF(x) is given in 

Appendix. 
 

 

4. Numerical validation 
 

The validity and effectiveness of the proposed beam-

foundation model are assessed through three numerical 

simulations. The first simulations focus on elastic beam-

foundation systems while the last simulation emphasizes on 

an inelastic beam-foundation system. 

 

  
(a) Beam-foundation element (b) Beam component with foundation-interactive force 

Fig. 6 Proposed beam element on Winkler-Pasternak foundation 

 

Fig. 7 Cut beam segment 

 

Fig. 8 Example I: continuous beam on Winkler-Pasternak foundation under in-span concentrated loads 

(Aslami and Akimov 2016) 
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4.1 Simulation I 
 

Fig. 8 shows the beam-foundation system modified from  

by Aslami and Akimov (2016). All system geometric and 

mechanical properties shown in Fig. 8 are provided by  

 

 

 

Aslami and Akimov (2016). The foundation stiffness  

parameters (k1 and k2) are computed using the Vlasov 

model(Vlasov and Leontiev 1966). To represent the beam-

foundation system of Fig. 8, each beam span is discretized 

by only one proposed element. Therefore, the whole system 

  
(a) Vertical displacement diagram (b) Beam rotation diagram 

  
(c) Total section shear force diagram (d) Bending moment diagram 

Fig. 9 Beam responses of Simulation I 

  
(a) Winkler-spring interactive force diagram (b) Foundation interactive force diagram 

 
(c) Shear-layer sectional force diagram 

Fig. 10 Diagrams for internal foundation forces of Simulation I 
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is discretized by four proposed beam-foundation elements, 

hence resulting in seven nodal unknowns. 

Fig. 9 shows the obtained beam-section response 

diagrams while Fig. 10 plots the computed foundation force 

diagrams. For comparison, the analytical responses based 

on the solution by Gülkan and Alemdar (1999) are also 

superimposed on the same diagrams. The validity and 

effectiveness of the proposed model are clearly noticed in 

Figs. 9 and 10. It is worth pointing out that this beam-

foundation system is also analyzed by the stiffness-based 

beam-foundation model with cubic displacement shape 

functions proposed by Zhaohua and Cook (1983). To gain 

satisfactory nodal-displacement values (at points B and D),  

 

 

 
 

two stiffness-based elements per beam span are needed, 

thus resulting in fifteen nodal unknowns. Moreover, four 

stiffness-based elements per beam span (thirty one nodal 

unknowns) are required to satisfactorily represent the beam-

section and foundation force variations along the length. 

 

4.2 Simulation II 
 

A free-free Winkler-Pasternak based beam-foundation 
system is exerted by a concentrated moment of 50 kN-m at 
its mid-span as shown in Fig. 11. Several researchers 
(Shirima and Giger 1992, Mullapudi and Ayoub 2010, 
Sapountzakis and Kampitsis 2013) have employed this 
beam-foundation problem to reference their proposed  

 

Fig. 11 Example II: prismatic beam on Winkler-Pasternak foundation under a midspan moment (Mullapudi and Ayoub 

2010, Sapountzakis and Kampitsis 2013) 

 

Fig. 12 Moment-rotation responses for example II 

 

Fig. 13 Vertical displacement profiles for example II 
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models. Geometric properties of the timber beam follow 

those given by Mullapudi and Ayoub (2010). The beam is 5-

m long and has a rectangular cross-section of 0.4 x 1.0 m2.  

