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1. Introduction 
 

Over the last few decades, polymeric geosynthetics are 

used to improve both the stability and settlement 
characteristics of various geotechnical structures. The 
effectiveness of polymeric geosynthetics increases 
significantly for the structures such as foundations for 

buildings, bridge abutments, electrical transmission towers, 

and hanging cable cars constructed on the sloping ground or 

hilly terrain. Utilization of reinforcement enhances both the 

load carrying capacity of the foundation as well as the 

stability of the slope (Ghanbari et al. 2013). Prior 
experimental investigations (Selvadurai and Gnanendran 

1989, Lee and Manjunath 2000, Yoo 2001, Turker et al. 

2014, Keskin and Laman 2014, Zheng et al. 2019) as well 

as numerical analyses (Huang and Tatsuoka 1994; Zheng 

and Fox 2017, Zheng et al. 2018, Luo and Bathurst 2018, 

Halder and Chakraborty 2018, 2019a, b) also confirmed the 

usefulness of reinforcement layers in increasing the load-

bearing capacity of footing placed on the soil slopes. In 

most of the prior research works, reinforcement was mainly 

utilized in the cohesionless soil. Noorzad and Mirmoradi 

(2010), Vahedifard et al. (2014), Wang et al. (2011), Abd 

and Utili (2017), and Chen et al. (2018) investigated the  
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effectiveness of reinforcements in cohesive soil and found 

that planar reinforcements like geotextile and geogrid can 

also increase the strength of cohesive soil. However, no 

studies were found in the literature that investigates the 

effect of reinforcement layer on the bearing capacity of a 

strip foundation placed on top of a clayey soil slope. In 

addition to that, super structure load can be eccentric due to 

structural asymmetry or architectural point of view. 

Previously conducted studies did not include that possibility 

of eccentric loading also. 

 As mentioned above, many researchers estimated the 

bearing capacity of a strip foundation resting on top of a 

reinforced soil slope but except Luo and Bathurst (2018), in 

all of the prior mentioned numerical studies, soil properties 

were considered deterministic. However, in reality, soil 

parameters vary significantly within a minimal distance in 

both horizontal as well as vertical directions (Phoon and 

Kulhawy 1999a, b). Thus, the assumption of constant value 

of soil parameters throughout the domain not only 

overestimates bearing capacity but also is unreliable as it 

fails to simulate the actual soil condition. For that reason, 

influence of soil spatial variability needs to be considered in 

the numerical analysis to make it more rational. The effect 

of spatial variability of soil parameters on the stability and 

settlement of various geotechnical structures were studied 

in the past by many researchers (Griffiths et al. 2002, 

Srivastava and Babu 2011, Yoo 2016, Lombardi et al. 2017, 

Pramanik et al. 2019, Halder and Chakraborty 2019c, 

2020). In contrast, only some researchers (Luo and Bathurst 

2017, 2018, Brahmi et al. 2018) considered the influence of 

spatial variability of soil parameters and estimated the 
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bearing capacity of a strip footing situated on the soil slope. 

Brahmi et al. (2018) modelled soil shear strength of 

cohesive soil as an isotropic random field. The assumption 

of modelling soil shear strength as an isotropic random field 

fails to reciprocate the actual soil heterogeneity, which leads 

to an erroneous result. Luo and Bathurst (2018) carried out 

probabilistic analysis of a large-scale reinforced 

cohesionless embankment subjected to strip loading. It is to 

be mentioned here that Luo and Bathurst (2018) considered 

a single set of values of the coefficient of variation of soil 

friction angle (CoVϕ), spatial correlation length in both 

horizontal (Lx) and vertical (Ly) directions which makes it 

case specific. According to the authors' knowledge, until 

now no probabilistic studies are carried out for the 

calculation of the bearing capacity of a strip footing placed 

on the reinforced cohesive soil slope with the consideration 

of anisotropic random field model and eccentric loading. 

The first aspect of the present study is to compute the 

deterministic bearing capacity of the strip footing placed on 

the edge of a reinforced purely cohesive soil (ϕ = 0°) slope 

and subjected to both vertical and eccentric loading. The 

second aspect of the present study is to incorporate the 

influence of clay anisotropy through random field 

modelling and compute the probabilistic bearing capacity of 

the strip footing. The lower bound finite element limit 

analysis method with second-order cone programming 

(SOCP) is used to carry out all the numerical analyses. The 

Monte-Carlo simulation technique is utilized to obtain the 

probabilistic outcomes. A series of deterministic analysis 

are performed by varying other parameters such as (i) slope 

angle (β), (ii) loading eccentricity (e/B), and (iii) 

embedment depth of reinforcement layer from the footing 

base (d/B). The effectiveness of reinforcement in the 

deterministic analysis is expressed in terms of η, which is 

the ratio of ultimate collapse load of reinforced (Qu-r) and 

unreinforced (Qu-ur) soil slopes. Critical depth of 

reinforcement (dcr/B) corresponding to maximum efficiency 

factor (ηmax-det) is obtained for each value of β. 

