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1. Introduction 
 

Determining the shear strength of rock joints requires 
understanding the relationship between the mean normal 
stress on the rupture plane (mid-plane of the discontinuity) 
and the mean tangential stress that is produced by the 
slippage between the two rock faces. 

In the case of rock joints, the rock contact breaks and, as 
in any process that is related to the breakage mechanics of 
rock masses, a good approximation of the strength 
phenomena involves adequate knowledge of the strength 
laws of such rock masses. In this regard, adequate research 
must be conducted in the framework of well-established 
failure criteria to study rock masses. 

Furthermore, adequately predicting breakage 
phenomena when the deviator load becomes significant 
(such as rock joints where the shear load that defines 
breakage on the median plane of the discontinuity is 
determined for a given normal load level in this plane) must 
consider the dilatancy of the material, whose influence is 
well known in rock materials (Hoek and Brown 1997, 
Fairhurst 2003, Alejano and Alonso 2005). 

Both a suitable failure criterion and the dilatancy law 
were incorporated into a previously established theoretical 
model (Serrano et al. 2014) to better predict and 
approximate experimental results, with a particular  
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formulation established by Barton (1973).  

Pioneering works regarding the evolution of the study of 
rock joints include the following. Patton (1967) proposed a 
formulation that was based on a saw-tooth pattern and was 
based on tests that were performed on artificially created 
joints in gypsum material. Ladanyi and Archambault (1969) 
and Jaeger (1971) used more sophisticated adjustment laws. 
However, Barton (1973) had the most success by 
incorporating an empirical formula that considered the 
effects of joint roughness and dependence on the load level 
into his dilatancy prediction study.  

More complex empirical models then began to appear. 
Some models compared the angles that defined the surface 
roughness by the normal stress (Schneider 1976). Heuze 
and Babour (1982) introduced a three-parameter model to 
predict the dilatancy that is produced in rock joints by 
empirically identifying a critical point beyond which no 
dilatancy exists. Additionally, Leichnitz (1985) developed a 
model that could consider rock fractures that were produced 
by nonlinear behaviour in the material based on 
experimental results from sandstone.  

Plesha (1987) studied a degradation factor for roughness 
from the saw-tooth roughness model. Qiu et al. (1993) 
revised Plesha’s model by considering sinusoidal instead of 
saw-tooth roughness. Saeb and Amadei (1992) conducted a 
similar study based on an empirical ratio of the dilatancy 
factor, which was given by Ladanyi and Archambault 
(1969). Recently, other investigations of the degradation of 
roughness in contacts between joint faces were performed. 
Belem (2016) proposed different quantitative parameters for 
the characterization of the primary roughness which are  

 
 
 

Theoretical model for the shear strength of rock discontinuities  
with non-associated flow laws 

 
Rubén Galindo1, José L. Andrés1, Antonio Lara1, Bin Xu2, Zhigang Cao2 and Yuanqiang Cai2 

 
1Department of Geotechnical Engineering, Universidad Politécnica de Madrid, C/ Profesor Aranguren s/n 28040 Madrid, Spain 

2Department of Civil Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, PR China 
 

(Received May 6, 2020, Revised January 26, 2021, Accepted January 28, 2021) 
 

Abstract.  In an earlier publication (Serrano et al. 2014), the theoretical basis for evaluating the shear strength in rock joints 
was presented and used to derive an equation that governs the relationship between tangential and normal stresses on the joint 
during slippage between the joint faces.  
In this paper, the theoretical equation is applied to two non-linear failure criteria by using non-associated flow laws, including 
the modified Hoek and Brown and modified Mohr-Coulomb equations. 
The theoretical model considers the geometric dilatancy, the instantaneous friction angle, and a parameter that considers joint 
surface roughness as dependent variables. This model uses a similar equation structure to the empirical law that was proposed by 
Barton in 1973. However, a good correlation with the empirical values and, therefore, Barton’s equation is necessary to 
incorporate a non-associated flow law that governs breakage processes in rock masses and becomes more significant in highly 
fractured media, which can be induced in a rock joint. A linear law of dilatancy is used to assess the importance of the non-
associated flow to obtain very close values for different roughness states, so the best results are obtained for null material 
dilatancy, which considers significant changes that correspond to soft rock masses or altered zones of weakness. 
 

Keywords:  rock joint; shear strength; theoretical model; dilatancy; non-linear criterion; non-associated flow law 

 



 

Rubén Galindo, José L. Andrés, Antonio Lara, Bin Xu, Zhigang Cao and Yuanqiang Cai 

 

 

mostly the anisotropic properties of rock surface 

morphology at various scales: coefficient and degree of 

apparent structural anisotropy of surface; coefficient and 

degree of real structural anisotropy of surface; surface 

anisotropy function and degree of surface waviness. The 

proposed quantitative parameters allows their application at 

both lab and field scales. Zhang et al. (2017) used a 3D 

optical scanner to measure the joint morphology and 

performed direct shear tests under constant normal load 

conditions on artificial rock joints with different 

morphology. As the normal stress increases, the percentage 

of shear-off rises gradually before approaching a stable 

level, whereas dilation consistently decreases.  

Gens et al. (1990) proposed an elastoplastic constitutive 

model to describe the three-dimensional behaviours of 

fractures. Grasselli (2003), Belem (2007) and Samadhiya et 

al. (2008) formulated parameter models that considered the 

three-dimensional natures of joint surfaces. More reciently, 

Hu and Lin (2018) analyzed the shear strength on joint 

asperities and adopted a hyperbolic function to describe the 

degradation of friction for different normal stress levels. 

Furthermore, the proposed model avoids direct connection 

to the surface morphology, which is convenient for practical 

use. Lin et al. (2020) applied the nonlinear shear strength 

model, JRC-JCS model, to study the overall shear resistance 

of the joint under four nonuniform distribution patterns of 

normal stress. The results show that when the normal stress 

is distributed in a nonuniform way, the shear resistance 

provided by rock joint as a whole decreases with the 

increase of the normal stress distribution interval. Chong et 

al. (2020) performed experimental studies using the quasi-

static resonant column testing device on regularly jointed 

disc column specimens for three different materials. The 

wave velocities of the specimens are obtained under various 

normal stress levels. The normal and shear joint stiffness 

are calculated from the experimental results using an 

equivalent continuum model and used as input parameters 

for numerical analysis. Based on the calibrated jointed rock 

model, the numerical and experimental results are 

compared. 

Among the existing models, Barton’s empirical method 

(1973) is the most widely used in practice. This method is 

based on the selection of a joint roughness coefficient 

(JRC), for which various approaches have been proposed to 

relate this value to the morphologies of the profiles that it 

defines; these approaches have also evaluated the use of 

fractal analysis (Lee et al. 1990, Huang et al. 1992, Muralha  

 

 

1995, Xie et al. 1999). 
Asadollahi (2009), in an application to stability analysis 

of a single three dimensional rock block, introduced a 
modification of Barton’s original shear failure criterion, 
which was based on limitations in Barton’s criterion 
concerning the estimation of the peak displacement or post-
peak shear strength. Zhao et al. (2020) also investigated the 
stability of a three-dimensional (3D) wedge under the 
pseudo-static action of an earthquake based on the nonlinear 
Barton-Bandis failure criterion. The parametric analyses 
showed that the stability coefficient and the instability mode 
of the wedge depend on the mechanical parameter of the 
rock mass; in particular, the friction angle of the rock and 
the roughness coefficient of the structure surface JRC are 
sensitive to stability.  

However, the theoretical basis of the shear strength of 

rock joints was established by Serrano et al. (2014), who 

developed a theoretical model that could capture the 

primary mathematical structure of Barton’s equation and 

the dependence of the variables that are used in the 

description of this equation. 