 

 

 

 

The elastic modulus of timber is Et= 10.5 GPa. Thus, the 

flexural rigidity is IE= 350 x 103 kN-m2. The underlying 

soil is sandy clay with an elastic modulus Es= 45.5 MPa and 

 

Fig. 14 Bending-moment diagrams for example II 

 

Fig. 15 Example III: inelastic Winkler-Pasternak beam-foundation system under a midspan load (Limkatanyu et al. 2015) 

 

Fig. 16 Global convergence studies of the proposed beam-foundation model 
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Poisson ration νs= 0.25. The foundation stiffness parameters 

(k1 and k2) associated with these soil elastic properties are 

k1= 3.081 x 103 kPa and k2= 12.449 x 103 kN as given in 

Mullapudi and Ayoub (2010) using the Vlasov model 

(Vlasov and Leontiev 1966). The beam-foundation system 

of Fig. 11 is represented by two proposed beam-foundation 

elements (one for each half). This beam-foundation system 

is also analyzed using the Winkler-based beam element 

(Limkatanyu et al. 2013) to investigate the influences of 

employed foundation models on system behaviors. 

Fig. 12 shows the moment-rotation responses at the 

beam midspan obtained from different beam-foundation 

models. On the same diagram, the response obtained with 

four beam-Winkler-Pasternak mixed elements of Mullapudi 

and Ayoub (2010) is also superimposed for the verification 

of the beam-foundation element proposed herein. It is clear 

from Fig. 12 that two proposed beam-foundation elements 

result in the moment-rotation response as accurate as that 

obtained with four beam-Winkler-Pasternak mixed elements 

of Mullapudi and Ayoub (2010), thus confirming the 

validity and effectiveness of the proposed model. 

Furthermore, the response obtained with Winkler 

foundation model is much more flexible than that obtained 

with Winkler-Pasternak foundation model. The maximum 

midspan rotation obtained with Winkler foundation model 

is about 2.75 times larger than that obtained with Winkler-

Pasternak foundation model. The enhanced rotational 

stiffness associated with Winkler-Pasternak foundation 

model is due to consideration of soil continuity within the 

underlying soil medium. 

Fig. 13 presents the beam displacement profiles 

obtained with different beam-foundation models. These 

displacement profiles are associated with the concentrated 

moment of 50 kN-m at its midspan. The proposed model 

and the beam-Winkler-Pasternak mixed model proposed by 

Mullapudi and Ayoub (2010) result in the same beam 

displacement profile. As expected, the Winkler-based beam 

model yields larger vertical displacements at beam ends. 

The end displacement obtained with the Winkler-based 

beam model is about 2.94 times larger than that obtained 

with the proposed beam-Winkler-Pasternak model thanks to 

the coupling between the Winkler foundation springs via the 

shear-layer foundation component. 

Fig. 14 shows the bending moment diagrams obtained 

with different beam-foundation models. These bending 

moment diagrams are corresponding to the midspan 

concentrated moment of 50 kN-m. The proposed model and 

the beam-Winkler-Pasternak mixed model proposed by 

Mullapudi and Ayoub (2010) yields the same bending 

moment diagram. It is observed that the bending moment 

profile is slightly under-predicted when the soil continuity 

within the underlying soil medium is not taken into account 

as obtained with the Winkler-based beam model. 
 

4.3 Simulation III 
 

Fig. 15 shows a free-free Winkler-Pasternak based 

beam-foundation system under the exertion of a midspan 

point load. Limkatanyu et al. (2015) also analyzed this 

beam-foundation system using the improved stiffness-based 

beam-Winkler-Pasternak foundation element. The finite-

element discretization is necessary only for half of the 

system thanks to the system symmetry. The properties of 

the beam geometry and beam material are given by 

Mullapudi and Ayoub (2010). The fiber-section model is 

used to represent the inelastic beam-section response. A 

section discretization of twenty fibers (layers) is employed 

to represent the beam sectional response. The bilinear 

elastic-plastic model is employed to represent each beam-

fiber response with a first stiffness EB1= 200 GPa, a yield 

strength σyB= 207 MPa, and a second stiffness EB2= 2.8 

GPa. The Winkle spring bed is characterized by a bilinear 

elastic-plastic model while the Pasternak shear layer is 

represented by a linearly elastic model. For the Winkler 

spring bed, an initial modulus k1 is 20 MPa; a yielding force 

D1y is 60 kN/m; and a strain-hardening ratio is 0.01. For the 

elastic Pasternak shear layer, its stiffness k2 is 5,000 kN. 

