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1. Introduction 
 

Mining activities inevitably result in the stress 

redistribution and the fracture failure of rock mass in 

underground engineering (Liu et al. 2020, Genis 2018, Sun 

et al. 2019). This failure greatly changes the permeability of 

surrounding rock, resulting in mine accidents in 

engineering. In order to prevent roof water gushing or roof 

water inrush during coal mining, filling mining is a 

common and effective method (Wang et al. 2020, Jiang et 

al. 2020, Zhang and Meng 2019). Mining-induced water 

inrush is one of the five major disasters in mining 

production (Bukowski 2011, Polak et al. 2016, Sato et al. 

2000). The mining-induced water inrush is a coupled 

process of stress, failure, water pressure and other factors 

(Wu et al. 2018, Narain et al. 2010, Schäfer and Teschauer 

2001).  

In the field measurement of the failure depth of coal 

seam floor, the P-wave velocity and borehole leakage are 

used as inversion parameters to reflect the stress state, 

structural change and failure degree of floor rock mass 

through CT detection method and double-end water 

plugging device (Zhang et al. 2018). Through the actual  
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observation and analyses in the water inrush site, the 

characteristics of water inrush hazard have been revealed 

with relevant data, contributing to evaluate the risk of 

underground mining water inrush (Huang et al. 2016, Si et 

al. 2021). 

In the process of tunneling, the problem of water inrush 

is also faced (Blümling et al. 2007, Butron et al. 2017). 

Fernandez and Moon (2010) proposed an analytical solution 

that uses mathematical derivation to evaluate the flow of 

groundwater flowing into the tunnel based on the hydraulic 

coupling effect. Eren et al. (2015) investigated the effect of 

horizontal in situ stress on failure mechanism around 

underground openings excavated in isotropic, elastic rock 

zones. Zhou et al. (2015) established an optimal 

classification method based on grey system theory (GST) 

and applied it to accurately predict the occurrence 

probability of water inrush in karst tunnels. In view of the 

complex disaster-causing mechanism and difficult 

quantitative predictions of water inrush, several theoretical 

methods have been adopted to realize dynamic assessment 

of water inrush in the progressive process of tunnel 

construction (Li et al. 2015). Yuan et al. (2016) presented a 

modified grey clustering method to systematically evaluate 

the risk of water inrush in karst tunnels. 
Entering a new era of safe and green coal mining, the 

prevention and control of water inrush from coal floor 
requires more innovative theories and key technologies. 
Database mining is a comprehensive science containing  
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Abstract.  In this paper, the WEKA platform was used to mine and analyze measured data of floor failure depth and a 

prediction system of floor failure depth was developed with Java. Based on the standardization and discretization of 35-set 

measured data of floor failure depth in China, the grey correlation degree analysis on five factors affecting the floor failure depth 

was carried out. The correlation order from big to small is: mining depth, working face length, floor failure resistance, mining 

thickness, dip angle of coal seams. Naive Bayes model, neural network model and decision tree model were used for learning 

and training, and the accuracy of the confusion matrix, detailed accuracy and node error rate were analyzed. Finally, artificial 

neural network was concluded to be the optimal model. Based on Java language, a prediction system of floor failure depth was 

developed. With the easy operation in the system, the prediction from measured data and error analyses were performed for nine 

sets of data. The results show that the WEKA prediction formula has the smallest relative error and the best prediction effect. 

Besides, the applicability of WEKA prediction formula was analyzed. The results show that WEKA prediction has a better 

applicability under the coal seam mining depth of 110 m~550 m, dip angle of coal seams of 0°~15° and working face length of 

30 m~135 m. 
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various techniques and complex subjects. Data mining has 
become a hot spot of artificial intelligence research (Bai et 
al. 2017, Camoes et al. 2017, Jimenez et al. 2018, Kaveh et 
al. 2018). 

This paper collects the relevant geological data about 
the failure depth of coal seam floor in China in recent years, 
comprehensively analyzes the influence of mining height, 
mining depth, mining thickness, coal seam dip angle, fault 
and floor failure resistance on the failure depth of coal seam 
floor. Through data mining and analysis on the WEKA 
platform, the optimal prediction model is obtained. 
Depending on the optimal model, the relationship between  

 

 

the floor failure depth and the influencing factors is 
calculated. Finally, the prediction system of floor failure 
depth is developed using Java language, and the practical 
application is verified. 
 