The aim of this article is to apply this theoretical 

formulation (2014) to more precisely define the shear 

strength of rock joints in accordance with known 

experimental results. We must use appropriate failure 

criteria, which must be nonlinear, and consider the dilatancy 

of rocks by a non-associated flow law. 

Thus, two well-established nonlinear failure criteria are 

used: the modified Hoek and Brown criterion (Hoek et al. 

2002) and the modified Mohr-Coulomb criterion (Singh et 

al. 2011, Singh and Singh 2012). Additionally, the effect of 

the material’s dilatancy is considered by using a linear 

variation law with respect to the instantaneous friction angle 

so that model considers both the geometrical dilatancy from 

the breaking of contacts according to planes of weakness on 

the asperities of the roughness and the material’s dilatancy 

by using a non-associated flow law. 

However, the scope of the presented mathematical 

formulation considers both the evaluation of a geometric 

parameter of real roughness for the considered problem and 

the height and length of each joint’s roughness in laboratory 

samples. Therefore, scaling the results of these laboratory 

samples to joints of different sizes is not the subject of this 

investigation. 
 

 

2. Theoretical model 
 

Two failure mechanisms occur when contact occurs  

 

Fig. 1 First failure mechanism (slippage) and second failure mechanism (plastification of the contacts) 
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through surface roughness. In the first mechanism, the joint 

slips and forms an angle 𝛼 with the mid-plane of the joint 

(Fig. 1); this mechanism is used for low normal loads. In 

the second mechanism, the roughness is plastified and 

breaks (Fig. 1), which is used for high normal exterior 

loads.  

The critical normal load Ncrit discriminates between both 

mechanisms. Failure occurs through the first mechanism for 

normal stresses below this critical load, while the second 

mechanism applies to loads above the critical level (Fig. 2).  
 

2.1 First mechanism analysis 
 

The i-th contact between the roughness areas is 

considered according to the joint profile. The tangential 

plane in the i-th contact is assumed to form the maximum 

angle αi with the mid-plane of the joint in a section over 

the vertical plane 𝛱𝑖 , which is perpendicular to the mid-

plane in the direction of the shear load. Slippage is 

produced when 

𝑇𝑖

𝑁𝑖

= 𝑡𝑎𝑛(𝜑𝑏 + 𝛼𝑖) = 𝑡𝑎𝑛(𝜑𝑝)
𝑖
 

 

 

 

 

where 𝜑𝑏 is the basic friction angle of the material and 𝑇𝑖  

and 𝑁𝑖 are the tangential and normal force in the direction 

of the mid-plane, respectively (Fig. 3). The tangential and 

normal force in the direction of the tangential plane in the i-

th contact are expressed through 𝑇𝑖
∗ and 𝑁𝑖

∗. The notation 

(𝜑𝑝)
𝑖
 (peak friction angle) is used for 𝜑𝑏 + 𝛼𝑖.  

If these arguments are extended to the n contacts 

between the joint faces and a uniform distribution of force 

per unit of surface is assumed, we can obtain the joint shear 

strength governing law according to the first mechanism: 

𝜏

𝜎𝑛

= 𝑡𝑎𝑛(𝜑𝑏 + 𝛼) (1) 

The practical way to approach this first slippage 
mechanism includes the assumption of a constant average 
slope for all contacts. Thus, we suppose that slippage is 
produced along a plane that is formed by angle 𝛼 and the 
mid-plane according to equation (1). Thus, movement 
between the joint walls is produced with constant dilatancy 
according to this angle; this phenomenon is defined as 
geometric dilatancy because it is produced by the geometry 
of the joint surface.  

When analysing this mechanism in terms of more 

 

Fig. 2 Peak shear strength governing law 

 

Fig. 3 Contact forces according to the first failure mechanism 

 

Fig. 4 Influence of surface roughness smoothing along the opening of the joint 
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realistic surfaces, the above-described equations are verified 

in each equilibrium state by varying the angle of the slope 

at the contact along the joint opening. This condition 

supposes variation in the strength law of the first 

mechanism with the relative displacement that is produced 

between the joint faces. This geometrical configuration, 

which is mainly produced from damage to the asperities, 

can explain strength reductions such that when failure via 

slippage occurs with a constant normal load, the strength 

against the tangential stress is lower because the contact 

angle is smaller in a higher position. Thus, for joints in 

which this first mechanism of failure via slippage is 

produced, the space that constitutes the height of the 

contacts changes from the peak strength to the basic or 

residual distance. At this point, the geometric dilatancy is 

null (Fig. 4). However, from a practical perspective, we can 

consider the slope 𝛼𝑖  for each roughness at a constant 

value and the value of the average contact angle 𝜃𝑖. 
 

2.2 Analysis of the second mechanism 
 

The interaction between the edges of a joint consists of a 

large number of contact points such that the force is 

transmitted through these points. Failure can occur when 

the load on each contact is sufficiently high (Fig. 1). This 

situation can be mathematically modelled by supposing that 

the geometry of the joint can be defined by a particular 

surface roughness profile and adopting some hypotheses, as 

indicated below. 

The rock matrix obeys the shear strength governing law: 

𝜏 = 𝜏(𝜎). 

When failure is produced by this mechanism, the joint 

moves with a dilatancy that is defined by the angle δ. The 

fracture surface for each given roughness is flat (Fig. 5). 

Another hypothesis is that the fracture area ai of each 

contact depends on the dilatancy angle 𝛿 according to a 

particular angle 𝑎𝑖(𝛿). 

One last hypothesis is used: rupture is produced for a 

dilatancy angle 𝛿 that minimises the total shearing force T 

of the failure for a certain constant normal load N over the 

joint. This condition can be mathematically expressed as 

(
𝜕𝑇

𝜕𝛿
)

𝑁=𝑐𝑜𝑛𝑠𝑡
= 0 (2) 

where 𝑇 = ∑𝑇𝑖 . 

Based on these hypotheses, the joint shear strength 

governing law can be mathematically deduced to relate the 

joint-plane stresses 𝜏  and the normal stress 𝜎𝑛  for the 

second failure mechanism as follows (Serrano et al. 2014): 

𝜏

𝜎𝑛

=
𝑇

𝑁
= 𝑡𝑎𝑛(𝜌 + 𝜅𝑚 + 𝛿) (3) 

where 𝛿  is the dilatancy angle at failure, 𝜌  is the 

instantaneous friction angle and 𝜅𝑚  is the angle that 

represents the reduction in the area of contact in the joint 

and should be obtained from the geometrical properties of 

the different roughness values (Fig. 5) such that for one i-th 

contact (Serrano et al. 2014): 

1

𝑡𝑎𝑛 𝜅𝑖

=
−1

𝑎𝑖

𝑑𝑎𝑖

𝑑𝛿
 (4) 

3. Barton’s empirical model (1973) 
 

Barton (1973) experimentally studied the law governing 

the shear strength of a rock joint from the following 

empirical equations:  

𝜏

𝜎𝑛

= 𝑡𝑎𝑛(𝜑𝑏 + 𝛿 + 𝑓) = 𝑡𝑎𝑛 𝜑𝑝 (5) 

𝜑𝑝 − 𝜑𝑏 = 𝐽𝑅𝐶 𝑙𝑜𝑔
𝐽𝐶𝑆

𝜎𝑛

 (6) 

where  

𝜏 and 𝜎𝑛  are the stresses at the onset of failure 

according to the tangential and normal angles, respectively,  

𝜑𝑏 is the basic friction angle of the “healthy” joint wall,  

𝛿 is the dilatancy angle at the onset of joint movement, 

𝑓 is a parameter that depends on the roughness, 

JRC is the joint roughness coefficient, which depends on 

surface roughness, and 

JCS represents the joint wall compressive strength of the 

rock wall.  

