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1. Introduction 
 

The inherent spatial variability (Phoon and Kulhawy 

1999, Cho 2012, Chenari et al. 2019, Zhao et al. 2020) of 

soil properties has become a research focus for many 

geotechnical engineers in recent decades, particularly with 

respect to slope stability and reliability analysis (Saseendran 

and Dodagoudar 2020). To handle with this problem, the 

Gauss random field theory was proposed and has been 

widely used to statistically simulate the actual soil strength 

distribution and slope stability analysis (Kim et al. 2020). 

The Gauss random field theory successfully provides the 

possibility of evaluating the slope failure under the 

influence of inhomogeneous soil properties. However, the 

key parameter used in this theory is “relative distance” 

rather than “absolute location” when describing the spatial 

correlation between the soil samples at different locations 

within an embankment.  

For instance, the existing Gauss random field theory 

assumes that the soil properties at the bottom of the upper 

compacted layer are the same or close to the soils at the top 

distance even though they are located in two different layers 

of the lower layer as they have a small relative vertical with 

distinctive degree of compaction. It implies that the effects  
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of a layered structure in the embankment on the soil 

properties are not taken into consideration, which does not 

represent the realistic compaction conditions in the 

embankment (Liu et al. 2017a). In addition, the moisture 

content, which fundamentally affects the soil strength, is not 

considered in the slope stability assessment when the 

relative distance is employed in the Gauss random field 

theory.  

The embankment slope, which is an artificial structure 

formation, is usually constructed using disturbed soils 

obtained nearby, transported, and compacted at a given 

project location. The soil is typically roller compacted into 

various layers with the optimal soil moisture content 

maintained to ensure the greatest degree of compaction (i.e., 

percentage ratio of the measured density to the maximum 

dry density) of the soil layers. The slope stability is 

predominantly influenced by the soil shear strength, which 

in turn directly depends on the degree of compaction and 

the moisture content of the soil in the embankment. 

The degree of compaction for each layer primarily 

determines the shear strength of the slope soils, which keeps 

the slope stable when exposed to wheel loads and moisture 

fluctuations. It is noted that the embankment layers undergo 

further compaction after construction due to traffic loading, 

densification, and gravitational settlement (Modoni et al. 

2018). In practice, however, this additional compaction is 

often neglected. Theoretically, this is because this additional 

compaction is beneficial to slope stability and therefore, 
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Abstract.  This paper presents an efficient method utilizing user-defined computer functional codes to determine the reliability 

of an embankment slope with spatially varying soil properties in real time. The soils’ mechanical properties varied with the soil 

layers that had different degrees of compaction and moisture content levels. The Latin Hypercube Sampling (LHS) for the 

degree of compaction and Kriging simulation of moisture content variation were adopted and programmed to predict their 

spatial distributions, respectively, that were subsequently used to characterize the spatial distribution of the soil shear strengths. 

The shear strength parameters were then integrated into the Geostudio command file to determine the safety factor of the 

embankment slope. An explicit metamodal for the performance function, using the Kriging method, was established and coded 

to efficiently compute the failure probability of slope with varying moisture contents. Sensitivity analysis showed that the 

proposed method significantly reduced the computational time compared to Monte Carlo simulation. About 300 times LHS 

Geostudio computations were needed to optimize precision and efficiency in determining the failure probability. The results also 

revealed that an embankment slope is prone to high failure risk if the degree of compaction is low and the moisture content is 

high. 
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conservative to design without its consideration. Besides, 

the soil moisture content fluctuates with time, among 

others, due to rainy-water infiltration, water evaporation, 

groundwater level variations, etc. (Liu et al. 2017b). On this 

basis, it can be assumed that the soil shear strength in a 

constructed embankment slope varies mainly as a function 

of the soil moisture content.  

Some probabilistic analysis methods have been utilized 

to incorporate geotechnical uncertainties in reliability 

evaluation to predict the slope safety margin using the 

failure probability (Pf) concept or reliability index (β). Two 

of the common probabilistic analysis methods include the 

first order reliability method (Ji et al. 2018) and Monte 

Carlo (MC) method (El-Ramly et al. 2002). Many profound 

achievements have been made in understanding and 

utilizing probability-based analysis methods. However, 

some challenges still exist in the design practice of 

embankment slopes. These challenges include the 

difficulties in realizing the random field and calculating the 

safety factor (Fs) for slopes with geotechnical-related 

uncertainties (El-Ramly et al. 2002) and the high 

computational cost associated with reliability analysis. The 

other challenge is the implicit relationship between the 

safety factor and independent variables that often causes 

confusion with respect to the physical meaning (Hassan and 

Wolff 1992) of β as it is used to determine the reliability of 

slopes with floating sliding surfaces or uncertain Fs 

expression.  

To mitigate these challenges, this study proposes a 

probability analysis method to efficiently evaluate the slope 

safety. The in-situ soil moisture content and degree of 

compaction were firstly measured, and then the strength 

parameters of slope soil were arbitrarily derived in real time 

based on the laboratory shear strength tests. The method 

consists of three components, namely: (a) in-situ layered 

random field to model the spatial variability of embankment 

soil properties, (b) secondary development based on 

Geostudio 2007 to calculate the safety factor, and, (c) 

Kriging metamodal for slope reliability assessment. The 

following sections explains the methods in detailsh. 
 

 

2. Study methods 
 

The Latin Hypercube Sampling (LHS) and the Kriging 

methods are the two key methods used in the specimen 

sampling process and reliability analysis of embankment 

slopes (McKay et al. 1979, Echard et al. 2011). These two 

methods are discussed in the following subsections.  

 

2.1 Latin hypercube sampling 
 

Compared to the Monte Carlo (MC) method that 

samples the specimens randomly in the distribution domain, 

LHS is a more effective in that it reduces the number of 

samplings for computational optimization (McKay et al. 