 

2. Processing of WEKA sample data 
 

WEKA is a data mining and machine learning software 

that integrates data pre-processing, learning algorithms and 

evaluation. WEKA includes many classical learning and 

training methods, such as Bayes belief network, naive  

Table 1 Original data 

N Working face number 
Mining 
depth/m 

Dip/ degree Thickness/m Face length/m 
Floor resistance 
failure potential 

Floor failure 
depth/m 

1 Huaibei mine 1031 474 8 4.5 183 0.7 16.2 

2 Xingtai mine 7607 320 4 5.4 60 0.6 9.7 

3 Xiezhuang mine 3414 750 20 2.1 90 0.8 13.1 

4 Jingxing mine 4707 400 9 4 34 0.4 6 

5 Xingdong mine 2121 1000 10 3.75 150 0.8 32.5 

6 Jingxing mine 5701(2) 227 12 3.5 30 0.4 7 

7 Wucun mine 32031(2) 640 13 1.5 196 0.6 26.4 

8 Zhaoge mine 1237(2) 1000 30 2 200 0.6 38 

9 Zhucun mine 54002 210 4 1.3 102 0.8 5 

10 Hebi mine 128 230 26 3.5 180 0.4 20 

11 Geting mine 11601 300 9 2 40 0.5 6 

12 Xinzhuangzi mine 4303(2) 310 26 1.8 128 0.2 29.6 

13 Suncunmine11121(east) 1018.6 18.9 2 125 0.2 33 

14 Wangfeng mine 1951 123 15 1.1 100 0.2 13.4 

15 Xingtai mine 7802 259 4 3 160 0.6 16.4 

16 Fengfengtwomine2701(1) 145 16 1.5 120 0.4 14 

17 A coal mine 7608 400 6 5.39 80 0.7 10.2 

18 Fengfengfour mine 4804 110 12 1.4 100 0.4 10.7 

19 Jingxingmine470（little）1 400 9 7.5 34 0.4 8 

20 Baizhuang mine 7406 225 14 1.9 130 0.8 9.75 

21 Chenghetwomine 22510 300 8 1.8 100 0.4 10 

22 Shuanggou mine 1208 287 10 1 130 0.6 9.5 

23 Fengfengthreemine3707 130 15 1.4 135 0.4 12 

24 Wucun mine 32031(1) 375 14 2.4 70 0.6 9.7 

25 Zhaoge mine 1237(1) 900 26 2 200 0.6 27 

26 Jingxing mine 4707（big） 400 9 4 45 0.4 6.5 

27 Jingxingthree mine 5701(1) 227 12 3.5 30 0.4 3.5 

28 Chensilou mine 21301 584 10 2.7 149 0.5 14 

29 Shuanggou mine 1204 308 10 1 160 0.6 10.5 

30 Liangzhuang 51101W 640 15 1.5 165 0.2 20.1 

31 Wangfeng mine 1830 123 15 1.1 70 0.2 7 

32 Wucun mine 3305 327 12 2.4 120 0.6 11.7 

33 Caozhuang mine 9203 148 18 1.8 95 0.8 9 

34 Caocun 11-014 200 10 1.6 100 0.2 8.5 

35 Xinzhuangzi mine 4303(1) 310 26 1.8 128 0.2 16.8 
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Fig. 1 Data processing flow chart 

 

Table 2 Training samples 

N A1 A2 A3 A4 A5 B N A1 A2 A3 A4 A5 B N A1 A2 A3 A4 A5 B 

1 2 1 2 3 3 2 10 1 1 3 1 3 2 19 1 1 1 3 3 2 

2 1 1 3 1 3 1 11 1 1 3 1 1 1 20 2 2 1 3 1 3 

3 3 2 1 2 3 2 12 1 1 1 2 1 2 21 1 2 1 1 1 1 

4 3 1 2 3 3 3 13 1 1 1 2 3 1 22 1 1 1 2 3 2 

5 2 2 1 3 3 3 14 1 2 1 2 1 2 23 1 2 1 2 3 1 

6 1 3 2 3 1 3 15 1 2 1 1 3 1 24 1 1 1 2 1 1 

7 1 1 1 1 2 1 16 3 3 1 3 3 3 25 1 3 1 2 1 2 

8 1 3 1 2 1 3 17 1 1 2 1 1 1        

9 3 2 1 2 1 3 18 2 1 1 3 2 2        

 

 

Bayes network, SVM (support vector machine), C4.5 

decision tree, multi-layer feedforward artificial neural 

network. 

Because of the repeatability, noisy and high 

dimensionality of original data, it is necessary to preprocess 

the data to remove duplication and noisy data. The data 

processing is shown in Fig. 1. The data is first collected and 

preprocessed, and then trained with different algorithms. At 

the final, the results are analyzed. 
Based on the measured data of floor failure in China, 44 

sets of original data samples of floor failure are selected, 
including 6 main influencing factors such as mining depth, 
dip angle, mining thickness, working face length, floor 
failure resistance and faults. Due to the incomplete fault 
data, the fault influence on the failure depth is removed. 
The remaining five factors are taken as the research object. 
The modeling is established using 35 sets of data, as shown 
in Table 1 (Bai et al. 2017). 

From Table 1, it can be seen that the mining depth of 
coal seam is mainly between 100 and 1100 m. The coal 
seam is mainly composed of the near horizontal seam and 
gently inclined seam. From the view of thickness, it is 
mainly composed of the thin seam and medium-thick seam. 
The original data are normalized, so that their values are 

concentrated between 0~1, and then the effective data are 

better retained. Labels of A1, A2, A3, A4, A5 and B are 

marked for the mining depth, dip angle, mining thickness, 

working face length, floor failure resistance and failure 

depth, respectively. The normalization formula is shown as 

follows (Bai et al. 2017): 

 

(1) 

where Xij is the sample before normalization, Gij is the 

sample after normalization, min(Xj) is the minimum of the 

original sample, max(Xj) is the maximum in the original 

sample. 