Eq. (6) is restricted to 𝜎𝑐 𝜎𝑛⁄  values that are greater 

than 50 to 100 and that have a constant and independent 

friction angle from the load of  

𝜑𝑝 = 𝜑𝑏 + 1.7𝐽𝑅𝐶  (7) 

When the joint surfaces are altered, the roughness is 

smoothed and dilatancy disappears. In this case, the residual 

friction angle 𝜑𝑟  is reached and 𝜑𝑏 = 𝜑𝑟  (in principle; 

throughout this text, this relationship is considered the basic 

friction angle; however, this angle coincides with the 

residual value when joint surface alteration exists).  

However, a scale effect can be considered for tests of the 

JRC and JCS values when using correction equations 

(Barton and Bandis 1982). 

Eq. (5) depends on the basic friction angle of the joint 

wall ( 𝜑𝑏 ), the dilatancy angle ( 𝛿 ) and the roughness 

characteristics ( 𝑓 ). In the above theoretical formula 

(equation (3)), the shear strength of the joint is a function of 

the instantaneous angle of roughness (𝜌), the geometric 

dilatancy (𝛿) and the degree of reduction in the contact area 

and depends on geometric properties that define the 

roughness (𝜅𝑚). The observed similarity is not random but 

rather the result of an adequate consideration of the factors 

that contribute to joint failure through the presented 

hypothesis and theoretical formulation.  
 

 

4. Influence of roughness geometric factors 
 

The influences of the surface roughness shape and 

geometry on the second failure mechanism are clearly 

shown in this theoretical formulation by using the reduction 

in the contact area 𝜅𝑚. In Barton’s empirical formula, the 

influence of the surface roughness on the strength law was 

articulated with the JRC index, which in its initial formation 

was determined according to the similarity of the real joint 

to standard roughness profiles. Subsequently, statistical and 

fractal methods were suggested that supported correlations 

of this index with the parameters of the joint roughness  
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profile to improve the objectivity of the estimate (Lee et al. 

1990, Huang et al. 1992, Muralha 1995, Xie et al. 1999). 

A simple and representative manner to represent the 

roughness of a rock surface can be constructed from the 

height ℎ𝑖 and amplitude 𝑏𝑖 for each roughness such that 

the average contact angle of the irregularity 𝜃𝑖  may be 

represented as 𝑡𝑎𝑛𝜃𝑖 = 2ℎ𝑖/𝑏𝑖. 
A simplified study consists of the supposition of simple 

shapes for irregularities, including saw-teeth or softened 
curves that form circumference arcs, such that the 
roughness can be determined from a single parameter: the 
slope angle for each roughness.  

In the theoretical model for the second mechanism, the 

joint geometry influences the parameter that is defined as 

𝜅𝑚. The dependence 𝜅𝑖 of the angle of reduction for each 

contact can be deduced for the various geometries that are 

used to define the joint profiles (Serrano et al. 2014). 

The use of a saw-tooth joint profile assumes work in a 

plane deformation problem. For contact i, angles 

𝛼1𝑖  and 𝛼2𝑖 are formed, as shown in Fig. 5(a):  

𝜅𝑖 = 𝛼2𝑖 + 𝛿  (8) 

The use of circumference arcs for joint profiles is also 

present in plane deformation. Angle 𝛼𝑖 corresponds to the 

tangent plane in contact i to create an ideal and symmetrical 

surface roughness geometry with regard to the mid-plane 

(Fig. 5(b)): 

𝜅𝑖 = 𝛼𝑖 − 𝛿  (9) 

The relationship between the angle in the contact and 

the average irregularity angle is direct and is shown by  

𝛼𝑖 = 2𝜃𝑖. 

 

 

 

For a better approach to study real joints, we should 

consider that the surface roughness has a three-dimensional 

nature whose geometry consists of spherical caps. In this 

case, the contact area between the joint faces is lower than 

that in plane deformation models: specifically, the 

intersections are circular. Fig. 6 represents the evaluated 

geometry for irregularities. As shown throughout the text, 

angle 𝛼𝑖 serves as the roughness parameter and forms the 

tangent to the contact in the mid-plane of the joint: 

𝑡𝑎𝑛 𝜅𝑖 =
𝑡𝑎𝑛(𝛼𝑖−𝛿)

2
  (10) 

As with the prior case, using the average roughness 

angle 𝜃𝑖 = 𝛼𝑖/2 can be more practical. 

Comparing predictions from the theoretical model with 

the Barton criteria requires relating the JRC with the 

geometric variable 𝛼𝑖 (or 𝜃𝑖), which is used to define the 

roughness.  

Thus, to characterise the geometry of irregularities with 

softened profiles, we propose characterising the fractal 

dimension of the joints with a circumference arc generator 

that depends on the already-defined average contact angle 

𝜃 with regard to the mid-plane (Fig. 6) according to the 

surface roughness geometry of the circumference arcs. For 

this model, the following fractal dimension is obtained 

Serrano et al. (2014):  

𝐷𝑏 =
𝑙𝑛 3

𝑙𝑛 (2 +
𝑠𝑖𝑛2 𝜃

2𝜃
)
 (11) 

The correlation between the JRC and the fractal 

dimension of the established model can be obtained with 

the statistical empirical ratio that was used by Tse and 

  

(a) (b) 

Fig. 5 (a) Rupture of a saw-tooth joint in contact i and (b) linear surface roughness according to the circumference arcs in 

contact 𝑖 

 

Fig. 6 Three-dimensional surface roughness according to the spherical caps in contact 𝑖 

311



 

Rubén Galindo, José L. Andrés, Antonio Lara, Bin Xu, Zhigang Cao and Yuanqiang Cai 

Cruden (1979). The empirical relationship between the JRC 

value and the fractal dimension for the fractal model in Fig. 

6 can be expressed by using the following equation 

(Serrano et al. 2014): 

𝐽𝑅𝐶 = 8.0011 𝑙𝑛(𝐷𝑏 − 1) + 41.8964  (12) 

 

 

5. Influence of the intrinsic resistance law of the rock 
on the contacts 
 

5.1 Modified Hoek and Brown failure criterion 
 

The modified Hoek-Brown criterion (Hoek et al. 2002) 

is as follows: 

𝜎1 − 𝜎3

𝜎𝑐

= (𝑚
𝜎3

𝜎𝑐

+ 𝑠)
𝑛

 (13) 

where 𝜎1 is the major principal stress at failure; 𝜎3 is the 

minor principal stress; 𝜎𝑐  is the uniaxial compressive 

strength of the rock matrix; and m and s are constants that 

depend on the characteristics of the rock mass, its degree of 

fracturing and the disturbance factor D. The value of the 

exponent n also generally depends on the degree of 

fracturing by means of the Geological Strength Index (GSI). 

Its equation is as follows (Hoek et al. 2002): 

𝑛 =
1

2
+

1

6
(𝑒−𝐺𝑆𝐼/15 − 𝑒−20/3) (14) 

For rock joints, the disturbance factor D can be 

conveniently chosen to represent the conditions of alteration 

along the surface sides of the joint. The condition to 

estimate this alteration is expressed by Eq. (43) below. 

The expression for the modified Hoek-Brown failure 

criterion, which involves Lambe’s variables for plane strain 

analysis, (p=( 𝜎1 + 𝜎3 )/2 and q=( 𝜎1 − 𝜎3 )/2), permits a 

simplified and normalized treatment of the rock mass 

failure phenomena. With these variables, the modified 

Hoek-Brown failure criterion is expressed as follows 

(Serrano et al. 2000): 

𝑝

𝛽𝑛

+ 𝜁𝑛 = [1 + (1 − 𝑛) (
𝑞

𝛽𝑛

)
𝑘

]
𝑞

𝛽𝑛

 (15) 

where k, 𝛽𝑛 and 𝜁𝑛 are constants that represent the rock 

mass and depend on n, m, s and 𝜎𝑐 as follows: 

𝑘 = (1 − 𝑛)/𝑛; 𝛽𝑛 = 𝐴𝑛𝜎𝑐; 𝜁𝑛 = 𝑠/(𝑚𝐴𝑛) (16) 

where 𝐴𝑛
𝑘 = 𝑚(1 − 𝑛)/21/𝑛.  