Reinforcement layer is always kept at the optimum position 

for all probabilistic analyses. Undrained shear strength of 

soil (c) is considered as a random variable. In addition to 

the parameters considered in the deterministic analyses, the 

influence of other parameters such as (i) coefficient of 

variation of the undrained shear strength of soil (CoVc), (ii) 

spatial correlation length in both horizontal (Lx) and vertical 

(Ly) directions are studied in probabilistic analyses. Footing 

remains to be at the slope edge in all numerical analyses to 

simulate the most vulnerable case as discussed in Halder et 

al. (2019). Probabilistic bearing capacity are presented in 

terms of design charts for various sets of CoVc, Lx, and Ly. 

Practising engineers are supposed to be benefited by using 

the design charts. Failure patterns of both unreinforced and 

reinforced soil slopes are obtained. in deterministic and 

probabilistic analyses. 
 

 

2. Problem definition 
 

A rigid, rough, and surface strip footing of width B as 

shown in Fig. 1(a) is situated at the edge of a reinforced 

purely cohesive soil slope with slope angle of β. Mean 

value of undrained shear strength (c) is taken as 20 kN/m2. 

A compressive load of Qu is acting (i) at the centre of the 

footing (e/B = 0) as well as (ii) at a distance of e/B = 0.5 

from slope edge. A reinforcement layer is laid throughout 

the length of the domain at a variable distance of d, 

measured from the base of the footing. The objective of the 

present study is to compute the lower bound deterministic 

as well as probabilistic bearing capacity of a strip footing. 

Following Yang et al. (2019 and 2020), dimensionless 

bearing capacity factor (N) of a strip footing is determined 

as N = Qu/cB. At the time of calculating N (= Qu-ur/cB) for 

unreinforced slope, Qu-ur is the corresponding collapse load 

of unreinforced slope. Similarly, for reinforced slope, Qu-r is 

the corresponding collapse load based on which N (= Qu-

r/cB) is determined.   

Failure in soil mass is assumed to occur by following 

the Mohr-Coulomb constitutive model. The associated flow 

rule is applied over the whole soil domain. Present study 

incorporates the influence of reinforcement by allowing 

shear stresses to be discontinuous and normal stresses to be 

continuous over the reinforcement position as proposed by 

Chakraborty and Kumar (2014). Bonding between 

reinforcement and soil is assumed entirely rough. The 

tensile strength of the reinforcement is considered very high 

so that no tearing of reinforcement is possible. Failure 

occurs only by shear between reinforcement and soil mass. 

 

 

3. Boundary conditions and finite element mesh 
 

As there is no overburden, normal (σx and σy) and shear 

(τxy) stresses are zero along the boundary edge GH. The line 

HI denotes footing position. Footing-soil roughness 

condition is imposed with the help of the equation cxy  . 

The values of σx, σy, and τxy are also kept equal to zero along 

slope edge IJ and vertical edge JE. Length, and depth of the 

problem domain in horizontal (LH) and vertical (LV) 

directions are sufficiently large to get unaffected by the 

failure surface. The expansion or reduction of the problem 

area should not affect the magnitude of collapse load. It is 

also ensured that the magnitudes of LH and LV should 

always be greater than the values of Lx and Ly. Two types of 

problem domain are selected depending upon the magnitude 

of Lx and Ly. The values of LH and LV are fixed as 6.26B and 

6.55B for all the analyses where Lx and Ly values vary 

between 0.25B and 10B. For higher values of Lx and Ly (20B 

to 60B), the domain is extended up to 75.98B and 73.32B in 

the horizontal and vertical directions, respectively. 

Two finite element meshes are used in the present study 

depending upon the values of Lx and Ly. Figs. 1(b) and 1(c) 

show typical finite element meshes obtained after 

discretizing a slope domain of β = 20° by three nodded 

triangular elements. Relatively finer mesh (refer: Fig. 1(b)) 

is used for Lx and Ly values between 0.25B and 10B. On the 

other hand, relatively coarser mesh (refer: Fig. 1(c)) is used 

for Lx and Ly values between 20B and 60B. However, in 

both the cases, mesh density is more near the footing region 

and it becomes less near the boundary sides. The notations 

Nd, E, Dc, and Ni in Figs. 1(b) and 1(c) express the total 

number of nodes, elements, discontinuities, and nodes  
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representing footing-soil interface, respectively. Fig. 1(c) 

also shows the zoomed portion of the finite element mesh 

near the footing. 
 