The discretization in WEKA includes supervised and 

unsupervised discretization of numerical attributes, which 

are used to discretize some numerical attributes in the 

dataset into classification attributes. The normalized 

isometric 0~1 is divided into three parts. In this paper, A1 

(mining depth), A2 (dip angle of coal seam), A3 (mining 

thickness), A4 (working face length) and A5 (failure 

resistance of floor) are discretized. The floor failure depth is 

also divided into three parts, namely 0~10 m is represented 

by 1 (low failure grade), 10~20 m by 2 (medium failure 

grade),>20 m by 3 (high failure grade). Then the repeated 

data can be found from the discretized data. The 

discretization equation is shown as follows: 

 

(2) 

where Lij is the discretized sample, max(Gj) is the maximum 

normalized sample data, min(Gj) is the minimum 

normalized sample data, and Q is the step size. 

After the discretization, the data are divided into three 

sections -inf-0.333333, 0.3333-0.66666667 and 0.666667-

inf and then processed in Excel. Then repeated results are 

obtained, including set 18 and set 21; set 9 and set 22; set 

15 and set 29; sets 4, 6, 26 and set 27; sets 14, 16 and set 

23; set 20 and set 33; set 8 and set 28. Therefore, 10 sets of 

data such as sets 4, 6, 8, 9, 14, 15, 16, 18, 20 and 26 are 

removed, and the remaining 25 sets are taken as training 

samples, as shown in Table 2. 
 
 

3. The optimal prediction model of WEKA 
 

3.1 Grey relational analyses 
 

Since there are complex factors affecting the floor 

failure depth, the grey correlation analysis, which can 

analyze the small sample data, is performed to obtain the 

main and minor factors. Furthermore, five factors are 

analyzed, including mining depth, dip angle, mining 

thickness and working face length and the failure resistance 

of the floor. 

Firstly, the initial values of 25 sets of data are 

transformed. The mining depth, dip angle, mining 

thickness, working face length and floor failure resistance 

are expressed as (0)
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and (0)

5 ( )X k  before the transformation. The transformation 

results are shown in Table 3. 

The equation for calculating the change of initial values 

is shown as (Liu et al. 2010): 

 
(3) 

The equation for grey correlation coefficient is shown 

as: 

 
(4) 

where 0 0( ) ( ) ( )i ik x k x k    is the absolute difference, 

min 0min min ( )i
i k

k    is the minimum difference of two 

grades, max 0max max ( )i
i k

k    is the maximum 

difference of two grades. (0,1)∈  is the variation 

coefficient, which is 0.5 in general. It is used to prevent data 

distortion caused by excessive absolute difference, 

enhancing the difference of correlation coefficients. 

After calculating the correlation coefficient of each 

factor, the arithmetic mean value is calculated as follows: 

 

 

 
(5) 

Through calculation, it can be concluded that the 

minimum difference of two grades is 0, the maximum 

difference of two grades is 2.212963. The grey correlation 

degrees of mining depth, coal seam dip angle, mining 

thickness, working face length and floor failure resistance 

are 0.83, 0.61, 0.70, 0.82 and 0.74, respectively. Therefore, 

the influence of five factors on the floor failure depth is 

ordered as mining depth>working face length>floor failure 

resistance>mining thickness>coal seam dip. 

 

3.2 Comparative analyses of training results 
 

WEKA includes four methods of model evaluation, 

namely the Training set evaluation , Supplied test 

evaluation, Cross-validation and Percentage split. The 

application of training set or supplied test set aims to select 

a set of instances from data samples for testing. The cross-

validation can decompose data into N copies, starting from 

the first datum to the end of N copies. In this paper, the 

training set evaluation is used. Accuracy analysis is 

performed by three models of Naive Bayes, neural network  

(0)
(1) (0)

(0)