The failure above the Mohr circles, τ = τ (σ), is defined 

by (Fig. 7): 

𝜏 = 𝑞 𝑐𝑜𝑠 𝜓 (17) 

𝜎 = 𝑝 − 𝑞 𝑠𝑖𝑛 𝜓 (18) 

where 𝜓 is the dilatancy angle, which marks the breaking 

point of the failure criterion on Mohr’s circle. 

The important concept of the instantaneous friction 

angle is defined after Serrano and Olalla (1994): 

𝑠𝑖𝑛 𝜌 =
𝑑𝑞

𝑑𝑝
 (19) 

 

Fig. 7 Mohr’s circle of stresses and the stress on the 

failure plane 

 

 

According to Eq. (15), 

𝑠𝑖𝑛 𝜌 =
𝑑𝑞

𝑑𝑝
=

1

1 + 𝑘 (
𝑞

𝛽𝑛
)

𝑘 
(20) 

The parametric equations are obtained for the criterion 

with Lambe’s variables, using (15) and (20): 

𝑞∗ ≡
𝑞

𝛽𝑛

= [
1 − 𝑠𝑖𝑛 𝜌

𝑘 𝑠𝑖𝑛 𝜌
]

1/𝑘

 (21) 

𝑝0
∗ ≡

𝑝

𝛽𝑛

+ 𝜁𝑛 = 𝑛 [
1 + 𝑘 𝑠𝑖𝑛 𝜌

𝑠𝑖𝑛 𝜌
] [

1 − 𝑠𝑖𝑛 𝜌

𝑘 𝑠𝑖𝑛 𝜌
]

1/𝑘

 (22) 

The parametric expressions of the failure stresses on 

Mohr’s circle for the generalized Hoek-Brown failure 

criterion (2002) under a non-associated flow law can be 

obtained by considering (17), (18), (21) and (22): 

𝜏∗ ≡
𝜏

𝛽𝑛

= [
1 − 𝑠𝑖𝑛 𝜌

𝑘 𝑠𝑖𝑛 𝜌
]

1/𝑘

𝑐𝑜𝑠 𝜓 (23) 

𝜎0
∗ ≡

𝜎

𝛽𝑛
+ 𝜁𝑛 = (

1 − 𝑠𝑖𝑛 𝜌

𝑘 𝑠𝑖𝑛 𝜌
)

1/𝑘

[𝑛 (
1 + 𝑘 𝑠𝑖𝑛 𝜌

𝑠𝑖𝑛 𝜌
) − 𝑠𝑖𝑛 𝜓] (24) 

 

5.2 Modified Mohr-Coulomb failure criterion 
 

A non-linear strength criterion of a rock mass was 

suggested by Singh et al. (2011) and Singh and Singh 

(2012) as follows: 

𝜎1 − 𝜎3 = 𝜎𝑐𝑗 + 2
𝑠𝑖𝑛 𝜑𝑗

1 − 𝑠𝑖𝑛 𝜑𝑗

𝜎3 −
𝑠𝑖𝑛 𝜑𝑗

1 − 𝑠𝑖𝑛 𝜑𝑗

𝜎3
2

𝜎𝑐

 (25) 

If  𝜎3 > 𝜎𝑐, then 𝜎1 − 𝜎3 = 𝜎𝑐𝑗 +
𝑠𝑖𝑛 𝜑𝑗

1−𝑠𝑖𝑛 𝜑𝑗
𝜎𝑐. That is, 

when (𝜎1 − 𝜎3) reaches its maximum value in (25), then 

this value is considered constant (𝜎1 − 𝜎3) and equal to 

that maximum value: 

𝜎3 and 𝜎1 are the effective minor and major principal 

stresses at failure, 

𝜎𝑐  is the uniaxial compressive strength of the intact 

rock, 

𝜎𝑐𝑗 is the rock mass strength, and 

𝜑𝑗  is the friction angle, which is obtained by 
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conducting triaxial strength tests on rock specimens at low 

confining pressures (𝜎3 → 0). 

Eq. (25) can be expressed in a normalized form by 

dividing by 𝜎𝑐: 

𝜎1
∗ − 𝜎3

∗ =
𝜎𝑐𝑗

𝜎𝑐

+ 2
𝑠𝑖𝑛 𝜑𝑗

1 − 𝑠𝑖𝑛 𝜑𝑗

𝜎3
∗ −

𝑠𝑖𝑛 𝜑𝑗

1 − 𝑠𝑖𝑛 𝜑𝑗

(𝜎3
∗)2 (26) 

Eq. (26) can be written in a simpler form for all rocks: 

𝜎1
∗ − 𝜎3

∗ = 𝑟 + 2𝑛𝑗𝜎3
∗ − 𝑛𝑗(𝜎3

∗)2 (27) 

where 𝑛𝑗 =
𝑠𝑖𝑛 𝜑𝑗

1−𝑠𝑖𝑛 𝜑𝑗
 and 𝑟 =

 𝜎𝑐𝑗

 𝜎𝑐
. 

By using the Lambe parameters, 𝑝 = (𝜎1 + 𝜎3)/2 and 

𝑞 = (𝜎1 − 𝜎3)/2 , the modified Mohr-Coulomb criterion 

can be expressed as follows: 

2𝑞∗ = 𝑟 + 2𝑛𝑗(𝑝∗ − 𝑞∗) − 𝑛𝑗(𝑝∗ − 𝑞∗)2 (28) 

2𝑝∗ = 𝑟 + 2(𝑛𝑗 + 1)(𝑝∗ − 𝑞∗) − 𝑛𝑗(𝑝∗ − 𝑞∗)2 (29) 

By using Eqs. (28) and (29) and for 𝑡∗ = 𝜎3
∗ , the 

following expressions can be obtained: 

2𝑞∗ = 𝑟 + 𝑛𝑗 −
1

𝑛𝑗

(
𝑠𝑖𝑛 𝜌

1 − 𝑠𝑖𝑛 𝜌
)

2

 (30) 

2𝑝∗ = 2 + 𝑟 + 𝑛𝑗 −
2

𝑛𝑗

(
𝑠𝑖𝑛 𝜌

1 − 𝑠𝑖𝑛 𝜌
) −

1

𝑛𝑗

(
𝑠𝑖𝑛 𝜌

1 − 𝑠𝑖𝑛 𝜌
)

2

 (31) 

𝑠𝑖𝑛 𝜌 =
𝑛𝑗(1 − 𝑡∗)

1 + 𝑛𝑗(1 − 𝑡∗)
 (32) 

For a realistic prediction of strength, the criterion 

parameters (r and nj) must be assessed with good accuracy. 

Estimating the value of nj requires the parameter 𝜑𝑗, which 

can be obtained as discussed by Singh and Singh (2012): 

𝑛𝑗 = 𝑛0 + (1 − 𝑟) 

𝑛0 =
𝑠𝑖𝑛 𝜑

1 − 𝑠𝑖𝑛 𝜑
 

(33) 

where 𝜑  is the friction angle, which is obtained by 

conducting triaxial strength tests on intact rock at low 

confining pressures (𝜎3 → 0). Therefore,  

𝑠𝑖𝑛 𝜑𝑗 =
1 − 𝑟 + 𝑛0

2 − 𝑟 + 𝑛0

 (34) 

The other parameter (r) involves estimating 𝜎𝑐𝑗.  