1979). In order to have an even sampling, the ith 

(i=1,2,…,M) subspace of M-dimensional hypercube Vis 

typically divided into N disjointed subsets with equal 

probability. For simplicity, the samples are then back-

calculated from the respective strata according to Eq. (1), 

  

(a) Implied correlation 

between different variates 

(b) Sampling after 

correlation reduction 

Fig. 1 Correlation reduction strategy in sampling action 
 
 

   MiNkNkFxki ,...,2,1;,...,2,1;/5.01  

 
(1) 

where 
1F  is the inverse of cumulative probability density 

function for each vector component. 

Even though the marginal distribution of each variable 

is discretely taken into consideration, there is a risk that a 

spurious correlation exists between the samples due to the 

random pairing of all the vector component samples. Each 

variable can be sampled discretely in its own subspace 

using the LHS method. However, the combination of the 

two variables could be highly correlated as presented in Fig. 

1(a). To address this issue, an improved LHS algorithm 

(Huntington and Lyrintzis 1998, Cioppa and Lucas 2007) 

with a correlation-reduction procedure was adopted in this 

study to sample the optimal pairings – see Fig. 1(b) (Olsson 

and Sandberg 2002). 

 

2.2 Kriging metamodel 
 

An explicit result can be obtained if an analytical 

function is provided. However, most functions are implicit 

with the need for iterative numerical calculations to achieve 

explicit results. Additionally, numerous samples and 

multiple sampling points must be used to ensure 

computational precision, which is a very time-consuming 

process. Therefore, a metamodel is proposed to provide an 

explicit and optimal relationship fitting the original implicit 

function with limited experimental samplings (i.e., 

realizations). Then, the validated metamodal such as the 

Kriging method can be used to optimally process huge 

realizations that are sampled from a given distribution with 

high computational efficiency.  

 

2.2.1 Kriging method  
The Kriging method was firstly developed for 

geostatistics in the 1950s by Krige and then improved by 

Matheron (Echard et al. 2011). The Kriging method is 

typically used to provide a hypercube space curve fitted 

with limited samples. Then, the function variables can be 

efficiently determined at any designed sampling points 

numerically. 

For a given sampling set of 1 2[ , ,..., ,... ]i mS x x x x  with 

m

is   and responses 1 2[ , ,... ,... ]i my y y yY  with

q

iy  , the deterministic response y(x) can be expressed 

as a realization of a regression model f(x)Tβ and a random 

stochastic process z(x), expressed in Eq. (2), 
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(2) 

where, fi(x) is a linear combination of p chosen functions, 
T

1 2, ,..., ,...,i p      β are regression parameters, z(X) is 

a stationary Gaussian process with zero mean and 

covariance between two points of space X and w, which is 

defined by Eq. (3), 

      2cov , , ,z z RX W θ X W
 

(3) 

where, R(θ, X, W) is the correlation model with parameters 

 Tni ,...,...,, θθθθ 21θ . In this study, the anisotropic 

Gaussian model was expressed in Eq. (4) 
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(4) 

where, wk and xk are the kth coordinates of the points W and 

X. 

The best linear unbiased predictor is then applied to 

estimate the function value  newy x  for any new point 

Xnew as shown in Eq. (5), 
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(7) 

The scalars β  and variance 
2

z  can be evaluated 

using Eq. (8) and Eq. (9) (Jones et al. 1998) provided that θ 

is firstly calculated using the maximum likelihood 

estimation in Eq. (10).  

  YRFFRFβ
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where R  is the determinant of R.  

The universal Matlab DACE tool was used in this study 

to establish the Kriging metamodal as well as the slope 

performance function discussed below. 
 

2.2.2 Performance functional metamodal 
In slope engineering, the performance function is 

usually defined using the expression in Eq. (11).  

1 sFZ
 (11) 

For an embankment slope with stratigraphic 

uncertainties at the layer boundaries, the analytical 

calculation of Fs is implicit and iteratively solvable through 

numerical simulations. Accordingly, the performance 

functional metamodel is also inherently an implicit 

function. 

Simulations of complex structures are always time-

consuming, especially for those with multiple inputs and 

uncertainties. For this reason, the Kriging metamodel was 

introduced to explicitly approximate Fs instead of using the 

original implicit function in Eq. (11), where the Kriging 

metamodel can greatly improve the computational 

efficiency and accuracy of the reliability analysis. 

In the Kriging metamodal, the shear strength parameters 

for the ith soil layer, such as the cohesion ci, friction angle 

ϕi, and gravity γi, are ranked sequentially in the vector 

 Tni x,...x,...,x,x 21x . Then, the function values 

     1 2
, ,...,

T
m

Z Z Z 
 

Z  at m project sites 

      Tmx,...,x,x 21S  can be expressed as Eq. (12), where 

f(x) is a zero-order function equal to 1 (Lophaven and 

Søndergaard 2002). 

     βIYRxrβx


 1

newnewgZ
 

(12) 

 

 

3. Safety factor computation 
 

An embankment slope with a height of h=6 m and an 

inclination of 1:1.5 representing a second-class highway in 

Hubei Province (China) was utilized for demonstrative 

analysis. As shown in Fig. 2(a), the width is 13 m for the 

top surface of the right half of the subgrade embankment. In 

the figure, K96 represents the zone with a degree of 

compaction of 96% and a depth of 0.8 m from the top 

surface of subgrade. K94 is the zone, having 94% degree of 

compaction with a depth ranging from 0.8 m to 1.5 m. K93 

is a zone with 93% degree of compaction and a depth range 

of 1.5 m to 6 m. The layer beneath the original ground was 

designated as zone K90 zone with a degree of compaction 

of 90%. 