( )
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 ∑

Table 3 The transformation results of initial value 

Working face number A1 A2 A3 A4 A5 Floor failure depth 

Huaibei mine 1031 1.000 1.000 1.000 1.000 1.000 1.000 

Xingta imine 7607 0.599 0.675 0.500 1.200 0.328 0.857 

Xiezhuang mine 3414 0.809 1.582 2.500 0.467 0.492 1.143 

Xingdong mine 2121 2.006 2.110 1.250 0.833 0.820 1.143 

Wucun mine 32031(2) 1.630 1.350 1.625 0.333 1.071 0.857 

Hebi mine 128 1.235 0.485 3.250 0.778 0.984 0.571 

Geting mine 11601 0.370 0.633 1.125 0.444 0.219 0.714 

Xinzhuangzimine4303(2) 1.827 0.654 3.250 0.400 0.699 0.286 

Suncun mine 11121(east) 2.037 2.149 2.363 0.444 0.683 0.286 

A coal mine 7608 0.630 0.844 0.750 1.198 0.437 1.000 

Jingxing mine 4707（little）1 0.494 0.844 1.125 1.667 0.186 0.571 

Chenghe two mine 22510 0.617 0.633 1.000 0.400 0.546 0.571 

Zibo Shuanggou mine 1208 0.586 0.605 1.250 0.222 0.710 0.857 

Fengfeng three mine 3707 0.741 0.274 1.875 0.311 0.738 0.571 

Wucun mine 32031(1) 0.599 0.791 1.750 0.533 0.383 0.857 

KailuanZhaoge mine1237(1) 1.667 1.899 3.250 0.444 1.093 0.857 

Jingxing three mine 5701(1) 0.216 0.479 1.500 0.778 0.164 0.571 

Chensilou mine 21301 0.864 1.232 1.250 0.600 0.814 0.714 

Shuanggou mine in Zibo 1204 0.648 0.650 1.250 0.222 0.874 0.857 

Liangzhuang 51101W 1.241 1.350 1.875 0.333 0.902 0.286 

Handan Wangfeng mine 1830 0.432 0.259 1.875 0.244 0.383 0.286 

Wucun mine 3305 0.722 0.690 1.500 0.533 0.656 0.857 

Caozhuang mine 9203 0.556 0.312 2.250 0.400 0.519 1.143 

Caocun 11-014 0.525 0.422 1.250 0.356 0.546 0.286 

Xinzhuangzi mine 4303(1) 1.037 0.654 3.250 0.400 0.699 0.286 
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Table 4 Confusion matrix 

Naive Bayes Neural network Decision tree 

a b c classified as a b c classified as a b c classified as 

7 2 0 a=1 6 3 0 a=1 6 3 0 a=1 

3 5 1 b=2 0 9 0 b=2 1 8 0 b=2 

0 1 6 c=3 0 1 6 c=3 0 3 4 c=3 

Comparing the confusion matrix with Classifier error, the 

highest classification accuracy is obtained by the artificial 

neural network model, 84%. 

 

Table 5 Detailed accuracy of naive Bayes 

Kappa TP Rate FP Rate Precision Recall F-Measure MCC Class 

0.577 

0.778 0.188 0.700 0.778 0.737 0.578 1 

0.556 0.188 0.625 0.556 0.588 0.379 2 

0.857 0.056 0.857 0.857 0.857 0.802 3 

Average weight 0.720 0.151 0.717 0.720 0.717 0.569  

 

Table 6 Detailed accuracy of artificial neural networks 

Kappa TP Rate FP Rate Precision Recall F-Measure MCC Class 

0.757 

0.667 0.000 1.000 0.667 0.800 0.749 1 

1.000 0.250 0.692 1.000 0.818 0.721 2 

0.857 0.000 1.000 0.857 0.923 0.901 3 

Average weight 0.840 0.090 0.889 0.840 0.841 0.781  

 

Table 7 Detailed accuracy of decision tree 

Kappa TP Rate FP Rate Precision Recall F-Measure MCC Class 

0.571 

0.667 0.063 0.857 0.667 0.750 0.646 1 

0.889 0.375 0.571 0.889 0.696 0.497 2 

0.571 0.000 1.000 0.571 0.727 0.700 3 

Average weight 0.720 0.158 0.794 0.720 0.724 0.607  

 

 

and decision tree, from the perspectives of the confusion 

matrix, detailed precision and node error rate analyses. 

 

3.2.1 Confusion matrix 
Confusion Matrix, known as error matrix, is a special 

matrix to reveal algorithm performance. When a class is 

mistaken for another, the confusion is presented. Confusion 

matrix of three algorithms is sorted out. Table 4 shows the 

results of the confusion matrix. 

In this table, a, b and c represent three classes, each row 

of the confusion matrix represents the actual class, and each 

column represents the predicted results of the classifier. 

From the confusion matrix of Naive Bayes classifier in 

Table 4, 9 sets of data are low failure grade, among which 2 

sets are mistaken for medium failure grade; 9 sets are 

medium failure grade, among which 3 sets are mistaken for 

low and 1 set for high failure grade; 7 sets are failure grade, 

and 1 set is mistaken for medium failure grade. It can be 

seen that there are 18 correct classification, 7 

misclassifications with the accuracy of 72% and error rate 

of 28%. 

From the confusion matrix of the artificial neural  

 

Fig. 2 Node error rate 

 

 

Fig. 3 Process design of the software 

 

 

network classifier in Table 4, 9 sets of data are low failure 

grade, among which 3 sets are mistaken as medium; 9 sets 

are medium, whose predictions are all correct; 7 sets are 

high, and 1 set is mistaken for medium. There are 21 correct 

classifications, 4 misclassifications. The accuracy and error 

rate of classification are 84% and 16%, respectively. 

From the confusion matrix of decision tree classifier in 

Table 4, 9 sets are low failure grade, among which 3 sets are 

mistaken for medium; 9 sets are medium, 1 set is mistaken 

for low; 7 sets are high failure grade, among which 3 sets 

are mistaken for medium. It can be seen that, there are 18 

correct classifications, 7 misclassifications. The accuracy 

and error rate are 72% and 28%, respectively. 