From (16), (17), (30), (31) and (32), the parametric 

expressions for failure on Mohr’s circle for the generalized 

Mohr-Coulomb failure criterion under a non-associated 

flow law are 

𝜏∗ =
1

2
[𝑟 + 𝑛𝑗 −

1

𝑛𝑗

(
𝑠𝑖𝑛 𝜌

1 − 𝑠𝑖𝑛 𝜌
)

2

] 𝑐𝑜𝑠 𝜓 (35) 

𝜎∗ =
1

2𝑛𝑗
(

𝑠𝑖𝑛 𝜌

1 − 𝑠𝑖𝑛 𝜌
)

2

(−1 + 𝑠𝑖𝑛 𝜓) −
1

𝑛𝑗
(

𝑠𝑖𝑛 𝜌

1 − 𝑠𝑖𝑛 𝜌
)

+
𝑟 + 𝑛𝑗

2
(1 − 𝑠𝑖𝑛 𝜓) + 1 

(36) 

5.3 Non-associated flow law 
 

The critical angle ( 𝑠𝑖𝑛 𝜌𝑐𝑟𝑖𝑡 ) is defined as the 

instantaneous friction angle from which the rock mass stops 

being positively dilatant. After this point, the dilatancy is 

null and no changes occur in the volume during the 

plastification of the rock mass. From this definition, the 

critical angle can be obtained based on the expressions from 

(17) and (18), by considering the critical ratio (𝜎1 𝜎3⁄ ). For 

the original Hoek and Brown criterion and modified Mohr-

Coulomb criterion, we can obtain explicit expressions by 

means of following equations. 

For the original Hoek and Brown criterion: 

𝑠𝑖𝑛 𝜌𝑐𝑟𝑖𝑡 =

𝜎1
𝜎3

− 1

(
𝜎1
𝜎3

+ 1) + 2√1 +
𝜁
2

(
𝜎1
𝜎3

− 1)
2

 

For the modified Mohr-Coulomb criterion: 

𝑠𝑖𝑛 𝜌𝑐𝑟𝑖𝑡 =
1+𝐴

2+𝐴+𝐵
; 

𝐴 = √1 − 𝑛𝑗(1 + 𝐵)[2 + (𝑟 + 𝑛𝑗)(1 − 𝐵)];𝐵 =

𝜎1
𝜎3

+1

𝜎1
𝜎3

−1
 

This critical angle 𝜌𝑐𝑟𝑖𝑡  presents a variable value that 

approximately lies between 0º and 30º and depends on the 

values of the parameters. According to the expression of the 

original Hoek and Brown criterion, the latter corresponds to 

the matrix rock (𝜎1=5𝜎3), which reaches 0º when 𝜎1=𝜎3 

for rock masses. 

The maximum dilatancy (𝑠𝑖𝑛 𝜓𝑚𝑎𝑥), which is defined as 

the maximum angle of dilatancy, is produced when the rock 

mass undergoes simple traction. The failure lines form the 

angle (/4-/2) with the major principal strain (and with 𝜎1 

because this factor refers to coaxial materials). 

In the event that a rock sample undergoes a simple 

traction test, failure is always produced in a perpendicular 

direction to the minor principal stress such that the failure 

lines form an angle of /2 with the major principal strain, 

whereby the angle that corresponds to the maximum 

dilatancy reaches a value of /2. 

Under this consideration, a linear flow law was tested in 

this paper. The mathematical expression of this flow law is 

𝑠𝑖𝑛 𝜓 =
𝑠𝑖𝑛 𝜓𝑚𝑎𝑥

1−𝑠𝑖𝑛 𝜌𝑐𝑟𝑖𝑡

(𝑠𝑖𝑛 𝜌 − 𝑠𝑖𝑛 𝜌𝑐𝑟𝑖𝑡) if 𝜌 < 𝜌𝑐𝑟𝑖𝑡 → 𝜓 = 0 

The proposed flow law follows the recommendations by 

Veermer and De Borst (1984) such that it is a function of 

the internal friction angle (variable depending on the stress 

conditions) and the critical material angle. Thus, the linear 

dilatancy law can be expressed as follows: 

𝑠𝑖𝑛 𝜓 = 𝐸 𝑠𝑖𝑛 𝜌 − 𝐹 (37) 

where E and F are non-negative constants such that E≤2, 

F≤1 and E-F≤1. 

The case of E=1 and F=0 corresponds to the associated 

flow law, whereas E=F=0 implies a null dilatancy.  

Thus, dilatancy laws according to Eq. (37) for different 

values of E and F have been used for this search. 

The inferred state at a rock joint corresponds to a rock’s 
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altered quality (indicating less dilatancy than expected and 

therefore worse strength compared to a healthy rock mass). 

Archambault et al. (1993) observed that when increasing 

the scale of the analysis, the peak strength decreases, the 

residual strength is maintained and thus the dilatancy 

remains lower, so the material begins to expand to a higher 

level of plastic deformation. If we consider the quality 

index to account for the effect of scale, these observations 

are consistent with the proposals of Hoek and Brown 

(1998), which indicate that the difference between the peak 

and residual strength is higher at a smaller scale (i.e., more 

geotechnical quality). 

In this respect and with regard to the flow rule, some 

works (Hoek and Brown 1997, Fairhurst 2003) 

demonstrated the need to use a non-associated flow rule 

and, in particular, adopt null dilatancy for soft rock masses, 

which corresponds to deformation over a constant volume. 

Thus, the results shown in the following section for the 

theoretical model of the shear strength of discontinuities are 

very close to the experimental values when adopting values 

of E=F=0 in (37), i.e., zero dilatancy. 

 

 

6. Application of the theoretical model with a non-
associated flow law 
 

The second shear stress mechanism is associated with 

the failure of roughness and thus requires incorporating an 

intrinsic strength criterion with which to model this failure.  

Studies of rocks require nonlinear failure criteria to consider 

the influences of confining pressures on the shear 

resistance. The use of this analysis criterion provides a basis 

for comparison with the empirical Barton model.  

A modified Hoek and Brown failure criterion and a 

modified Mohr-Coulomb criterion were applied by 

considering a non-associated flow law in both cases. 

 

6.1 Modified Hoek and Brown failure criterion 
 

The modified Hoek and Brown failure criterion (Hoek et 

al. 2002) with non-associated flow can be expressed in a 

parametric form with the instantaneous friction angle as the 

variable (Serrano and Olalla 1994) according to Eqs. (23) 

and (24). In such expressions, the subscript i is used when 

applied to one asperity, and the subscript r is used to 

indicate variables in the failure plane.  

The expressions that relate the forces on the global axes 

and those of the failure plane satisfy the following:  

𝑁𝑖 = 𝑎𝑖𝑟(𝜎𝑟𝑖 𝑐𝑜𝑠 𝛿 − 𝜏𝑟𝑖 𝑠𝑖𝑛 𝛿) (38) 

𝑇𝑖 = 𝑎𝑖𝑟(𝜎𝑟𝑖 𝑠𝑖𝑛 𝛿 + 𝜏𝑟𝑖 𝑐𝑜𝑠 𝛿) (39) 

Based on the above expressions, we can obtain specific 

equations for each type of modelled roughness. However, 

the most realistic case is that of geometrical modelling with 

spherical caps. In this case, 

𝑎𝑖𝑟 = 𝑎𝑖

𝑠𝑖𝑛2(𝛼𝑖 − 𝛿)

𝑠𝑖𝑛2 𝛼𝑖

 (40) 

Substituting equations (23), (24) and (40) into equations 

(38) and (39) for the modified Hoek and Brown failure 

produces the following:  

𝑁𝑖

= 𝛽𝑛𝑎𝑖

𝑠𝑖𝑛2(𝛼𝑖 − 𝛿)

𝑠𝑖𝑛2 𝛼𝑖

[(𝑛 [
1 + 𝑘 𝑠𝑖𝑛 𝜌

𝑠𝑖𝑛 𝜌
] [

1 − 𝑠𝑖𝑛 𝜌

𝑘 𝑠𝑖𝑛 𝜌
]