 

3.1 In-situ moisture content  
 
The humidity measuring circuits, namely a humidity 

transducer HIH 3610 and one-wire bus apparatus DS 2438, 

were installed to measure moisture contents at 25 different 

points (A1, A2, … E5) in the slope section – see Fig. 2(a). 

These circuits were installed from the bottom layer to the 

upper layers following the standard Chinese construction 

procedures of the embankment. The in-situ moisture 

contents at these selected points were measured in real time, 

which served as the raw data for the Kriging prediction of 

the humidity field in the whole slope section.  

In addition, field investigation (Deng and Tang 1994) 

demonstrates that the degree of compaction follows a 

specific statistical distribution such as normal distribution, 

lognormal distribution, or extreme value distribution. By 

neglecting the soil settlement after construction, the spatial  
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(a) 

 
(b) 

Fig. 2 (a) Embankment slope geometry and (b) Kriging 

field moisture modeling simulation 

 

 

variable random field of degree of compaction can be 

generated based on the probability distribution of multi-

layer compacted soils resulting from a field investigation. 

Then, the random field of shear strength can be determined 

using numerical calculation by associating the spatial 

variable random field of degree of compaction with the 

real-time random field of moisture content (Fig. 2(b)) at a 

given time. For simplicity, the underground water table was 

set as the same elevation as the original ground surface. 

 

3.2 Degree of compaction distribution 
 

During embankment construction, the original soil is 

typically distributed and compacted to a designed degree to 

provide the soil with the desired deformation resistance 

against traffic loading and gravitational settlement. Using 

the laboratory determined maximum dry unit weight ρmax of 

the in-situ soil, the degree of compaction K is defined by 

Eq. (13) as follows. 

max

100%dK



 

 
(13) 

where, ρd is the dry unit weight of the in-situ compacted soil 

and ρmax is the soil maximum dry unit weight. 

Traffic-load induced stresses generally decrease with 

soil depth in an embankment. Thus, an embankment is 

usually subdivided into different layers with different 

degrees of compaction that decreases with from the top to 

the lower layers. As presented in Fig. 2(a), zone K96 

implies that the representative value of layer degree of 

compaction is larger than 96%. The same holds for zone 

K94 and zone K93, i.e., 94% and 96%, respectively. 

The in-situ degrees of compaction for zones K93, K94, 

and K96 were tested to statistically identify their probability 

distributions. Based on the trial tests with normal, 

lognormal, and extreme value distribution, the lognormal 

distribution was selected for optimal modeling of the 

probability distribution of the degree of layer compaction.  

 
(a) K93 

 
(b) K94 

 
(c) K96 

Fig. 3 Probability density function for compaction zones 

with different degrees of compaction 

 

 

Logarithmic Kolmogorov-Smirnov (K-S) tests for 

degree of compaction were then conducted to examine their 

goodness of fit.  

The probability density functions for the three 

compaction zones (K93, K94, and K96) are shown in Fig. 3. 

In Fig. 3, KT and CV are the two determining indices for 

assumption verification. KT is a calculated statistic value of 

K-S test, while CV means the critical statistic value of the 

test data. ‘H=0’ means the original hypothesis could be 

accepted, simultaneously the KT should be smaller than CV. 

While ‘H=1’ means the original hypothesis must be denied. 

‘P’ means the acceptance probability of the original 

hypothesis.  

As evident in the Fig. 3, the hypothesis test passed since 

KT<CV for all the three degrees of compaction. Thus, the 

lognormal distribution was selected to model the degree of 

compaction distribution and provide the sampling inputs for 

prediction and estimation of the safety factors. In addition, 

the 5% significance level was set in the hypothesis testing. 

 

3.3 Laboratory shear strength testing 
 

3.3.1 Particle size analysis  
A screening sieve test was used to determine the particle 

composition of the in-situ soil. The sieve analysis and 

percentage passing results are plotted in Fig. 4. The non- 
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Fig. 4 Gradation of the in-situ soil 

 

 

Fig. 5 Relationship between dry unit weight and moisture 

content 

 

 

uniformity coefficient Cu and curvature coefficient Cc were 

used to quantify the soil gradation using Eq. (14) and Eq. 

(15). 

60

10

u

d
C

d


 
(14) 

where, d60, d30 and d10 are the diameters of the sieve size 

through which the soil passing ratio is 60%, 30%, and 10%, 

respectively. 

 Soils used in embankment filling requires a Cu larger than 

5 and Cc from 1 to 3, respectively. In this study, the Cu and 

Cc values are 8.62 and 0.51, respectively, which implies that 

the in-situ soil is practically not suitable for filling the 

embankment.  

 

3.3.2 Saturated moisture content for soils with 
different degrees of compaction  

Soil is a three-phase material composed of solid 

particles, water, and air. The saturated water content ωs, is 

the moisture content at which the internal air voids in the 

soil structure is fully filled by water. The embankment soil 

layers with different degrees of compaction possess 

different air voids. Therefore, their saturated water contents 

are different from each other. The saturated water contents 

at different degrees of compaction can be obtained using the 

following two steps. 

Step 1: Measurement of the optimum moisture content 

ωo and the maximum dry unit weight ρmax. In engineering 

practice, the embankment layer is constructed and 
compacted to a designed degree of compaction at its 
optimum moisture content ωo, which corresponds to the 

maximum dry unit weight ρmax in the compaction curve 

shown in Fig. 5. The curve is obtained from a standard  

 
(a) 

 
(b) 

Fig. 6 (a) Soil samples fixed in cascade saturators and (b) 

Relationship between compaction and saturated moisture 

content  

 

 

compaction test (Li et al. 2017), which describes the 

relationship between the dry unit weight of the soil and its 

moisture content. In this study, the ωo and ρmax parameters 

were 10.1% and 2.026 g/cm3, respectively. 