 

4. Methodology 
 

4.1 Lower bound finite element limit analysis 
 

As aim of the present study is to predict the lower bound 

bearing capacity of the strip footing, the plane strain lower 

bound finite element limit analysis formulation of Sloan 

(1988) is employed. Second order conic optimization 

technique proposed by Makrodimopoulos and Martin 

(2006) is used to carry out conic optimization. Three noded 

triangular element as illustrated in Fig. 2(a) discretizes the 

problem domain in the two-dimensional object space (X-Y). 

The nodal stresses; normal stresses in the X and Y directions 

(σx and σy) and shear stress (τxy) are the basic unknowns. 

Variation of stresses are expressed in Eq. (1). 

 
(1) 

In the above Eq. (1), nodal stresses associated with the 

ith node are σx,i, σy,i, and τxy,i. Linear shape function 

associated with the ith node is Nsi. Various equality and 

inequality constraints generated during optimization are 

discussed briefly below. Details can be found in Sloan 

(1988) and Tang et al. (2014). 

 
4.1.1 Element equilibrium conditions 

 

 

Static equilibrium conditions (Refer: Eq. (2)) are 

employed throughout the problem domain. 

 
and

  
(2) 

Here, γ = zero for weightless soil condition. Because of 

that, two equality constraints are generated on nine nodal 

stresses (Refer: Eq. (3)). 

;
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4.1.2 Stress discontinuity conditions 
Unlike the displacement based conventional finite 

element method, any node of an element is not shared 

between other adjacent elements in the lower bound finite 

element limit analysis technique. Nodes are distinct for all 

elements. Because of that, the interface between two 

surrounding triangles forms the edge of stress discontinuity 

as shown in Fig. 2(b). However, to make normal and shear 

stresses continuous over these edges, one needs to enforce 

discontinuity criterion over these edges. For an example, 

stress discontinuity conditions along the discontinuity edges 

formed by two adjacent triangles 'a' and 'b' will be as 

follows: 
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(a) 

  
(b) Nd = 12411; E = 4137; Dc = 6143; Ni = 18 (c) Nd = 15981; E = 5327; Dc = 7919; Ni = 18 

Fig. 1 (a) Problem domain and various stress boundary conditions; finite element mesh used in the study for β = 20°, c = 20 

kN/m2 with (b) Lx/B = Ly/B = 0.25 and (c) Lx/B = Ly/B = 40 
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;
 

; ;

 

(4) 

Magnitude of normal (σnm) and shear stresses (τsh) can be 

obtained from Eq. (5). 

 

 

(5) 

Due to the implementation of stress discontinuity 

conditions (refer: Eq. (4)), four number of equality 

constraints are generated on twelve nodal stresses, which 

are expressed in Eq. (6). 
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In the above expressions, known quantities are [Ads] and 

{bds}; whereas, unknown is {σds}. Angle of inclination 

between stress discontinuity edge and horizontal axis in 

anti-clockwise direction is ω. 
 

4.1.3 Modification in stress discontinuity conditions for 
modelling of reinforcement  

To incorporate the effect of including reinforcement 

layer, only the stress discontinuity conditions mentioned 

above need to be modified (Chakraborty and Kumar 2014). 

Following Chakraborty and Kumar (2014), the normal 

stress continuity on the discontinuous edges of the elements 

lying above and below the reinforcement layer is enforced; 

on the other hand, the shear stress continuity is relaxed as 

shown in Fig. 2(c). The modified stress discontinuity 

conditions are represented through Eq. (7). No explicit 

element is used to model the reinforcement layer. Hence, no 

input parameters related to reinforcement are required for 

the analysis. Reinforcement is assumed not to fail 

structurally in axial tension; however, a shear failure can 

occur along the interface between the soil and 

reinforcement. Interface between soil and reinforcement is 

assumed as fully bonded, i.e., the value of interface friction 

angle is same as that of soil friction angle.  

;
 

;
 

;

 

(7) 

 

4.1.4 Stress boundary conditions 
Stress boundary conditions employed over the boundary 

edge of an element are shown in Fig. 2(d). In Fig. 2(d), λ 

denotes angle between boundary edge and horizontal axis in 

the anti-clockwise direction. Four equality constraints as 

expressed in Eq. (8) are generated on six nodal stresses due 

to the employment of stress boundary conditions.  

 
(8) 

where, 

 

 

 

 

Here, q1 and q2 are normal stresses acting on the 

boundary, and t1 and t2 are shear stresses acting along the 

boundary. Values of [Asb] and {bsb} are known; whereas, 

{σsb} is unknown. 

 

4.1.5 Yield criterion 
Soil mass is assumed to follow the Mohr-Coulomb 

failure criterion as provided in Eq. (9). 