 

3.2.2 Detailed accuracy 
Detailed accuracy is mainly embodied in TP Rate, FP 

Rate, Precision, Recall, F-Measure and MCC (Matthews 

correlation coefficient) and ROC Area (Receiver Operating 

Characteristic curve). 

Weighted average weight refers to the weighted average 

of each parameter based on the type proportion in the actual 

classification. 

Kappa statistics range from [-1,1]. When Kappa 

statistics are closer to 1, it suggests that the classifier has a 

better predictive effect. If K=1, it means that the predictive 
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value is identical to the real value. 

Detailed accuracy of naive Bayes model, artificial 

neural network model and decision tree model is shown in 

Tables 5, 6 and 7. 

The following conclusions can be drawn. In terms of the 

detailed accuracy of Kappa statistics, neural network>Naive 

Bayes>decision tree; in TP Rate, neural network>Naive 

Bayes=decision tree. In terms of FP Rate, decision 

tree>Naive Bayes>neural network. Precision values of 

decision tree class 3 and neural network model class 3 reach 

1, and the prediction results are the best. The average value 

of the three models is above 0.7, and the maximum value of 

the neural network model is 0.899. In term of Recall, neural 

network>Naive Bayes=decision tree, and the value of the 

neural network model class 2 is 1, indicating it achieves the 

best effect. In terms of harmonic average, the neural 

network achieves the best effect, and neural 

network>decision tree>Naive Bayes; In terms of MCC 

value, neural network>decision tree>Naive Bayes, the value 

of Bayes model is 0.569. Comprehensive analyses and 

comparison of each index are performed. Neural network is 

the best one, and naive Bayes is better than decision tree. 

 

3.2.3 Node error rate 
Node error rate is mainly embodied in four models: 

mean absolute error (MAE), root mean square error 

(RMSE), relative absolute error (RAE), root relative square 

error (RRSE), as shown in Fig. 2. 

As shown in Fig. 2, the minimum MAE of three 

classifier models is neural network model with a value of 

12.16%. In terms of RMSE, neural network model has the 

smallest value of 23.30%. In terms of the RAE, Naive 

Bayes and decision tree model have the larger value, 

closing to 60%. The RRSE of the Naive Bayes and the 

decision tree model are as high as about 70%. In general, 

the error of the neural network model is relatively low, and 

the prediction effect is the best. 
 

 

4. Development of floor failure depth prediction 
system 
 

4.1 Main flow of the software 
 

Based on Java, the prediction system of floor failure 

depth is developed. The software design flow chart is 

shown in Fig. 3. The main functions of the system are as 

follows: 

(1) Switching between ordinary users and engineers. 

(2) Data addition and deletion through data storage 

interface. 

(3) The calculation of floor failure depth is realized by 

empirical formula, WEKA prediction formula and 

theoretical calculation. 

The main flow of the software is shown in Fig. 4. 

Prediction System for Floor Failure Depth is launched, 

and the operation interface is shown in Fig. 4. After the user 

name and password are successfully verified, the main 

interface is entered in the system. Six main menus are 

included in this system, namely Login, User Management, 

Empirical Formula, WEKA Prediction, Theoretical  

 

Fig. 4 Flow of the software 

 

 

Calculation, About and Help. Different functions are 

implemented in these menus. 

 

4.2 Empirical formula interface 
 

The menu of Empirical Formula includes three sub-

menus, namely Empirical Formula 1, Empirical Formula 2 

and Empirical Formula 3, which are compiled in 

accordance with the empirical formulas under three coal 

mining procedures. The factor of working face length is 

considered in Empirical Formula 1 and Empirical Formula 

2; mining depth, coal seam dip angle and working face 

length are synthetically examined in Empirical Formula 3. 

For example, click on Empirical Formula 3 to enter the 

interface. 

In coal mine production practice, according to different 

mining conditions, including buried depth, inclination angle 

and so on, the corresponding floor failure depth can be 

monitored and obtained. That is, different depth or different 

inclination angle corresponding empirical formula is 

different, so the corresponding conditions need to be 

graded. 

Firstly, select the mining depth. Then the coal seam 

mining is divided into Shallow Mining and Deep Mining. 

Click the bottom of Yes, and input the mining depth in the 

input box where the input should be greater than 0. 

Secondly, select the dip angle. The dip angle of coal 

seam is divided into Flat Seam (< 5°), Gently Inclined Seam 

(5°~25 °), Inclined Coal Seam (25°~45°) and Steep Seam 

(> 45°). Click Yes, and input the coal seam dip in the input 

box, which has a prompt of (0° ~90°). 

Thirdly, input working face length, whose unit is meter. 

which input box with a prompt input greater than 0 

number.The selection of working face length is shown in 

Fig. 4. 
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Click Yes to perform the calculation. 

 

4.3 WEKA prediction interface 
 

Click WEKA Prediction on the main interface, which is 

shown in Fig. 4. WEKA prediction formula considers the 

main factors such as mining depth, dip angle, mining 

thickness, working face length(dip length), with or without 

faults. The value of floor failure resistance is between 0 and 

1. The parameters are input accordingly, and the calculation 

of floor failure depth is carried out by clicking the Count. 