Step 2: Relationship between the degree of compaction 

and saturated moisture content. The soil samples were 

firstly moulded in a cutting ring knife at the aforementioned 

optimum moisture content and degrees of compaction 

ranging from 90% to 99% with an incremental interval of 

3%. At each degree of compaction, five samples were 

fabricated and fixed in the cascade saturator (Fig. 6(a)).  

After being submerged in water for 72 hours, the samples 

became saturated. Then, all the samples were dried in the 

oven. The weights for both the saturated and dried samples 

were measured to compute the saturated water content ωs 

by Eq. (16).  

2 3

3 1

100%s

m m

m m



 


 

(16) 

where, m1 is the mass of cutting ring knife; m2 is the mass 

summation of a cutting ring knife and the saturated soil 

sample; and m3 is the mass summation of a cutting ring 

knife and the dry soil sample. 

Fig. 6(b) presented the relationship between compaction 

and the saturated moisture content. It is obvious that the 

saturated moisture content decreases with an increase in the 

degree of compaction. 

 

3.3.3 Direct shear test  
In order to investigate the relationship of the soil shear 

strength with compaction and moisture content, direct shear 

tests were conducted at different normal pressures. Firstly, 

the in-situ soil was grounded in the laboratory after drying 

to constant weight. Then, the soil with particle size less than 

2 millimeter was collected by screening the crushed sample. 

Water with a specified weight of mω (6%, 8%, 10.1%, 12% 

and 14%) was added onto the dried soil samples and kept  
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Fig. 7 Sample steel mould and cutting ring knife 

 

 

 

Fig. 8 Kriging model simulation of the shear strength 

parameters 

 

 

sealed in a plastic film to ensure homogeneous diffusion of 

moisture in the soil.  

The weight of the wet soil msω was determined using Eq. 

(17) and Eq. (18). 

(1 0.01 )s d ssm V    
 

(17) 

maxd K  
 

(18) 

where, K is the degree of compaction, 84%~98% were used 

at an incremental rate of  2%; ρmax is the maximum dry 

unit weight; ωss is the designed moisture content (%); and V 

is the volume of the wet soil samples. 

As presented in Fig. 7, the wet soil was transferred into 

the steel mould (Fig. 7(A)) that was matched with the 

cutting ring knife (Fig. 7(B)). The soil was pressed directly 

to the designed degree of compaction in the cutting ring 

knife with a cylinder diameter of 61.8 mm and height of 20 

mm, respectively. 

The direct shear test apparatus and the Mohr Coulomb 

theory were employed to characterize the undrained shear 

strength properties of the compacted soil. The shear 

strength parameters, namely the cohesion (c) and friction 

angle (ϕ), were determined using Eq. (19). 

tanc     (19) 

 

Fig. 9 Safety factor computational flowchart in Geoslope 

2007 
 
 

A set of discrete shear strength parameters were 

obtained and then, the Kriging method was employed to 

simulate the shear strength parameters over a range of K 

(84-100%) and (6-14%). values shown in Fig. 8. Thus, 

using Fig. 8, the soil shear strength parameters (cohesion 

and friction angle) can be estimated for a given degree of 

soil compaction and moisture content. For a given slope, the 

moisture content functionally varies with time. 

Consequently, this allowed for the degree of compaction to 

be the major factor governing the probabilistic analysis of 

the embankment slope at a given specific time. Ultimately, 

this permitted for using the LHS method to quantify the 

degree of compaction. 

 

3.4 Calculation of the safety factor 
The module Geoslope 2007 in commercial software 

Geostudio 2007 was used to calculate the safety factor (Fs) 

for a slope with spatially variable soil properties. The 

embankment slope comprised of a compacted multi-layered 

structure with different degrees of compaction between the 

layers. The moisture content was considered to vary as a 

function of location, both vertically and horizontaly. For Fs 

calculation, the key issue is to establish a valid command 

script in Geoslope 2007 to represent the strength variability 

of the soil slope. Fig. 9 illustrates a 4-step flowchart adapted 

in this study to determine Fs, namely: 
Step 1: Mesh formulation. Geoslope 2007 cannot be 

used to directly generate the slope section grid for 

calculating Fs as was previously shown in Fig. 2(b). So, 

SIGMA/W 2007, a different module in Geostudio 2007, was 

introduced to formulate the mesh geometry including the 

grid nodes and point coordinates in a filed named Ini.xml. 

Step 2: In-situ shear strength characterization. Based on 

the LHS of K and Kriging simulation of θ, the shear 

strength can be determined for the soil slope at any spatial 

location with different K and θ values in the embankment. 

Step 3: Module creation using Matlab. The shear 

strength and the slope geometry were sequentially  
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(a) Cohesion 

 
(b) Friction angle 

Fig. 10 Graphical illustration of the spatially variable 

shear strength parameters in the embankment 

 

 
(a) 

 
(b) 

Fig. 11 Diagram of Ini_renew.xml calculated in 

Geoslope: (a) Ini_renew.xml loaded in Geoslope; (b) Fs 

calculated from Ini_renew.xml 
 

 

assembled using Matlab. The key point here is that the 

command format in the module generated using Matlab 

must be consistent with the original command script Ini.xml 

(Step 1) used in Geoslope. In this step, all the modules in 

Ini.xml, such as “Point”, “Line”, “Region”, “Material”, and 

“RegionUsesMaterial”, are replaced with random 

characteristics of the soil features.  

Step 4: Calculation of Fs. The modules created in Step 3 

are used to substitute their counterparts in Ini.xml. Then, a 

new command script, namely file Ini_renew.xml,is used to 

calculate Fs.  

Fig. 10 shows the spatial distribution of the shear 

strength parameters including the cohesion and friction 

angle over the slope section. Both cohesion and friction 

angle vary along the depth direction, which corresponds to 

the decreased degree of compaction from the top to lower 

layers. However, the shear strength varies along the 

horizontal direction as a function moisture content variation 

that was previously shown in Fig. 2(b). 