These mechanical properties of the foundation model are 

provided by Sapountzakis and Kampitsis (2013). 

Fig. 16 examines the required numbers of elements to 

yield the converged global response (midspan load-

deflection relation) for the proposed Winkler-Pasternak 

beam-foundation model and investigates the inelastic 

behavior of the system using different foundation models. 

This beam-foundation system is also analyzed by two 

stiffness-based beam models (Mullapudi and Ayoub 2010, 

Limkatanyu et al. 2015) to compare their validity and 

effectiveness with the Winkler-Pasternak based beam-

foundation model proposed herein.  A finite-element mesh 

of 32 stiffness-based beam elements with cubic shape 

functions is employed to obtain the so-called “reference” 

global response. The response curves obtained with the 

proposed model indicate that a mesh containing 2 elements 

can resemble the reference global response. It is interesting 

to observe that an increase in the number of proposed 

elements leads to stiffer responses (convergence from 

below). This convergence characteristic is associated with 

the flexibility-based finite element formulation (the virtual 

force principle) and is in opposition to the stiffness-based 

finite element formulation (the virtual displacement 

principle) in which an increase in the number of elements 

results in a more flexible response (convergence from 

above). The convergence studies on the performance of two 

aforementioned stiffness-based models had been conducted 

and indicated that 8 stiffness-based beam elements with 

cubic shape functions and 2 stiffness-based beam elements 

with improved shape functions were required to reproduce 

the reference global response, hence showing the validity 

and effectiveness of the proposed flexibility-based model. 

Even though the stiffness-based beam-foundation model 

proposed by Limkatanyu et al. (2015) is as accurate as the 

proposed flexibility-based beam-foundation model for the 

global response, the advantage of the flexibility-based 

model proposed herein over the stiffness-based model in 

representing the local response is to be pointed out 

subsequently. To show the influences of employed 

foundation models, the response obtained with the Winkler-

based beam-foundation model proposed by Limkatanyu et 

al. (2013) is also added into Fig. 16. There are three loading 

points marked on the response curves in Fig. 16; Point 1 at 

which the Winkler-spring bed first reaches its yielding  
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strength; Point 2 at which the plastic hinge first forms at the 

beam midspan; and Point 3 at which the midspan deflection 

of Δ = 0.01 m is attained. Fig. 16 shows that an initial 

stiffness of the Winkler-Pasternak based beam-foundation 

system is approximately 1.20 times higher than that of the 

Winkler based beam-foundation system (Point 1). The 

Winkler-Pasternak foundation model can lead to an increase 

in the midspan load causing the midspan plastic-hinge 

formation (Point 2) about 25 percent when compared to the 

Winkler foundation model.  The midspan load associated 

with Point 3 also increases approximately 34 percent when 

the Winkler foundation is replaced by the Winkler-

Pasternak foundation model. Associated with the added 

shear-layer foundation component to account for soil 

continuity, the stiffer and stronger load-deflection response 

of the Winkler-Pasternak beam-foundation system is 

obtained. 

The local-response convergence studies of the beam-

foundation system reveal that four proposed elements can 

resemble the reference local responses as shown in Figs. 17-

19. It is noted that a finite-element mesh of 64 stiffness-

based beam elements with cubic shape functions is 

employed to obtain the reference local responses. The local-

response convergence studies of two aforementioned  

 

 

 

stiffness-based models had also been performed and 

indicated that 16 stiffness-based beam elements with cubic 

shape functions and 8 stiffness-based beam elements with 

improved shape functions were required to reproduce the 

reference local responses, thus showing the validity and 

effectiveness of the proposed flexibility-based beam-

foundation element. 