Reset is set in the WEKA Prediction Interface to clear the 

parameters in the input box. The WEKA prediction can be 

reused for calculations. Click Return to back to the main 

interface. 

 

4.4 Theoretical formula interface 
 

The main menu of Theoretical Formula includes two 

sub-menus: Theoretical Formula 1 and Theoretical Formula 

2 of Fracture Mechanics and Plastic Mechanics.  

Click on Theoretical Formula 1 to enter the left interface 

shown in Fig. 4. The main parameters include average bulk 

density of rock (MN/m3), mining depth (m), working face 

length (m) and compressive strength of rock mass (MPa). 

Parameters are input into the input frame accordingly. 

Click on Theoretical Formula 2 to enter the right 

calculation interface, as shown in Fig. 4. Two parameters 

are set in Theoretical Formula 2, namely mining depth and 

Internal Friction. Input the two parameters in the input box 

for the calculation. 

Click the Count to calculate the floor failure depth of 

Theoretical Formula 1 or 2. The reset button is set up in the 

interface of the Theoretical Formula. Click Return to back 

to the main interface of the system. 
 

 

5. Application of floor failure depth prediction 
system 
 

5.1 Comparison of accuracy of different prediction 
methods 

 

 

Select the measured data of the floor failure depth, and 

input the corresponding parameters in the prediction system 

for the calculation. The measured data are shown in Table 8. 

After the calculation of the prediction system, the results are 

summarized and the relative error analysis is performed. 

The prediction results are shown in Table 8. 

As shown in Table 8, the maximum relative average 

error is 33%, which is calculated by Empirical Formula 3, 

the minimum is 28.6% calculated by WEKA prediction 

with the best prediction effect. It shows that the calculation 

result of this model is closer to the actual error and has 

higher precision than that of the empirical formula. 

 

5.2 Best use range of WEKA prediction 
 

Import the 35 set of original measurement datas in Table 

1 into WEKA to evaluate the prediction results of the 

system. The X-axes in (a), (b), (c) and (d) in Fig. 5  

represent the mining depth (m), dip angle (°), working face 

length (m) and the failure resistance of floor, respectively. 

The Y-axes represent the predicted value of the regression 

model. The cross in the figure represents error at the datum 

point. The larger the cross, the greater the error. 

From the Fig. 5(a), when the mining depth is between 

110~550 m, the cross is smaller and the data are more 

concentrated. When the mining depth is between 550~1000 

m, there are more crosses. Therefore, WEKA prediction is 

more suitable for mining conditions of 110 m~550 m. 

From Fig. 5(b), the error between the predicted value 

and the measured value is smaller when the coal seam dip is 

between 0°~15°; there are more large crosses when the coal 

seam dip is between 15°~30°. Therefore, the WEKA 

prediction model is more suitable for the mining conditions 

of 0°~15°. 

From the Fig. 5(c), when the working face length is 

30～135 m, the cross of data points is smaller. When the 

working face length is 135~200 m, the prediction accuracy 

of the predicted value is lower. 

From the Fig. 5(d), there is no obvious change in the 

error in the range of 0.2~0.8 of the failure resistance depth, 

and the error is not obvious in a certain range. Therefore,  

Table 8 Analysis of prediction results 

Working face 
Measured 

value /m 

Calculation of floor failure depth /m Relative error /% 

Empirical 

Formula 1 

Empirical 

Formula 2 

Empirical 

Formula 3 

WEKA 

prediction 

Empirical 

Formula 1 

Empirical 

Formula 2 

Empirical 

Formula 3 

WEKA 

prediction 

Magouliang mine 1100 13 13.7 14.0 12.2 10.1 5.04 7.36 6.08 22.14 

Huafeng mine 41303 13 13.7 14.0 18.0 9.6 5.04 7.36 38.50 25.94 

Dongjiahe mine 507 10.8 13.0 13.4 12.1 7.4 20.44 24.03 11.88 31.36 

Xinglongzhuang mine 

10302 
16 22.3 21.0 22.3 14.3 39.29 31.26 39.68 10.70 

Dongpang mine 9103 12.43 8.3 9.1 7.2 3.8 33.55 27.05 42.01 69.36 

Bucun mine 9115 10 12.6 13.0 12.1 7.9 25.76 30.18 20.68 20.96 

Zhaogu two 
mine11050 

34.8 20.1 19.3 26.8 19.6 42.16 44.53 23.11 43.68 

Bucun mine 9113 7 12.6 13.0 12.8 7.3 79.66 85.98 82.23 4.98 

Relative average error      31.36 32.21 33.02 28.64 
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6. Conclusions 
 

By de-noising the data of the measured data floor failure 

depth, the valuable data information is obtained. Through 

learning training with different models, the optimal model 

is determined. Based on Java language, the prediction 

system of floor failure depth is developed and applied. 