Fig. 11 presents the results calculated from 

Ini_renew.xml file in Geoslope, where the limit equilibrium 

method (LEM) was used. Note that the slip surface in Fig. 

11(b) is a calculation result, rather than a defined sliding 

face before the calculation. The slip surface was optimized 

in Geoslope as the most crucial unstable sliding face for the 

embankment slope. As shown in Fig. 11(b), the slip surface 

is noncircular, but comprises of a range of vertical and 

individual slices. In Fig. 11(b), the bottom of the individual 

slice constitutes a segment that is connected to two adjacent 

intersections between the slip surface and mesh grid. 
 

 

4. Reliability analysis 
 

Reliability analysis is discussed in this section and 

includes the following aspects: index selection, analysis 

procedure, and parametric verification. 

 

4.1 Parametric index selection 
 

The critical boundary condition between a safe region 

and a failure region for the soil slope occurs when Z=0 in 

Eq. (11). The failure probability is therefore calculated 

through integration analysis over the failure domain as 

shown in Eq. (20): 

   
  0

0f
g

P P g f d


      X
X

X X X
 

(20) 

where fx(X) represents the joint probability density function. 

Assuming that in nt-repeated trials, the occurrence 

number of an event A is nc, then the frequency occurrence 

of the event A is nc/nt. According to the law of large 

numbers (Kouritzin et al. 2016), if the probability of an 

event A is P(A), then there exists the Eq. (21) for any ε >0: 

 lim 1c

n
t

n
P P A

n




 
    

   

(21) 

Eq. (21) means that if the total trial numbers are large 

enough, then the frequency occurrence of event A will 

converge to P(A) with a probability of 1.0. In this study, the 

computational extent of reliability analysis was composed 

of m times Geoslope calculations and n times Kriging 

simulations. The parameter m is the key value affecting the 

sampling efficiency of the degree of compaction on the 

whole sampling space, which subsequently greatly 

influences the precision of failure probability determined by 

the n times Kriging simulations. 

The failure probability Pf and reliability index β are the 

two common indices used in slope reliability analysis. For a 

standard normal distribution, there is a specific 

corresponding relationship between Pf and β. The reliability 

index is typically obtained from a probability analysis on a 

chosen slip surface (Hassan and Wolff 1992). However, it 

should be pointed out that safety factor will become 

meaningless if it is calculated from trial floating slip 

surfaces. In this study, for the target was a critical slip 

surface in the embankment with spatially variable soil 

properties such as shear strength, moisture content, etc.  

In addition, the literature (Su and Yang 2012) indicates 

that the reliability index can be obtained if the Kriging  
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Fig. 12 Flowchart of failure probability analysis 

 

 

metamodal is established first. However, computational 

convergence in finding the numerical solutions become a 

challenge due to that the partial derivative of the reliability 

index β, which is iteratively calculated as denominator in 

the analysis model. Thus, the reliability index becomes 

difficult to obtain when its function is discontinuous in the 

solution region. Therefore, only the failure probability Pf 

was employed in this study to evaluate the slope reliability.  

 

4.2 Reliability analysis procedure 
 

Fig. 12 presents a 3-step flowchart for reliability 

analysis of an embankment slope taking into account the 

spatial distribution of the degree of compaction and 

moisture content. 

Step 1: In-situ test and numerical simulation of field 

data to determine the spatial distribution of the soil moisture 

θ and degree of compaction K. The in-situ moisture 

contents at the monitoring points were first collected and 

then, the Kriging method was applied to simulate the spatial 

distribution of the moisture field. Based on the investigated 

distribution of the degree of compaction, the LHS method 

was utilized to model the m designed sites at a specific 

degree of compaction K where m is the number of sampling 

points (i.e., realization). 

Step 2: Laboratory testing to determine the relationship 

between shear strength and the composition of θ and K 

parameters The direct shear tests were conducted on the in-

situ soil samples. Then, the obtained relationship of 

   c f K  , ,  were used to compute the shear strength 

of any point in the embankment slope section with different 

θ and K values. 

Step 3: Calculation of safety factor and failure 
probability. At a given monitoring time, the spatial 
distribution of the in-situ moisture content in the 
embankment slope section remains unchanged, which can 

be simulated by the aforementioned Kriging method. Thus, 

for a given embankment slope at the giving monitoring  

Table 1 Failure probability calculations for 2017/07/11 

Group 
Fs calculation 

method 

Sampling method 

(realizations) 
P(%) 

Computation 

time (s) 

A Morgenstern-Price Monte Carlo (100000) 27.7 3×106 

B Morgenstern-Price 
LHS (600) +Kriging 

(100000) 
27.0 1.8×104 

C Bishop Monte Carlo (100000) 9.1 3×106 

D Bishop 
LHS (600) +Kriging 

(100000) 
10.7 1.8×104 

E Janbu Monte Carlo (100000) 2.5 3×106 

F Janbu 
LHS (600) +Kriging 

(100000) 
3.6 1.8×104 

G Ordinary Monte Carlo (100000) 15.5 3×106 

H Ordinary 
LHS (600) +Kriging 

(100000) 
17.2 1.8×104 

 

 

Fig. 13 Failure probability analyses using different LEMs 

and sampling methods 

 

 

time, the degree of compaction becomes the only factor 

affecting the shear strength and the factor of safety. The m 

designed sites for the degree of compaction K in Step 1 

contributes to the m original .xml files for computations in 

the commercial software Geoslope 2007. 

On the basis of it, the m safety factors can be determined 

and used to construct the metamodal performance function. 

Then, the MC method is introduced for n times bulk 

sampling of the degree of compaction K, where the 

corresponding safety factors could be calculated for each 

composition of K value. 