1/𝑘

− 𝜁𝑛− [
1 − 𝑠𝑖𝑛 𝜌

𝑘 𝑠𝑖𝑛 𝜌
]

1/𝑘

𝑠𝑖𝑛 𝜓) 𝑐𝑜𝑠 𝛿− [
1 − 𝑠𝑖𝑛 𝜌

𝑘 𝑠𝑖𝑛 𝜌
]

1/𝑘

𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝛿] 
(41) 

𝑇𝑖

= 𝛽𝑛𝑎𝑖

𝑠𝑖𝑛2(𝛼𝑖 − 𝛿)

𝑠𝑖𝑛2 𝛼𝑖

[(𝑛 [
1 + 𝑘 𝑠𝑖𝑛 𝜌

𝑠𝑖𝑛 𝜌
] [

1 − 𝑠𝑖𝑛 𝜌

𝑘 𝑠𝑖𝑛 𝜌
]

1/𝑘

− 𝜁𝑛− [
1 − 𝑠𝑖𝑛 𝜌

𝑘 𝑠𝑖𝑛 𝜌
]

1/𝑘

𝑠𝑖𝑛 𝜓) 𝑠𝑖𝑛 𝛿 + [
1 − 𝑠𝑖𝑛 𝜌

𝑘 𝑠𝑖𝑛 𝜌
]

1/𝑘

𝑐𝑜𝑠 𝜓 𝑐𝑜𝑠 𝛿] 
(42) 

where the dilatancy law is expressed by (37). 

To approach the study of three-dimensional joints, Eq. 

(10) must be considered because it defines the reduction 

angle of the contact. 

We must solve the nonlinear equation system that 

consists of Eqs. (41) and (42) (applied to the entire joint), 

(3), (10) and the dilatancy law (37). The equations for shear 

strength can be obtained from this hypothesis. The solution 

of this system solves the values of the geometrical dilatancy 

angle 𝛿 and instantaneous friction angle 𝜌, which enable 

us to calculate the compatible values of the normal and 

shear force that define the strength of the rock joint. 

The geometric locus on an N-T diagram that shows the 

strength of the rock joint should exclude those values that 

were obtained for negative values of dilatancy angles and 

for dilatancy values higher than angle , which represent 

the geometrical parameter of the contact (maximum slope 

of asperities), because these values are physically 

impossible. 

For a null geometrical dilatancy value (𝛿 = 0), Eqs. (41) 

and (42) show the failure behaviour exactly as predicted by 

the Hoek and Brown criterion when using a non-associated 

flow law. 

This geometric locus from the modified Hoek and 

Brown criterion is identified with the second failure 

mechanism, which corresponds to the developed theoretical 

formulation. Such a discontinuous shear strength law should 

intersect with the first failure mechanism (1), which 

governs the behaviour at low normal stresses. Eq. (1) is 

applied to all roughness geometries by considering each 

average contact angle (that is 𝛼𝑖 = 𝜃𝑖). 

As indicated above, we must also evaluate the values for 

m and s while considering the m0 value, which corresponds 

to the intact rock, and consider any alterations when 

applying this value to the conditions of the joint walls 

according to Eq. (43). The s value can be obtained by 

means of 𝑠 = (𝑚 𝑚0⁄ )
28

9⁄ . 

When using the Hoek and Brown failure criterion, the 

value of the instantaneous friction angle depends on the 

level of stress: as the normal load value increases, a smaller 

angle value is achieved. Based on previous equations, the 

second mechanism implies a particular representation of the 

in-plane stresses 𝜏 − 𝜎, which depends on the Hoek and 

Brown parameters. When applied to joints, these parameters  
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should include different factors that are difficult to quantify 

in practice with the criteria that are normally used for rock 

masses. For joints, alterations can be incorporated if the 

assigned value of the basic angle 𝜑𝑏 (or residual 𝜑𝑟) is 

used to measure these factors. Thus, as predicted by the 

Barton formula, the value of the peak friction angle that 

defines the joint shear strength is reduced to the value of the 

basic angle if the normal stress is equal to the uniaxial 

compressive strength of the joint wall. 

Equalising the value of the basic friction angle with 

what is predicted by the second failure mechanism for a 

normal stress on the joint (𝜎𝑛 = 𝜎𝑐) and demonstrating that 

the dilatancy angle is positive enables us to obtain the value 

of the parameter m according to the Hoek and Brown 

criterion from the following equation: 

𝜑𝑏 = (𝜌 + 𝜅𝑚 + 𝛿)𝜎𝑛=𝜎𝑐
 (43) 

For null dilatancy, failure at that stress value would be 

directly indicated by the Hoek and Brown criterion, and we 

can obtain the value of the parameter m that would produce 

a shear stress that is equal to 𝜎𝑐 𝑡𝑎𝑛 𝜑𝑏. 

The Hoek and Brown criterion equations can be applied 

to define the joint strength that corresponds to situations in  

 

 

 

which solving the second mechanism’s equations leads to 

negative geometric dilatancy angles. Because such angles 

are not physically possible, such situations require the 

proposal of null dilatancy and thus a direct application of 

the failure criterion equations. 

 

6.1.1 Results of the theoretical model with the 
modified Hoek and Brown criterion 

In the most general case, three zones contribute to the 

strengthening behaviour of a joint that is subjected to shear 

force (shown in Fig.11(a)):  

The first zone corresponds to the first mechanism, which 

is produced until Eq. (1) is equal to (3).  

In the second zone, which involves decreasing 

geometrical dilatancy values, the second mechanism’s 

equations govern the system until the geometrical dilatancy 

reaches zero.  

Finally, the third zone is described by Eqs. (23) and 

(24), which correspond to the failure criterion. 

In Figs. 8 to 11, the shear strength governing law for 

some of the values in the theoretical model’s parameters are 

analysed by considering equal three-dimensional roughness 

areas and the modified Hoek and Brown failure criterion by  

 
Fig. 8 Shear strength governing law according to the theoretical model (with the modified Hoek and Brown criterion) and 

experimental Barton model as a function of the E and F parameters that define the dilatancy law for 𝜑𝑏 = 30°; 𝛼 =
20°; 𝑚0 = 20; 𝑚 = 2.5 

  

Fig. 9 (a) Shear strength governing law according to the theoretical model (with the Hoek and Brown criterion) and 

experimental Barton model for 𝜑𝑏 = 30°, 𝛼 = 20°, 𝑚0 = 20, and 𝑚 = 2.5 and (b) shear strength governing law 

according to the theoretical model (null material dilatancy) and experimental Barton model for 𝜑𝑏 = 30° , 𝛼 =
20°, 𝑚0 = 10, and 𝑚 = 2.5 
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using a non-associated flow law. These representations also 

show the shear strength governing law that was deduced 

when the Barton criterion was applied with the JRC value 

according to (12). These graphs enable us to compare both 

models for different values of m0 and 𝛼 and a residual 

friction angle value of 30º in all cases. 

As mentioned above, we performed an analysis 

regarding a non-associated flow law that is represented by 

the linear law (37) to study rock joints. Thus, the results 

when evaluating the shear strength of the rock joint on the 

N-T diagram (Fig. 8) show an approximation to Barton´s 

equation as a function of the E and F parameters, which 

define the dilatancy law (37). This figure shows the case 

that corresponds to a rock joint with a maximum roughness 

slope =20°, a residual friction angle value of 30º and a 

rock mass parameter m0=20. The result from (43) for the 

value m considers the alteration of the rock mass in the 

weakness zone from the presence of the joint; this value 

corresponds to the value for m=2.5. The associated flow 

situation is depicted in the graph for E=1 and F=0.  