(1) According to the actual measured data of the floor 

failure depth in China, the raw data samples of the damage 

of the base plate of the 44 groups are selected. Since the 

fault has been removed, the remaining modeling data is 35 

sets. After standardization and discretization, 25 groups of 

valuable data were obtained. 

(2) Taking the remaining 25 groups of data as samples, 

the grey correlation degree of five factors affecting the 

depth of floor failure in descending order is: mining 

depth>working face length>floor failure resistance>mining 

thickness>dip angle of coal seams. 

(3) Training samples were trained with naive Bayes, 

neural network and decision tree, respectively. Besides, the 

modeling time, confusion matrix, detailed accuracy and 

node error rate were also trained. Finally, the neural 

network was verified as the best model. 

(4) Based on Java language, the prediction system of 

floor failure depth is developed, which can realize the 

switching between ordinary users and engineer users, the 

increase of data, the deletion and the calculation of floor 

failure depth under different formulas. 

(5) Predictions for 8 sets of measured data were done 

and analyzed by the system, the prediction results showed 

that the relative error of WEKA prediction formula was the 

smallest with the best prediction effect. 

(6) The WEKA prediction model had better applicability 

under the mining conditions of 110 m~550 m coal seam 

depth, 0°~15° coal seam dip and 30 m~135 m working face 

length. Because the datas come from the coal mine site in 

China, the results are more suitable for the coal mine in 

China, but it also has certain reference value for similar 

mines abroad. 

 

 

Acknowledgments 
 

The research described in this paper was financially 

supported from the funding of the Taishan Scholar Talent 

Team Support Plan for Advantaged & Unique Discipline 

Areas and Key research and development plan of Shandong 

Province (2018GSF117018; 2018GSF120003; 

2019GSF111024), Shandong Provincial Natural Science 

Foundation (ZR2019BEE013) and National Natural Science 

Foundation of China(51804179; 51604167; 51974173), 

State Key Laboratory of Mining Disaster Prevention and 

Control Co-founded by Shandong Province and the 

Ministry of Science and Technology(MDPC2016ZR01). 

 

 

References 
 

Bai, L.Y., Zhao, J.H., Liu, Z.X. and Zhang, Z.X. (2017), “Depth 

prediction of floor damage based on data mining algorithm”, 

Coal Eng., 49(6), 92-95. https://doi.org/10.11799/ce201706027. 

Blümling, P., Bernier, F., Lebon, P. and Martin, C.D. (2007), “The 

excavationdamaged zone in clay formations––time-dependent 

behaviour and influ-ence on performance assessment”, Phys. 

Chem. Earth, 32(8-14), 588-599. 

https://doi.org/10.1016/j.pce.2006.04.034. 

Bukowski, P. (2011), “Water hazard assessment in active shafts in 

upper Silesian coal basin mines”, Mine Water Environ., 30(4), 

302-311. https://doi.org/10.1007/s10230-011-0148-2. 

Butrón, C., Gustafson, G., Fransson, Å. and Funehag, J. (2010), 

“Drip sealing oftunnels in hard rock: A new concept for the 

design and evaluation of permea-tion grouting”, Tunn. Undergr. 

Sp. Tech., 25(2), 114-121. 

https://doi.org/10.1016/j.tust.2009.09.008. 

Camoes, A. and Martins, F.F. (2017), “Compressive strength 

prediction of CFRP confined concrete using data mining 

techniques”, Comput. Concrete, 19(3), 233-241. 

http://doi.org/10.12989/cac.2017.19.3.233. 

Fernandez, G. and Moon, J. (2010), “Excavation-induced 

hydraulic conductivity reduction around a tunnel - Part 1: 

Guideline for estimate of ground water inflow rate”, Tunn. 

Undergr. Sp. Tech., 25(5), 560-566. 

https://doi.org/10.1016/j.tust.2010.03.006. 

  
(a) (b) 

  
(c) (d) 

Fig. 5 Analysis of prediction results 

110

20.386

35.473

564.3

5.3

1018.6 30174

5.3

20.386

35.473

35.473

20.386

30

5.3

       150             200 0.8

35.473

20.386

0.2

5.3

0.5

58



 

Development and application of a floor failure depth prediction system based on the WEKA platform 

Genis, M., Akcin, H., Aydan, O. and Bacak, G. (2018), 

“Investigation of possible causes of sinkhole incident at the 

Zonguldak Coal Basin, Turkey”, Geomech. Eng., 16(2), 177-

185. http://doi.org/10.12989/gae.2018.16.2.177. 

Huang, Z., Jiang, Z., Tang, X., Wu, X., Guo, D. and Yue, Z. 

(2016), “In situ measurement of hydraulic properties of the 

fractured zone of coal mines”, Rock Mech. Rock Eng., 49(2), 

603-609. https://doi.org/10.1007/s00603-015-0741-y. 

Jiang, N., Wang, C., Pan, H., Yin, D. and Ma, J. (2020), “Modeling 

study on the influence of the strip filling mining sequence on 

mining-induced failure”, Energy Sci. Eng., 8(6), 2239-2255. 

https://doi.org/10.1002/ese3.660. 