The highlight hereby lies in that the Kriging metamodal 

can significantly reduce the huge computational time, which 

is caused by the MC method for the Fs calculations using 

Geoslope 2007. By contrast, the metamodal is established 

using only m times of Geoslope calculations. Then, the Fs 

for all the sampling points are based on mathematical 

interpolation, which saves the computational time greatly. 

For example, the MC method takes about 30 seconds to 

obtain the Fs of a spatially variable slope from the xml file 

using Geoslope 2007 and a computer with a CPU frequency 

of 3.3 GHz and random access memory of 8G Bytes. On the 

contrary, the calculation time was reduced to 5×10-5seconds 

using the Kriging metamodal. This also implies that the key 

issue controlling the efficiency of the reliability analysis lies 

in the calculation of Fs for the LHS samples. 

In this step, the batch program was used for continuous 

calculations and automatic prediction of the safety factor. 

Then, the obtained Fs values were conveniently adopted for 

reliability analysis. Otherwise, the Fs values can only be 

obtained from the graphical user interface of the Geoslope  
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Fig. 14 Influence of LHS realizations on the failure 

probability 
 

 

software one by one, which is impossible for this type of 

analysis.   

 

4.3 Parameteric verification 
 

The slope failure probability converges as the number of 

Kriging simulations (n) grows. In this study, a total of 19 

times in-situ moisture monitoring were performed with the 

failure probability calculations for the highest moisture 

content (2017/07/11) exemplified in Table 1. 

A trial combination of m=600 and n=100000 was used 

to evaluate the failure probability of the embankment slope. 

The Monte Carlo (MC) method was simultaneously used to 

provide the control solutions for comparison purposes. As 

can be seen in Table 1 and Fig. 13, the two sampling 

methods yielded a similar level of failure risk, which 

implies that the proposed sampling combination of 

LHS+Kriging method is capable of effectively assessing the 

slope status. For further comparisons, the Bishop, Janbu, 

and Ordinary methods were also employed to analyze the 

slope failure probability for the same conditions, 

respectively. Fig. 13 shows that there exists some big 

differences among the methods. The M-P method presents 

the highest failure probability due to its assumption of 

mechanical equilibrium conditions (Bai et al. 2014, 2018). 

In order to further reduce the computational time, the 

LHS number was set at 50, 100, 200, 300, 400, 500 and 

600, respectively, in order to evaluate the effects of the 

numbers of sampling points on the slope failure probability. 

However, the computational sampling points for the 

Kriging simulation (n) remained at 100000. Fig. 14 presents 

the influence of LHS realizations on the final failure 

probability. 

The least square method was used for convergence 

fitting as the LHS realizations increased. Apparently, the 

failure probability remained the same for m equals to or is 

greater than 300. Thus, the combination of m=300 and 

n=100000 were adopted for sensitive analysis. This 

combination potentially cut the computational time by 50% 

while simultaneously providing the same level of failure 

probability. 

 

 

5. Sensitivity analysis 
 

The sensitivity analysis is presented and discussed in  

 

Fig. 15 Graphical plot of the slope failure probability as a 

function of time 

 

Table 2 Orthogonal test factors for the mean value of the 

compaction degree  

Zone Variation level (%) 

K96 96.9 95.9 94.9 

K94 94.6 93.6 92.6 

K93 93.4 92.4 91.4 

 

Table 3 L9(34) orthogonal test design for the mean value of 

the compaction degree  

Compaction 

degree 
K96 K94 K93 

1 96.9 94.6 93.4 

2 96.9 93.6 92.1 

3 96.9 92.6 91.4 

4 95.9 94.6 92.4 

5 95.9 93.6 91.4 

6 95.9 92.6 93.4 

7 94.9 94.6 91.4 

8 94.9 93.6 93.4 

9 94.9 92.6 92.4 

 

Table 4 Orthogonal test results of the mean value of the 

compaction degree (2017/07/11, high moisture content) 

N 

Bishop Janbu M-P Ordinary 

P（%） 
Mean of 

Fs 
P（%） 

Mean of 
Fs 

P（%） 
Mean of 

Fs 
P（%） 

Mean of 
Fs 

1 8.565 1.06 2.467 1.08 31.042 1.01 16.691 1.05 

2 14.428 1.05 6.834 1.07 41.599 1.00 23.155 1.04 

3 23.443 1.03 16.875 1.05 64.757 0.99 33.716 1.02 

4 12.695 1.05 7.321 1.08 40.572 1.01 21.155 1.03 

5 25.096 1.03 16.697 1.06 51.651 0.99 32.532 1.02 

6 10.328 1.06 3.316 1.09 32.646 1.02 18.695 1.04 

7 23.077 1.04 16.373 1.06 49.537 0.99 32.075 1.02 

8 9.182 1.06 2.981 1.09 33.614 1.01 17.138 1.04 

9 15.077 1.05 8.132 1.08 41.591 1.00 22.672 1.03 

 

 

this section. This includes the failure probability time-

history curves and degree of compaction analyses. 
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Table 6 Variation range (R, %) of failure probability 

(2017/07/11, high moisture content)  

 Mean K Bishop Janbu M-P Ordinary 

K96 

96.9 15.5 8.7 45.8 24.5 

95.9 16.0 9.1 41.6 24.1 

94.9 15.8 9.2 41.6 24.0 

R (%) / 0.5 0.5 4.2 0.5 

K 94 

94.6 14.8 8.7 40.4 23.3 

93.6 16.2 8.8 42.3 24.3 

92.6 16.3 9.4 46.3 25.0 

R (%) / 1.5 0.7 5.9 1.7 

K93 

93.4 9.4 2.9 32.4 17.5 

92.4 14.1 7.4 41.3 22.3 

91.4 23.9 16.6 55.3 32.8 

R (%) / 14.5 13.7 22.9 15.3 

 
 

5.1 Failure probability time-history curve analysis 
 

For an embankment slope, the degree of compaction is 

controlled and deemed constant after construction. The 

slope stability is highly dependent on the inherent moisture 

content of the soils. Fig. 15 presents the slope stability for a 

12 months period from 2016/12/16 to 2017/11/20. 