According to this graph, the best fit was obtained for 

E=F=0, i.e., for zero dilatancy, the curve that represents the 

strength of the rock joint was very close to the result from 

Barton’s empirical law (5). 

This first analysis could be extended to all the analyzed 

cases. The numerical experimentation indicated that the best 

non-associated flow law to study the shear strength  

 

 

 

behaviour of rock joints according to the theoretical model 

for the failure second mechanism was obtained when using 

null material dilatancy (Fig. 9 to 11, which only shows the 

zero dilatancy law and the associated flow law for clarity). 

The results with null material dilatancy are quite close to 

what are predicted by Barton´s law, slightly overestimating 

the strength at lower average normal stresses, where the 

peak strength angle is higher than the value that was 

obtained experimentally. 

According to the application of the above equations, 

these figures show the three zones that delimit the shear 

strength governing law until a value of 20 MPa is achieved 

for the uniaxial compressive strength of the joint wall. In 

Fig. 11(a), the more general case is reached because the 

three zones of strength appear when null dilatancy is used. 

The first zone, which is governed by the first mechanism, 

leads to the zone for the second mechanism, which ends 

when negatives values of the geometrical dilatancy are 

obtained (physically impossible values) and then governs 

the failure criterion when using non-associated flow law. 

For the associated flow law, the second mechanism 

disappears because it does not intersect with either the 

failure criterion or the first mechanism. 

The results that were obtained with higher angles for the 

roughness (Fig. 11(a) and 11(b)) demonstrated that low 

normal stress values greatly affected the roughness via 

degradation. In these cases, null geometrical dilatancy was  

  
Fig. 10 (a) Shear strength governing law according to the theoretical model (with the Hoek and Brown criterion) and 

experimental Barton model for 𝜑𝑏 = 30° , 𝛼 = 30° ,  𝑚0 = 5, and  𝑚 = 1.8  and (b) shear strength governing law 

according to the theoretical model (null material dilatancy) and experimental Barton model for 𝜑𝑏 = 30° , 𝛼 =
30°, 𝑚0 = 3, and 𝑚 = 1.6 

  

Fig. 11 (a) Shear strength governing law according to the theoretical model (with the Hoek and Brown criterion) and 

experimental Barton model for 𝜑𝑏 = 30° , 𝛼 = 40° ,  𝑚0 = 3, and  𝑚 = 2.2  and (b) shear strength governing law 

according to the theoretical model (null material dilatancy) and experimental Barton model for 𝜑𝑏 = 30° , 𝛼 =
60°, 𝑚0 = 8, and 𝑚 = 3.2 
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commonly achieved and governed by the rock failure 

criterion for estimations of joint behaviour. Therefore, these 

simulations of the roughness with high contact angles 

corresponded to low-quality rock joints.  

At lower roughness angles, the normal load that was 

applied to the joint had a lower initial effect, although its 

strength would be lower. Thus, the nonzero geometrical 

dilatancy zone reached high normal stress values and 

increased the contribution of the second mechanism.  

The consistency of the model is apparent. Variations in 

the parameter m0 were almost negligible when considering 

the values of  and 𝜑𝑏. The empirical Barton’s law was 

independent of the parameter m0, although the Hoek and 

Brown criterion had to use this parameter; thus, Fig. 9(a) 

and 9(b) used the same value  =20º, while Fig. 10(a) and 

10(b) used  =30º was considered when varying the 

parameter m0. The consequences of these different values of 

m0 in the results of the theoretical model were minimal, as 

shown in these figures. 

 

6.2 Modified Mohr-Coulomb failure criterion 
 

Following the same approach for the modified Hoek and 

Brown criterion, stresses in the failure plane for the 

modified Mohr-Coulomb criterion with a non-associated 

flow law can be expressed in a parametric form as a 

function of the instantaneous friction angle (Eqs. (35) and 

(36)). 

Likewise, the following equations for the most realistic 

case of geometrical modelling with spherical caps can be  

mechanism. 

 

 
 

deduced when considering the axes’ rotation expressions to 

relate normal and shear forces on the middle plane of the 

joint and its perpendicular with (30) and (31): 

𝑁𝑖 = 𝜎𝑐𝑎𝑖
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(44) 
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(45) 

where the dilatancy law is expressed by (37). 

The nonlinear equation system for Eqs. (44) and (45) 

(applied to the entire joint), (3), (10) and the dilatancy law 

(37) produce the geometrical dilatancy angle 𝛿  and 

instantaneous friction angle 𝜌 and enable us to calculate 

the compatible values of the normal and shear force that 

define the strength of the rock joint for the second failure  

  
Fig. 12 (a) Comparison of both failure criteria in a 𝜏 − 𝜎 diagram for GSIRMR=70 and (b) Comparison of both failure 

criteria in a 𝜏 − 𝜎 diagram for GSIRMR =100 

  

Fig. 13 (a) Influence of the GSI on the modified Mohr-Coulomb criterion for 𝜑 = 40° and (b) influence of the GSI on the 

Hoek and Brown criterion for 𝑚 = 2.5 
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An N-T diagram can be used to indicate the strength of 

the rock joint. Negative dilatancy angles and dilatancy 

values higher than the angle , which represents the 

geometrical parameter of the contact (maximum slope of 

asperities), are physically impossible. This second failure 

mechanism is limited at low stresses compared to the first 

failure mechanism. 

For a null geometrical dilatancy value (𝛿 = 0), Eqs. (44) 

and (45) show the failure behaviour exactly as predicted by 

the modified Mohr-Coulomb criterion when using a non-

associated flow law. 

When the shear strength of rock joints is studied, the 

modified Mohr-Coulomb parameters should include 

different factors that are quantified in practice for rock 

masses. In this case, the choice of parameters is clear. On 

the one hand, this study corresponds to a zone that is 

affected by the discontinuity and therefore altered, so a 

practically zero value for the parameter r can be considered 

because its influence is negligible when using low values, 

which errs on the side of safety. On the other hand, the 

parameter  can be calculated by using (43), which 

considers alterability in the rock joint.  
 

6.2.1 Results of the theoretical model with the 
modified Mohr-Coulomb criterion 

Estimating the parameters of this criterion from the  

 

 

 
Hoek and Brown criterion is intriguing because the Hoek 
and Brown criterion was introduced long ago and has been 
provided with a multitude of experimental and field data. In 
addition, this criterion successfully simulates the most 
important rock mass failure features, such as the non-linear 
dependence with stress levels, the influence of the strength 
and type of rock, and the quality conditions of the rock 
mass. 

Equating the values of the major principal stress for both 

criteria when no confinement exists (𝜎3 → 0) can produce 

the relationship between the parameter s from the Hoek 

and Brown criterion and the parameter r from the non-linear 

triaxial criterion. Thus, the parameter r is associated with 

the GSI because the parameter s depends on this index. This 

relationship is expressed by the following equation: 

𝑟 = (𝑠)𝑛 (46) 

where n is the exponent of the modified Hoek and Brown 

criterion.  

Similarly, we can obtain the relationship of the 

parameter m from the Hoek and Brown criterion with the 

parameters nj or 𝜑𝑗; in this case, the instantaneous friction 

angles are equal for both criteria in an unconfined situation: 

𝑠𝑖𝑛 𝜑𝑗 =
𝑚

𝑚 + 4𝑟
 (47) 

  
Fig. 15 Shear strength governing law according to the theoretical model (with the modified Mohr-Coulomb criterion) and 

experimental Barton model for 𝜑𝑏 = 30°, 𝛼 = 20°, 𝜑 = 22°, and 𝑟 = 0 and (b) shear strength governing law according 

to the theoretical model (null material dilatancy) and experimental Barton model for 𝜑𝑏 = 30°, 𝛼 = 30°, 𝜑 = 17°, 

and 𝑟 = 0 

  
Fig. 16 (a) Shear strength governing law according to the theoretical model (with the modified Mohr-Coulomb criterion) 

and experimental Barton model for 𝜑𝑏 = 30°, 𝛼 = 35°, φ = 15°, and 𝑟 = 0 and (b) shear strength governing law 

according to the theoretical model (null material dilatancy) and experimental Barton model for 𝜑𝑏 = 30°, 𝛼 = 60°, 𝜑 =
24°, and 𝑟 = 0.24 
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Eq. (47) shows the conceptual differences between the 

two criteria and should not be interpreted as a method to 

obtain the design parameters of a criterion when these 

factors are known in the other criterion because these 

parameter values can be obtained outside the usual practice. 