 
(9) 

With the inclusion of second order cones at each node, 

the Mohr-Coulomb yield criterion becomes: 

   
i = 1, 2, ....., Nnd 

(10) 

where, 

 

;  

 

ξi is the conic vector.
 

4.1.6 Objective function 
The objective function (collapse load) for the present 

problem is obtained with the integration of the normal 

stresses associated with the nodes representing footing 

position (refer: Eq. (11)). 

 

(11) 

In the above expression, Qu is the magnitude of collapse 

load acting per unit width of the footing along the footing-

soil interface of length Ls. The notations OBJN and dl 

represent the average normal stress associated with the ith 

element of footing-soil interface and the length of the ith  
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element. 
 

4.1.7 Final form of optimization 
After the generation of all equality and conic constraints 

as mentioned in previous sections, these are assembled 

together to obtain global equality [Atotal] matrices. The final 

form of the conic optimization scheme is outlined below. 

Maximize
  

(12) 

subjected to, 

 
= 

 

whereas,  

 

and

  

In the above expressions, {gT} is the vector comprises of 

the objective function coefficients; {σ} is the global stress 

vector. A code is written in MATLAB to obtain the lower 

bound solution, whereas, an optimization toolbox MOSEK  

 
 

is used to carry out conic optimization. 

 

4.2 Lower bound finite element limit analysis 
 

An uncertainty associated with undrained shear strength 

(c) of purely cohesive soil is considered by modelling c as a 

random field. In order to avoid negative values of c; the log-

normal distribution is chosen. The anisotropic random field 

model of c is generated by using Cholesky-Decomposition 

technique. The auto-correlation function (ρ) between values 

of c at two different points [(x1, y1) (x2, y2)] are obtained 

from Eq. (13). 

 

(13) 

Here, Lx and Ly are spatial correlation lengths in the 

horizontal and vertical directions.  
 

4.3 Combination of limit analysis and random field 
 

After obtaining c value for each element from each 

Monte Carlo simulation, it is substituted in the following 

equation representing the Mohr-Coulomb failure criteria.  
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Fig. 2 (a) Three noded linear stress triangle, (b) stress discontinuity conditions between two adjacent elements, (c) modified 

stress discontinuity conditions to incorporate reinforcement effect and (d) stress boundary equations applied over boundary 

edges 
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(14) 

In the above expression, cj is the undrained shear 

strength of the jth element where j changes from 1 to the 

total number of elements (E). By using the modified Mohr-

Coulomb failure criteria as per Eq. 9, N values for strip 

footing placed on the edge of unreinforced and reinforced 

slopes are obtained for each Monte-Carlo simulation 

technique. 
 

4.4 Failure probability  
 

Failure probability of N associated with the strip footing 

placed on the reinforced slope is computed by using Eq. 

(15). In Eq. (15), FS denotes factor of safety considered by 

the design engineers. It is to be noted that during the design 

of foundations, design engineers use a FS value to obtain 

the safe bearing capacity by dividing the ultimate bearing 

capacity with FS.  

pfNr = p(Ni < Ndet / FS) (15) 

whereas, the failure probability of efficiency factor (pfη) is 

computed by using Eq. (16) to study the influence of spatial 

variability of c on the effectiveness of reinforcement layer.  

 

(16) 

In the above expression, (i) nF denotes number of 

simulations for which ηi values are less than the value of  

 

 

ηdet, and (ii) nTotal is total number of simulations, i.e., 500 as 

Halder and Mahadevan (2000). 

 

 

5. Results 
 

For deterministic analysis, effectiveness of using 

reinforcement layer is presented in terms of the variation of 

the efficiency factor (ηdet) with the embedment depth of the 

reinforcement layer (d/B) for two slope angles (β = 20° and 

30°) and loading eccentricity (e/B = 0.0 and 0.5). For the 

probabilistic studies of footing under vertical load, three 

values of CoVc (15%, 25%, and 35%) are considered for 

two values of β = 20° and 30°. The magnitude of Lx/B is 

varied as Lx/B = 0.25, 0.50, 1, 5, 10, 20, 40, and 60 and the 

magnitude of Ly/B is varied as Ly/B = 0.25, 0.50, 1, 2.5, 5, 

10, 20, 40, and 60. The values of Lx/B and Ly/B are 

considered as per Phoon and Kulhawy (1999a-b). In order 

to make the results non-dimensional, the magnitudes of Lx 

and Ly are chosen in terms of footing width (B). In addition 

to that, the present study also aims to capture the effect of 

higher and lower spatial correlation length on the magnitude 

of bearing capacity factor N of a strip footing. For 

probabilistic analysis of strip footing subjected to eccentric 

loading, only a slope angle (β = 20°) and a single value of 

CoVc (35%) is chosen. 
 