Theoretically, Fig. 15 means that the embankment safety 

can be monitored in real-time if the in-situ moisture is 

continuously obtained.  

As presented in Fig. 15, the mean value of the slope 

safety factor (Fs) and the failure probability are the two 

main factors governing the slope stability analysis. It is 

evident that a negative correlation exists between these two 

factors. Therefore, it is reasonable to adopt these two 

factors to assess the slope reliability because the failure 

probability can serve as an early warning of potential slope 

failure, and it is complementary to the safety factor that is 

only a deterministic assessment of the slope safety. 

 

5.2 Sensitivity analysis for the degree of compaction 
 

Sensitivity analysis was conducted to assess the 

influence of construction quality on the operation risk of the 

embankment. The mean value of the degree of compaction 

μK and the standard deviation of degree of compaction σK 

were investigated using orthogonal experimental designs. 

For comparison purposes, the embankment conditions on 

the two dates of 2017/07/11 and 2017/09/15 were selected 

for evaluation. The moisture content of the embankment 

slope on 2017/07/11 was the highest while it was relatively 

low on 2017/09/15. 

 

5.2.1 Mean value  
For each zone K96, K94, and K93, three different levels 

of μK were selected as shown in Table 2. The L9(34) 

orthogonal array was used to determine the orthogonal test 

combinations that are presented in Table 3, where N=9 

hereby. 

Reliability analysis was carried out for the 9 orthogonal  

 

Fig. 16 Variation range of failure probability (2017/07/11, 

high moisture content)  

 

Table 7 Orthogonal test factors for the standard deviation of 

the degree of compaction 

Zone Variation level 

K96 1.0 0.7 0.4 0.1 

K94 1.7 1.4 1.1 0.8 

K93 2.2 1.9 1.6 1.3 

 

Table 8 L16(45) orthogonal test design for the standard 

deviation of the degree of compaction 

N K96 K94 K93 

1 1.0 1.7 2.2 

2 1.0 1.4 1.9 

3 1.0 1.1 1.6 

4 1.0 0.8 1.3 

5 0.7 1.7 1.9 

6 0.7 1.4 2.2 

7 0.7 1.1 1.3 

8 0.7 0.8 1.6 

9 0.4 1.7 1.6 

10 0.4 1.4 1.3 

11 0.4 1.1 2.2 

12 0.4 0.8 1.9 

13 0.1 1.7 1.3 

14 0.1 1.4 1.6 

15 0.1 1.1 1.9 

16 0.1 0.8 2.2 

 

 

tests (Table 3) using the combination of LHS and Kriging 

methods. The results are shown in Table 4 (2017/07/11 for 

the high moisture content case) and Table 5 (2017/09/15 for 

the low moisture content case), respectively. 

It is seen in Table 5 that failure may occur for the slope 

at very low moisture contents. The failure happens when 

zone K93 has very low degree of compaction as shown in 

realizations 3, 5, and 7. Therefore, the construction quality 

should be assured for a stable embankment slope, especially 

for zone K93. As the moisture content increased, the failure 

probability increased significantly when comparing Table 5 

to Table 4. The range analysis method was adopted to 

evaluate the influence of layer compaction degree on the  
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Table 9 Orthogonal test results for the standard deviation of 

compaction degree (2017/07/11, high moisture content)  

N 

Bishop Janbu M-P Ordinary 

P（%） 
Mean of 

Fs 
P（%） 

Mean of 

Fs 
P（%） 

Mean of 

Fs 
P（%） 

Mean of 

Fs 

1 8.565 1.06 2.467 1.08 31.042 1.01 16.691 1.05 

2 8.490 1.06 1.237 1.08 27.781 1.01 17.351 1.05 

3 7.663 1.06 1.196 1.08 21.146 1.01 14.529 1.05 

4 5.796 1.06 0.513 1.08 22.236 1.01 15.096 1.05 

5 9.582 1.06 1.561 1.08 28.276 1.01 15.979 1.04 

6 7.017 1.06 1.640 1.09 30.605 1.02 18.430 1.05 

7 4.844 1.06 0.399 1.09 26.034 1.01 13.235 1.05 

8 9.679 1.06 2.556 1.08 24.765 1.01 14.584 1.05 

9 8.919 1.06 0.935 1.08 28.352 1.01 6.689 1.05 

10 5.589 1.06 0.346 1.09 19.319 1.01 13.142 1.05 

11 8.464 1.06 1.196 1.09 29.364 1.02 16.286 1.05 

12 8.919 1.06 1.288 1.09 27.323 1.02 15.130 1.04 

13 4.948 1.06 0.253 1.09 18.403 1.01 12.993 1.05 

14 7.337 1.06 0.516 1.09 25.051 1.01 16.464 1.04 

15 8.806 1.06 2.071 1.09 23.404 1.02 14.373 1.04 

16 10.585 1.07 4.507 1.09 29.261 1.02 15.999 1.04 

 

Table 10 Orthogonal test results for the standard deviation 

of compaction degree (2017/09/15, low moisture content) 