Fig. 17 shows the bending-curvature and bending-

moment distributions at integration points along the beam 

length under an imposed midspan deflection of Δ = 0.01 m 

(Point 3). In general, a relatively coarse mesh of 4 proposed 

beam-foundation elements can reproduce the reference 

beam-section local responses. Although 16 stiffness-based 

elements of Mullapudi and Ayoub (2010) and 8 stiffness-

based elements of Limkatanyu et al. (2015) are able to 

resemble the overall distributions of the beam section 

responses, they both underestimate the maximum curvature 

by factors of 1.98 and 2.29, respectively as shown in the 

inset of Fig. 17(a). However, the proposed flexibility-based 

model is able to accurately predict the maximum curvature 

as shown in the inset of Fig. 17(a) due to the merit of force 

shape functions, thus confirming the superiority of the 

proposed model in representing the local responses. This 

feature could be essential especially when the beam-section  

 

 

(a) Curvature diagram (b) Moment diagram 

Fig. 17 Moment and curvature distributions along the beam for midspan displacement δ = 0.01 m 

  
(a) Vertical displacement diagram (b) Beam rotation diagram 

Fig. 18 Vertical displacement and beam rotation distributions along the beam for midspan displacement δ = 0.01 m 
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curvature ductility becomes a critical consideration in 

design and assessment of the beam-foundation system 

under seismic loadings (ICC 2012). Unlike those obtained 

with stiffness-based models, the bending-moment 

distribution obtained with the proposed model shows no 

sudden drop in the plastic-hinge region. This sudden drop in 

the moment distribution was also detected in Limkatanyu 

and Spacone (2002a) and could be remedied by employing 

the flexibility-based beam formulation (Limkatanyu and 

Spacone 2006) or mixed beam formulation (Mullapudi and 

Ayoub 2010). Furthermore, Fig. 17(b) shows that the 

employed foundation model affects the maximum values of 

negative moment (concave) and bending curvature. The 

Winkler-Pasternak foundation model results in a 22.9 % 

decrease in the maximum negative moment and a 15.9 % 

decrease in the maximum bending curvature. These 

reductions are associated with the merit of the stiffer and 

stronger foundation model employed in mitigating the beam 

bending response. 

Fig. 18 shows the beam vertical displacement and beam 

rotation distributions at integration points along the beam 

length under an imposed midspan deflection of Δ = 0.01 m 

(Point 3). Following the compatibility hypothesis of the 

adopted Winkler-Pasternak foundation model, Fig. 18 also 

shows the Winkler-spring deformation and shear-layer shear 

strain distributions. Clearly, a relative coarse mesh of 4  

 

 

proposed elements can produce the reference beam vertical 

displacement and beam rotation distributions. To present the 

computational effectiveness of the proposed model, the 

beam-section displacement distributions obtained with two 

stiffness-based models are also superimposed in Fig. 18.  

Furthermore, the beam-section displacement distribution 

obtained with the Winkler foundation model is presented in 

Fig. 18. The beam deflection profiles of Fig. 18(a) obtained 

from both foundation models indicates that in this 

numerical simulation, the beam-foundation system can be 

considered as an infinitely long beam-foundation system. 

Associated with added restraint by the shear-layer 

foundation component, the Winkler-Pasternak beam-

foundation system sinks into the ground (negative 

displacement), while a certain part of the Winkler beam-

foundation system (from 1.25 to 3.1 m) lifts off the ground 

(positive displacement). The shear-layer foundation 

component plays an enhancing role in reducing the beam 

rotation as shown in Fig. 18(b), thus leading to a 12.8 % 

decrease in the maximum beam rotation. 

Fig. 19 plots the foundation force diagrams under an 

imposed midspan deflection of Δ= 0.01 m (Point 3). 