5.1 Spatial distribution of undrained shear strength 
 

Fig. 3 shows spatial distribution of undrained shear 

strength (c) within a soil slope of β = 20° for various  

    jxyyx c22
22
 

Total

F
fn

n

n
p 

 
(a) (b) 

 
(c) (d) 

 
(e) 

Fig. 3 Spatial distribution plot of undrained shear strength for reinforced slope of β = 20° with (a); Lx = 0.25B; Ly = 0.25B, 

CoVc = 15%, (b) Lx = 0.25B; Ly = 0.25B; CoVc = 25%, (c) Lx = 0.25B; Ly = 0.25B; CoVc = 35%, (d) Lx = 0.25B; Ly = 5B; 

CoVc = 35% and (e) Lx = 0.25B; Ly = 40B; CoVc = 35% 
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(a) (b)  

Fig. 4 Variation between ηdet and d/B for β = 20° and 30° in deterministic analysis and (b) Variation between ηdet and d/B for 

β = 20°, e/B = 0.5 in deterministic analysis 
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Fig. 5 Variation between μN, Ly/B, and CoVc for unreinforced and reinforced slope of β = 20° with Lx/B = (a) 0.25, (b) 0.50, 

(c) 1, (d) 5, (e) 10, (f) 20, (g) 40 and (h) 60 
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Fig. 5 Continued 
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(e) (f) 

Fig. 6 Variation between μN, Ly/B, and CoVc for unreinforced and reinforced slope of β = 30° with Lx/B = (a) 0.25, (b) 0.50, 

(c) 1, (d) 5, (e) 10, (f) 20, (g) 40 and (h) 60 
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combinations of CoVc, Lx, and Ly. When the values of Lx 

and Ly are small (Lx = 0.25B and Ly = 0.25B), the spatial 

distribution plot in Fig. 3(a) shows variation of c is very 

much disperse in both the directions. With the increasing 

values of CoVc (25% and 35%) and constant values of Lx = 

0.25B and Ly = 0.25B, the range of variation of the spatial 

value of c increases. (Refer to Fig. 3b-c). On the other hand, 

Figs. 3(d-e) illustrate that with the increment in the Ly value 

but keeping CoVc and Lx as constant, the spatial plot of c 

becomes more or less uniformly distributed only in the 

vertical direction rather than sparsely distributed in both the 

horizontal and vertical directions. 

 

5.2 Deterministic analysis 
 

The effectiveness of reinforcement in increasing the 

value of N (= Qu-r/cB) for a strip footing under vertical load 

is indicated by Fig. 4(a). With the inclusion of a single layer 

of reinforcement, the magnitude of N increases. The 

maximum reinforcing efficiency (ηmax-det) is obtained after 

placing reinforcement at a critical depth (dcr). Beyond that 

depth, reinforcing efficacy reduces to unity. As an instance, 

the value of ηmax-det is found to be 1.17 at a value of dcr/B = 

0.26 for a slope with β = 20°. When the reinforcement layer 

is laid at that critical depth, it distributes stresses into a 

wider and deeper area below the footing. If the depth of 

placement is more than the value of dcr, stresses generated 

below the footing do not extend up to the depth of the 

reinforcement layer; it passes by touching the reinforcement 

layer. The effectiveness of the reinforcement increases 

slightly with the increase in the value of slope angle.  

Fig. 4(b) shows that the inclusion of reinforcement layer 

is also found to be useful for footing under eccentric 

loading. If a single layer of reinforcement is placed at the 

critical depth, the magnitude of N increases with respect to 

the value of N for unreinforced slope. However, the 

magnitude of ηdet reduces with the loading eccentricity for 

reinforced slope. 

 

5.3 Probabilistic analysis 
 

Figs. 5 and 6 show the variation between the mean 

values of N (μN) with CoVc and Ly/B for both unreinforced 

and reinforced slopes with inclination of 20° and 30°. In  

 

 

Figs. 5 and 6, design charts are presented for Lx values of 

0.25B, 0.50B, 1B, 5B, 10B, 20B, 40B, and 60B. With the 

inclusion of a single layer of reinforcement in a slope, the 

magnitude of μN increases. As shown in Fig. 5(a), the value 

of μN increases from 3.98 to 4.58 after laying a single layer 

of reinforcement in a slope with β = 20°, CoVc = 35%, Lx = 

0.25B, and Ly = 1B. For both unreinforced and reinforced 

slopes, the magnitude of μN reduces with the increasing 

randomness in the soil shear strength. Fig. 5 illustrates that 

the value of μN reduces by a margin of 13.40% with the 

change in the magnitude of CoVc from 15% to 35% for a 

reinforced slope with a combination of β = 20°, Lx = 0.25B, 

and Ly = 0.25B. For smaller correlation lengths, the value of 

μN obtained from the probabilistic analysis of both 

unreinforced and reinforced slopes is always lower than the 

deterministic solution, which implies that the deterministic 

analysis always overestimates. However, with the increment 

in the correlation lengths, this difference reduces and at a 

higher correlation length the deterministic N values and 

probabilistic mean N (μN) values of both unreinforced and 

reinforced slopes become almost equal. Spatial plots in Fig. 