Jiménez, R., Anupol, J., Cajal, B. and Gervilla, E. (2018), “Data 

mining techniques for drug use research”, Addictive Behaviors 

Reports, 8, 128-135. 

https://doi.org/10.1016/j.abrep.2018.09.005. 

Kaveh, A., Hamzeziabari, S.M. and Bakhshpoori, T. (2018), “Soft 

computing-based slope stability assessment: A comparative 

study”. Geomech. Eng., 14(3), 257-269. 

http://doi.org/10.12989/gae.2018.14.3.257. 

Komurlu, E., Kesimal, A. and Hasanpour, R.  (2015), “In situ 

horizontal stress effect on plastic zone around circular 

underground openings excavated in elastic zones”, Geomech. 

Eng., 8(6), 783-799. https://doi.org/10.12989/gae.2015.8.6.783. 

Li, L.P., Lei, T., Li, S.C., Xu, Z.H., Xue, Y.G. and Shi, S.S. (2015), 

“Dynamic risk assessment of water inrush in tunnelling and 

software development”, Geomech. Eng., 9(1), 57-81. 

https://doi.org/10.12989/gae.2015.9.1.057. 

Liu, Q., Chai, J., Chen, S., Zhang, D., Yuan, Q. and Wang, S. 

(2020), “Monitoring and correction of the stress in an anchor 

bolt based on pulse prepumped brillouin optical time domain 

analysis”, Energy Sci. Eng., 1-13. 

https://doi.org/10.1002/ese3.644. 

Liu, S. and Lin, Y. (2010), Grey System: Theory and its 

Application, Springer-Verlag Berlin Heidelberg, 379-401. 

Narain, R., Golas, A. and Lin, M.C. (2010), “Free-flowing 

granular materials with two-way solid coupling”, Proceedings 

of the International Conference on Computer Graphics and 

Interactive Techniques, Seoul, Korea, December. 

Polak, K., Rozkowski, K. and Czaja, P. (2016), “Causes and 

effects of uncontrolled water inrush into a decommissioned 

mine shaft”, Mine Water Environ., 35(2), 128-135. 

https://doi.org/10.1007/s10230-015-0360-6. 

Sato, T., Kikuchi, T. and Sugihara, K. (2000), “In-situ experiments 

on anexcavation disturbed zone induced by mechanical 

excavation in Neogenesedimentary rock at Tono mine, central 

Japan”, Develop. Geotech. Eng., 84, 105-116. 

https://doi.org/10.1016/S0165-1250(00)80010-3. 

Schäfer, M. and Teschauer, I. (2001), “Numerical simulation of 

coupled fluid-solid problems”, Comput. Meth. Appl. Mech. 

Eng., 190(28), 3645-3667.  

https://doi.org/10.1016/S0045-7825(00)00290-5. 

Si, L., Zhang, H., Wei, J., Li, B. and Han, H. (2021), “Modeling 

and experiment for effective diffusion coefficient of gas in 

water- saturated coal”, Fuel, 284, 118887. 

https://doi.org/10.1016/j.fuel.2020.118887. 

Wang, C., Shen, B., Chen, J., Tong, W., Jiang, Z., Liu, Y. and Li, Y. 

(2020), “Compression characteristics of filling gangue and 

simulation of mining with gangue backfilling: An experimental 

investigation”, Geomech. Eng., 20(6), 485-495. 

https://doi.org/10.12989/gae.2020.20.6.485. 

Wu, J., Li, S.C., Xu, Z.H., Pan, D.D. and He, S.J. (2018), “Flow 

characteristics after water inrush from the working face in karst 

tunneling”, Geomech. Eng., 14(5), 407-419. 

https://doi.org/10.12989/gae.2018.14.5.407. 

Yuan, Y.C., Li, S.C., Zhang, Q.Q., Li, L.P., Shi, S.S. and Zhou, 

Z.Q. (2016), “Risk assessment of water inrush in karst tunnels 

based on a modified grey evaluation model: Sample as 

Shangjiawan Tunnel”, Geomech. Eng., 11(4), 493-513. 

https://doi.org/10.12989/gae.2016.11.4.493. 

Zhang, B. and Meng, Z. (2019), “Experimental study on floor 

failure of coal mining above confined water”, Arab. J. Geosci., 

12(4), 114-123. https://doi.org/10.1007/s12517-019-4250-2. 

Zhang, G.H., Jiao, Y.Y., Ma, C.X., Wang, H., Chen, L.B. and Tang, 

Z.C. (2018), “Alteration characteristics of granite contact zone 

and treatment measures for inrush hazards during tunnel 

construction-A case study”, Eng. Geol., 235, 64-80. 

https://doi.org/10.1016/j.enggeo.2018.01.022. 

Zhou, Z.Q., Li, S.C., Li, L.P., Shi, S.S. and Xu, Z.H. (2015), “An 

optimal classification method for risk assessment of water 

inrush in karst tunnels based on the grey system”, Geomech. 

Eng., 8(5), 631-647. https://doi.org/10.12989/gae.2015.8.5.631. 

 

 

GC 

59