Obviously, a relative coarse mesh consisting of 4 proposed 

elements is sufficient in resembling the reference 

foundation-force distributions. Comparisons between the 

foundation-force distributions associated with the proposed 

 

 
(a) Winkler-spring interactive force diagram (b) Foundation interactive force diagram 

 
(c) Shear-layer sectional force diagram 

Fig. 19 Internal foundation force distributions along the beam for midspan displacement δ = 0.01 m 
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flexibility-based model and two stiffness-based models 

shows the computational efficiency of the proposed 

flexibility-based model. The foundation-force distributions 

obtained with the Winkler-based beam model are also 

superimposed into Fig. 19. Comparisons between the 

Winkler-spring interactive forces associated with two 

foundation models as shown in Fig. 19(a) indicate that the 

yielding region of the Winkler-foundation spring associated 

with the Winkler-Pasternak foundation model seems to 

spread out along a larger portion of the beam than that 

associated with the Winkler foundation model. This 

observation is due to the merit of the interaction between 

the Winkler-foundation springs. Fig. 19(b) shows that the 

shear-layer foundation component drastically alters 

distribution nature of the foundation interactive forces 

acting at the bottom face of the beam. There are three 

regions in the Winkler-Pasternak foundation force 

distribution, namely: 0-1, 1-2, and 2-3. Along region 0-1, all 

foundation components are in the elastic range; along 

region 1-2, the yielding limit of the Winkler-foundation 

spring is reached while further increase of the foundation 

interactive force is associated with the added shear-layer 

foundation component; and along region 2-3 (plastic-hinge 

zone), the foundation interactive force drastically rises 

associated with the rapid increase in beam curvature as 

presented in Fig. 17(a). The maximum foundation 

interactive force shown in the inset of Fig. 19(b) can be 

predicted well by the proposed but is drastically 

underestimated by two stiffness-based models. This 

superiority of the proposed model is associated with its 

capability to represent well the maximum bending curvature 

as shown in Fig. 17(a). Due to linearly elastic response of 

the shear-layer foundation component, the shear-layer 

sectional force diagram of Fig. 19(c) simply resembles the 

shape of the shear-layer shear strain diagram of Fig. 18(b). 

 

 

5. Conclusions 
 

A novel flexibility-based beam-foundation model for 

inelastic analyses of beams on deformable foundation is 

proposed herein. To represent the underlying foundation 

medium, the Winkler-Pasternak foundation model is 

adopted. In this foundation model, the continuous nature of 

the underlying foundation is taken into account by laying an 

incompressible shear layer on the top ends of the Winkler-

foundation spring bed. The principle of virtual forces forms 

the core of the proposed model. The internal force fields are 

related to the element force degrees of freedom through 

equilibrated force shape functions. To present the general 

procedure of both strong and weak forms of the problem, 

Tonti’s diagrams are used. Three numerical simulations are 

employed to assess validity and to show effectiveness of the 

proposed model. An elastic continuous beam-foundation 

system under in-span concentrated forces is investigated in 

the first simulation. The simulation results confirm the 

model ability to represent analytical responses at both 

global and local levels. The model accuracy allows each 

beam span to be discretized only by a single proposed 

element, thus minimizing the computational cost. An elastic 

free-free beam-foundation system under a midspan moment 

is studied in the second simulation. The simulation results 

show the superiority of the proposed model over the mixed 

model proposed by Mullapudi and Ayoub (2010).  When 

compared to the Winkler foundation model, the Winkler-

Pasternak foundation model results in a stiffer beam-

foundation system due to the added shear-layer foundation 

component to account for soil continuity. An inelastic free-

free beam-foundation system under a midspan load is 

investigated in the third simulation. Based on global and 

local convergence studies, the superiority of the proposed 

model over stiffness-based models previously proposed in 

the literature (Mullapudi and Ayoub 2010, Limkatanyu et 

al. 2015) is confirmed. The added shear-layer foundation 

component associated with the Winkler-Pasternak 

foundation model results in a stiffer and stronger beam-

foundation system and plays an essential role in 

characterizing the foundation-interactive force distribution. 
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Appendix: Force shape functions 
 

The expression for beam-section force shape function in 

matrices NBB(x) and NBF(x) of Eq. (38) can be expressed as: 
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The expression for foundation-force shape function in 

matrices NFB(x) and NFF(x) of Eq. (36) can be expressed as: 
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