3 for smaller values of Lx and Ly also indicate randomness 

in the value of c. On the other hand, spatial distribution 

plots in Fig. 3 for larger values of Ly indicate less 

randomness in the value of c, which is quite similar to the 

consideration of uniformly varied undrained shear strength 

in deterministic analysis. Therefore, the consideration of 

spatial variability in the determination of N for a strip 

footing placed on the edge of both unreinforced and 

reinforced slopes is essential. As an instance, for a 

reinforced slope with β = 30°, CoVc = 35%, and Lx = 0.25B, 

the value of μN changes from 4.18 to 4.49 with the change 

in the value of Ly from 0.25B to 2.5B and then it reaches the 

Nr-det value of 4.57 when Ly becomes equal to 10B. Similar 

to the deterministic analysis, value of μN for both 

unreinforced and reinforced slope reduces with the 

increment in the value of slope inclination. By keeping the 

values of CoVc = 25%, Lx = 1B, and Ly = 5B as constant, the 

magnitude of μN is found to be reduced from 5.10 to 4.90 

when the slope inclination of the reinforced slope increases 

from 20° to 30°. 

Figs. 7(a)-7(d) illustrate the variation between the 

magnitude of the coefficient of variation of N (CoVN) with 

CoVc and Ly/B for both unreinforced and reinforced slopes  
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Fig. 6 Continued 
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with β = 20° and Lx/B = 0.25, 1, 5, and 20. One can also 

obtain the same design charts for β = 30° by the same 

methodology. The magnitude of CoVN increases rapidly for  

 

 

the smaller values of Lx and Ly, mostly within the range of 

1B to 2.5B depending upon the value of CoVc. After that 

range of Lx and Ly, the magnitude of CoVN becomes almost  

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Fig. 7 Variation of CoVN , Ly/B, and CoVc for unreinforced and reinforced slope of β = 20° with Lx/B = (a) 0.25, (b) 1, (c) 5, 

(d) 20, variation of pfNr with FS, Ly, and CoVc for reinforced slope of β = 20° with Lx/B = (e) 0.25, (f) 1, (g) 5 and (h) 20 
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Fig. 8 Variation of pfη with Ly/B and CoVc for reinforced slope of β = 20° with Lx/B = (a) 0.25, (b) 1, (c) 5 and (d) 20 

  
(a) (b) 

  
(c) (d) 

Fig. 9 (a) Variation of μN with Lx/B and Ly/B for unreinforced and reinforced slope of β = 20°, e/B = 0.5, and CoVc = 35% , 

(b) variation of CoVN with Lx/B and Ly/B for unreinforced and reinforced slope of β = 20°, e/B = 0.5, and CoVc = 35%, (c) 

variation of pfNr with FS, Lx/B and Ly/B for reinforced slope of β = 20°, e/B = 0.5, and CoVc = 35% and (d) variation of pfη 

with Lx/B and Ly/B for reinforced slope of β = 20°, e/B = 0.5, and CoVc = 35% 
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constant with the increasing value of Lx and Ly. As an 

example for a reinforced slope having a combination of β = 

20°, CoVc = 15%, and Lx = 0.25B, the magnitude of CoVN 

leaps from a value of 0.04 to 0.08 with the change in Ly 

value from 0.25B to 2.5B. After that, the magnitude of CoVN 

reaches a constant value of 0.09. The magnitude of CoVN 

for both unreinforced and reinforced slope enhances with 

the increment in the magnitude of CoVc. However, for all 

the combinations of CoVc, Lx, and Ly, the value of CoVN 

obtained for reinforced slope is always higher than the 

value of CoVN obtained for unreinforced slope. 

The variation between the failure probability (pfNr) of N 

obtained for reinforced slope and its factor of safety (FS) 

for β = 20° and various combinations of CoVc, Lx, and Ly is 

illustrated in Figs. 7(e) and 7(h). Four values of Lx/B = 0.25, 

1, 5, and 20 are considered. With an increment in FS value, 

the magnitude of pfNr reduces. As an instance, for a slope 

with β = 20°, CoVc = 35%, Lx = 0.25B and Ly = 0.25B, the 

magnitude of pfNr reduces from 0.98 to 0.03 with the 

increment in FS value from 1.00 to 1.50. It is to be noted 

that the magnitude of pfNr reduces with the increase in the 

value of Lx and Ly for a particular value of β, CoVc, and FS. 