Thus, for intact rock, 

𝑠𝑖𝑛 𝜑 =
𝑚0

𝑚0 + 4
 (48) 

This equation indicates that the same friction angle 

value is obtained from the triaxial strength under low 

confining pressures in intact rock for the same value of the 

parameter m0. The value m0 is associated with a type of rock 

in the Hoek and Brown criterion; therefore, each rock type 

is uniquely characterized by a friction angle. 

The graph in Fig. 12 shows the result from applying the 

modified Mohr-Coulomb criterion when considering the 

equivalence of the above parameters with the modified 

Hoek and Brown criterion. The strength of the rock joint 

was much higher when using modified Mohr-Coulomb 

criterion, primarily because of the significant difference 

between the two criteria. According to the modified Mohr-

Coulomb criterion, a low-quality rock mass is greatly 

attenuated by the effect of confinement (Fig 13(a)); 

however, the Hoek and Brown criterion penalizes the 

degree of alteration and fracturing of a rock mass in all 

stress levels (Fig. 13(b)). Therefore, as the normal load 

becomes greater, the different between both failure criteria 

on the joint becomes more important because the equivalent 

parameters are obtained under low confining stresses. 

Thus, we must obtain the parameters based on specific 

studies of rock joints to use the modified Mohr-Coulomb 

criterion and compare it to Barton´s law and therefore to 

perform a comparison with the Hoek and Brown criterion; 

in this case, the parameter r was considered null, while the 

parameter  was calculated by Eq. (43). 

As indicated for the Hoek and Brown criterion, different 

values of E and F in the dilatancy law (Asadollahi 2009) 

were used to obtain the best fit to the experimental data. 

Fig. 14 shows the values E and F for roughness angles of 

=20º and b=30º, which obtained the best results for null 

dilatancy. In Figs. 15 and 16, only the results for null 

dilatancy are shown. 

In Figs. 14 to 16, the shear strength governing law for 

some of the values in the theoretical model parameters were 

analysed by considering equal three-dimensional roughness 

areas and the modified Mohr-Coulomb failure criterion by 

using a non-associated flow law. These representations also 

showed the shear strength governing law that was deduced 

when Barton’s law was applied with the JRC value 

according to (12). These graphs enable us to compare both 

models for different values of 𝛼 and a residual friction 

angle value of 30º in all cases. 
As observed in the depicted graphs, an associated flow 

law produced higher values than those from Barton’s 
method for this study’s theoretical model.  

As with the Hoek and Brown criterion, the results with 
null material dilatancy were quite close to what was 
predicted by Barton’s law, slightly overestimating the 
strength at lower average normal stresses. 

According to the application of the above equations, 

these figures show the three zones that delimit the shear 

strength governing law until a value of 20 MPa is achieved 

for the uniaxial compressive strength of the joint wall. The 

first zone, which is governed by the first mechanism, leads 

to the zone of the second mechanism, which ends when 

negatives values of the geometrical dilatancy are obtained 

(physically impossible values), and then governs the failure 

criterion by using a non-associated flow law.  

The results with higher roughness angles indicate a low-

quality rock mass because this model requires a low friction 

angle parameter. In Fig. 16(b), null geometric dilatancy was 

obtained for the second mechanism, so the modified Mohr-

Coulomb criterion was applied directly (a nonzero value of 

the parameter r was used only in this case), which produced 

very close values to what were predicted by the 

experimental formulation, although these values were 

slightly lower. 
At lower roughness angles, the nonzero dilatancy zone 

achieved high values of normal stress and increased the 
contribution of the second mechanism.  

The surface roughness could be studied similarly for 
both criteria, as suggested geometrically in section 4. Linear 
joints do not optimally represent three-dimensional 
behaviour, so we cannot obtain reasonable values with the 
modified Hoek and Brown or modified Mohr-Coulomb 
criteria when determining a roughness failure mechanism, 
mainly because linear joint models, such as the saw-tooth or 
circumference arc models, imply a greater contact area 
between the contact surfaces and overestimate the peak 
strength above both realistic values and the values that are 
obtained for three-dimensional geometries. Consequently, 
null dilatancy situations appear very easily in almost all 
ranges of parameters that are assigned to the model, which 
reduces the study to the first mechanism and the failure 
criterion. Thus, these studies cannot represent situations of 
dilatancy via asperity failure. 
 

 

7. Conclusions 
 

This research established a theoretical formulation to 

elaborate the criteria of shear strength for rock 

discontinuities. The results were compared to empirical 

equations, producing very close values for different 

roughness states. 

Two failure mechanisms were identified in accordance 

with a normal load level on the joint. Both mechanisms had 

clear physical interpretations and were supported by 

empirical evidence that was collected in numerous studies. 

The first mechanism appeared for low normal stresses and 

corresponded to slippage between the faces of each joint 

wall. When the acting normal stress was high, the second 

failure mechanism occurs, which corresponds to a failure of 

contacts because of the plastification of the roughness. Both 

mechanisms were theoretically analysed, and their 

behaviour followed equations (1) and (3).  

As indicated by the theoretical formulation for the 

analysis of the second mechanism, the rock joints must be 

adequately characterized based on the choice of roughness 

models with a realistic appropriate failure criterion and 

must consider both the geometrical dilatancy that is 
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produced by the breakage of contacts according to a 

calculated direction and non-associated flow laws. 

The influence of the surface roughness was 

characterised by defining simple geometric parameters. In 

particular, the average contact angle 𝜃 for the roughness 

was calculated. This value is easily measurable in both the 

field and the laboratory and is defined as the angle for 

which the tangent is the roughness height divided by the 

half-length at the mid-plane, which is covered by the 

surface roughness. Different assumed roughness geometries 

were characterised by using this parameter. In particular, the 

use of irregularities such as spherical caps on the joint mid-

plane is recommended for the three-dimensional study of 

joints.  
The modified Hoek and Brown and modified Mohr-

Coulomb criteria were used in this research. These criteria 
enabled us to obtain very different behaviours for altered or 
fractured rock masses. In this case, the modified Mohr-
Coulomb criterion largely depended on the confining stress, 
losing its influence after alteration or for a low-quality rock 
mass when the confinement pressure increased (unlike the 
Hoek and Brown criterion). This fact makes this criterion 
useless to compare what occurs in joints under high stresses 
by the direct transformation of parameters between both 
criteria because this transformation occurs at low stresses. 

The parameters were chosen so that the results of 
Barton´s law could associate a residual strength angle to a 
normal stress that equalled the uniaxial strength of the joint. 
For the modified Mohr-Coulomb criterion, a value for the 
parameter s that equals zero is suggested. 

A linear law of dilatancy (37) was used to assess the 
importance of non-associated flow, so the best results were 
obtained for null material dilatancy, which considered 
significant changes for soft rock masses or altered zones of 
weakness. 

Very close results with respect to the empirical values 

(Barton´s equation) were obtained by using asperities of 

angles from 20º to 60º, which enhanced the predictions by 

the theoretical model for the second mechanism with 

respect to the associated flow case. 

The theoretical formula that was presented herein could 

be used to study the shear strength of rock joints based on 

non-empirical assumptions with a relatively simple and 

practical analysis process.  
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