N 

Bishop Janbu M-P Ordinary 

P（%） 
Mean 

of Fs 
P（%） 

Mean 

of Fs 
P（%） 

Mean 

of Fs 
P（%） 

Mean 

of Fs 

1 0.000 1.29 0.000 1.34 0.000 1.17 0.000 1.27 

2 0.000 1.29 0.000 1.34 0.000 1.17 0.000 1.27 

3 0.000 1.29 0.000 1.34 0.000 1.17 0.000 1.17 

4 0.000 1.29 0.000 1.34 0.000 1.17 0.000 1.27 

5 0.000 1.29 0.000 1.34 0.000 1.17 0.000 1.27 

6 0.000 1.29 0.000 1.34 0.000 1.17 0.000 1.27 

7 0.000 1.29 0.000 1.35 0.000 1.17 0.000 1.27 

8 0.000 1.29 0.000 1.34 0.000 1.17 0.000 1.27 

9 0.000 1.29 0.000 1.34 0.000 1.17 0.000 1.27 

10 0.000 1.29 0.000 1.34 0.000 1.17 0.000 1.27 

11 0.000 1.29 0.000 1.34 0.000 1.17 0.000 1.26 

12 0.000 1.29 0.000 1.34 0.000 1.17 0.000 1.27 

13 0.000 1.29 0.000 1.34 0.000 1.17 0.000 1.27 

14 0.000 1.29 0.000 1.34 0.000 1.17 0.000 1.27 

15 0.000 1.29 0.000 1.34 0.000 1.17 0.000 1.27 

16 0.000 1.29 0.000 1.34 0.000 1.17 0.000 1.27 

 
 

slope stability. Table 6 presents the failure probability as 

calculated from Table 4.  

Fig. 16 illustrates the variation ranges of the failure 

probability for the compaction zones with different degrees 

of compaction. It is evident that the slope failure is more 

critical for the low compacted layers such as K93 than the 

highly compacted layers such as K94 and K96 when the  

Table 11 Variation range of failure probability (2017/09/15, 

low moisture content) 

 σK Bishop Janbu M-P Ordinary 

K96 (%) 

1.0 7.6 1.4 25.6 15.9 

0.7 7.8 1.5 27.4 15.6 

0.4 8.0 0.9 26.1 12.8 

0.1 7.9 1.8 24.0 15.0 

R (%)  0.4 0.9 3.4 3.1 

K94 (%) 

1.7 8.0 1.3 26.5 13.1 

1.4 7.1 0.9 25.7 16.3 

1.1 7.4 1.2 25.0 14.6 

0.8 8.7 2.2 25.9 15.2 

R (%)  1.6 1.3 1.5 3.2 

K93 (%) 

2.2 8.7 2.5 30.1 16.9 

1.9 8.9 1.5 26.7 15.7 

1.6 8.4 1.3 24.8 13.1 

1.3 5.3 0.4 21.5 13.6 

R (%)  3.6 2.1 8.6 3.8 

 

 

Fig. 17 Variation range of failure probability 

(2017/09/15, low moisture content) 

 

 

internal moisture is saturated. The degree of compaction of 

K93 dominates the slope stability, followed by K94 and 

then K96. This means that the embankment would collapse 

rapidly for a slope with a lower degree of compaction and 

higher water content. 

 

5.2.2 Standard deviation  
The standard deviation of the degree of compaction σK 

was taken as the variation factor in the orthogonal test for 

the zones K96, K94, and K93. For each zone, four levels of 

σK are were taken as a set as shown in Table 7. The L16(45) 

orthogonal array was used to specify the orthogonal test 

combinations, as presented in Table 8, where N=16. 

Reliability analysis was carried out for 16 orthogonal 

group tests using a combination of LHS sampling and 

Kriging simulations. The results are shown in Table 9 

(2017/07/11) for the soils with a high moisture content and 

Table 10 (2017/09/15) for the soils with a low moisture 

content, respectively.  

It is evident from Table 10 that the slope with low 

moisture can be safe if σK shows small variations. With an 

increase in the internal moisture content, the failure 
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probability increases rapidly as shown in Table 9. The range 

analysis method was adopted to evaluate the influence of 

the degree of compaction on the slope stability. Table 11 

presents the failure probability as calculated using data from 

Table 9. 

Fig. 17 presents the same conclusions as that from Fig. 

16, which implies that the slope stability depends more on 

σK of zone K93. In order to enhance the embankment slope 

safety, engineering methods should be adopted to raise the 

mean degree of compaction μK and simultaneously reduce 

the variation of the compaction σK, especially for zone K93 

in the embankment.  
 
 

6. Conclusions 
 

This paper presented a method to efficiently evaluate the 
slope stability within a probabilistic framework based on: 
(1) the variation of moisture content and degree of 
compaction of the in-situ embankment soils, (2) user-
defined computer codes to determine the spatial distribution 
of the shear strength parameters of the soil embankment, 
and (3) the Kriging metamodal method for functional model 
and performance prediction. The proposed methodology 
was applied to assess the failure probability of an 
embankment slope with spatially varying soil properties in 
real time. From the study results and findings, the following 
conclusions were drawn: 

1. For a given embankment slope, the moisture content 

was found to be a key factor dominating the slope stability 

when the statistical distribution of the degree of compaction 

is deemed unchanged during construction. The spatial 

distributions of the degree of compaction and moisture 

content can be used to determine the shear strength 

parameters and safety factor for the embankment slope 

stability. 

2. The proposed methodology using m=300 times 

Geoslope calculations and n=100000 times Kriging 

simulations presented comparable predictions of the slope 

failure probability with those obtained by the Monte Carlo 

method. However, the proposed methodology reduces the 

computational time greatly significantly from 30 sec to 

5*10-5 sec to determine the safety factor for an embankment 

slope with spatially variable soil properties. 
3. The Kriging metamodal of performance function is 

capable of evaluating the slope stability in real time. The 
temporal distribution of the slope stability is obtained for 
the selected slope, which can serve as an early-warning of 
the slope failure if the in-situ moisture contents is 
monitored. 

4. As theoretically expected, the slope with a low degree 
of compaction and a high moisture content indicated a high 
probability failure such as collapsing, differential 
movement, gravitational settlement, etc. Additionally, the 
study highlighted the critical need to enhance the mean 
degree of compaction while simultaneously reducing 
compaction variability, in particular for lowly compacted 
embankment sections.   
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