The magnitude of pfNr for a slope of β = 20°, Lx = 0.25B, 

CoVc = 35%, and FS = 1, decreases from 0.98 to 0.80 as Ly 

value varies between 0.25B and 20B. 

The variation of the failure probability (pfη) of the 

efficiency factor η of a reinforced slope with different 

values of CoVc, and Ly is presented in Figs. 8(a-d). Design 

charts are provided for β = 20° with Lx/B = 0.25, 1, 5, and 

20. For a particular magnitude of CoVc, the magnitude of pfη 

increases up to a particular value of Lx and Ly and after 

attaining maximum value it reduces and then remains 

constant with the increasing value of Lx and Ly. The range of 

Lx and Ly at which pfη attains the peak value varies between 

1B to 2.5B for all the analyses depending upon the values of 

β and CoVc. The magnitude of pfη enhances with the 

increasing value of soil randomness characteristics such as 

CoVc, Lx and Ly. For a slope inclination of 20°, Lx = 1B, and 

Ly = 0.25B, the failure probability of the efficiency factor  

increases from 0.43 to 0.48 with the increment in the 

 
 

magnitude of CoVc from 15% to 35%. 

Results associated with the strip footing under eccentric 

load are shown in Fig. 9. The Lx/B values are chosen as 

0.25, 1, 5, and 20. The change in the value of μN with Ly/B 

for both unreinforced and reinforced slopes with β = 20° 

and CoVc = 35% are illustrated in Fig. 9(a). For all the 

combinations of β, Lx, Ly, and CoVc, the probabilistic 

bearing capacity of a strip footing under eccentric load is 

always lesser in comparison to a strip footing subjected to 

vertical load. As an instance, for a reinforced slope with β = 

20°, Lx/B = 0.25, Ly/B = 1.0, and CoVc = 35%, the 

magnitude of μN of the strip footing under eccentric and 

vertical loading is 4.37 and 4.58, respectively. Probabilistic 

bearing capacity also increases with a inclusion of a single 

layer of reinforcement. The magnitude of μN of a slope with 

β = 20°, Lx/B = 0.25, Ly/B = 1.0, and CoVc = 35% increases 

from 3.76 to 4.37 with the inclusion of a single layer of 

reinforcement. Fig. 9(b) shows that the magnitude of CoVN 

increases rapidly for the smaller values of Lx and Ly. After 

that, the magnitude of CoVN becomes almost constant with 

the increasing value of Lx and Ly. Fig. 9(c) shows that the 

magnitude of pfNr associated with a reinforced slope of β = 

20°, Lx/B = 0.25, Ly/B = 1.0, and CoVc = 35% reduces from 

0.87 to 0.04 with the increment in the value of FS from 1.0 

to 1.5. Beyond a particular Ly/B value, the increment in the 

failure probability (pfη) of the efficiency factor η of a 

reinforced slope under eccentric loading becomes 

insignificant. Fig. 9(d) shows that the coefficient of 

variation of the bearing capacity factor N (CoVN) increases 

rapidly for the smaller values of Ly, after that it becomes 

almost constant. The value of CoVN associated with 

reinforced slope is always higher for any combinations of β, 

Lx, Ly, and CoVc. Similar to footing under vertical load, the 

failure probability of the bearing capacity factor reduces as 

the factor of safety increases. 

 

5.4 Comparison 
 

Until now, no studies estimated the probabilistic bearing 

capacity of a strip foundation resting on top of a purely 

  
(a) (b) 

Fig. 10 (a) Comparison between the obtained values of μNc and Lxy/B from the present study and other research studies and 

(b) comparison between the obtained values of μNc from finite difference method and lower bound finite element limit 

analysis 
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cohesive reinforced soil slope. Hence, the probabilistic 

results obtained from the present study are compared with 

the available probabilistic results of (i) Luo and Bathurst 

(2017) and (ii) Brahmi et al. (2018) obtained for the strip 

footing placed on the unreinforced soil slope of β = 45°. 

Luo and Bathurst (2017) used Random Finite Element 

Method to calculate the probabilistic bearing capacity factor 

related to soil cohesion (Nc) of the strip footing. Whereas, 

Brahmi et al. (2018) used commercially available software 

OptumG2 to obtain the lower bound value of the Nc for the 

strip footing. It is to be mentioned that both Luo and 

Bathurst (2017) and Brahmi et al. (2018) modelled soil 

shear strength as an isotropic random field (Lx = Ly = Lxy). 

Fig. 10(a) shows comparison between present lower bound 

values of Nc (μNc) with (i) Luo and Bathurst (2017) for the 

slope height (H) of 0.5B and 2.5B and (ii) Brahmi et al. 

(2018) for the slope height (H) of 2.5B. Correlation length 

(Lxy) is varied from 0.50B to 8B. Following Luo and 

Bathurst (2017) and Brahmi et al. (2018), magnitudes of 

various parameters are considered as c/γB = 1; γ = 20 

kN/m3; and CoVc= 50%. It is found out that for the slope 

height of 2.5B, the magnitude of μNc obtained from the 

present study is slightly lower than that presented by Luo 

and Bathurst (2017) and Brahmi et al. (2018) for smaller 

values of correlation length. However, the present solution 

matches very well with the solutions of Luo and Bathurst 

(2017) and Brahmi et al. (2018) for higher values of 

correlation length. The present lower bound solution of μNc 

for slope height (H/B) of 0.5 is always on the lower side of 

the solution provided by Luo and Bathurst (2017). 

Present methodology is further validated by comparing 

the values of probabilistic bearing capacity factor obtained 

from the lower bound limit analysis technique and finite 

difference method by using Fast Lagrangian Analysis of 

Continua (FLAC) software. Fig. 10(b) shows the variation 

in the values of μNc for a strip footing placed on an 

unreinforced soil slope of β = 30°. Probabilistic parameters 

are considered as: Lx/B = 0.25, Ly/B = 0.25, 1, 5, and 20, 

and CoVc= 15%. It is found that the values of μNc obtained 

from lower bound limit analysis technique is always lower 

than that obtained from the finite difference method. 

However, the trend of variation is similar in both of these 

methods. 

On the other hand, the validation of the reinforcement 

modelling is carried out by comparing the deterministic 

results obtained for the (i) reinforced horizontal clayey 

ground and (ii) reinforced soil slope. For the comparison 

with results of reinforced horizontal clayey ground, 

experimental results of (i) Shin et al. (1993) and (ii) Das et 

al. (1994) and numerical result of Chakraborty and Kumar 

(2014) are considered. Present results are compared for both 

single and double reinforced horizontal ground and detailed 

in Table 1. It is to be noted that Chakraborty and Kumar 

(2014) used lower bound limit analysis with linear 

optimization. Efficacy of reinforcement layer is presented 

by a dimensionless factor (ηcdet = Ncr/Ncur), where Ncr and 

Ncur are bearing capacity factor for unreinforced and 

reinforced ground. The magnitude of ηcdet obtained from the 

present study for both single and double reinforced 

horizontal ground matches well with the solution of  

Table 1 Comparison between results obtained from present 

study and available literature for clay (ϕ = 0°) 

Reference 

Layers of Reinforcement 

Single Two 

d1/B ηcdet d1/B d2/B ηcdet 

Present Study 

(Lower bound limit analysis with 

conic optimization) 

0.34 1.10 0.30 0.36 1.16 

Chakraborty and Kumar (2014) 

(Lower bound limit analysis with 

linear optimization) 

0.36 1.09 0.36 0.36 1.15 

Shin et al. (1993)  
(Experimental analysis) 

0.4 1.11 0.4 0.33 1.23 

Das et al. (1994) 

 (Experimental analysis) 
0.4 1.09 0.4 0.33 1.21 

 

Table 2 Comparison between present result and available 

result from Lee and Manjunath (2000) 

Slope configuration Reference 

Maximum reinforcing 
efficiency 

Experimental Numerical 

β = 26.56°, ϕ = 38°, 

b/B = 1, d1cr/B = 
0.50, Nr = 1 (single 

reinforcement) 

Present Study (Lower 

bound limit analysis 

with conic 
optimization) 

- 1.81 

Lee and Manjunath 

(2000) 
1.76 

1.80 

(PLAXIS) 

 

 

Chakraborty and Kumar (2014). On the other hand, the 

present value of ηcdet is always on the lower side with 

respect to the experimental values of (i) Shin et al. (1993) 

and (ii) Das et al. (1994). 

Present result is also compared with the experimental 

and numerical results of Lee and Manjunath (2000) 

obtained for a strip footing placed at a edge distance of B 

(b/B = 1) on the reinforced soil slope. The comparison is 

detaied in Table 2. Lee and Manjunath (2000) used finite 

element software PLAXIS for carrying out numerical 

analysis. It is found that value of maximum efficiency 

factor obtained from the present study is slightly higher 

than the experimental result of Lee and Manjunath (2000). 

On the other hand, maximum reinforcing efficiency 

obtained from the present study is alsmost equal to the 

reported numerical value of maximum reinforcing 

efficiency factor in Lee and Manjunath (2000). 

 

 

6. Failure patterns 
 

Failure mechanisms of both unreinforced and reinforced 

slopes are obtained from both deterministic and 

probabilistic analyses. Failure state of stress of any point is 

plotted with respect to the two-dimensional problem 

domain. The state of stress of any point at the time of 

collapse is expressed by a dimensionless term, a/f; where 

   22
xyyxa   and

24cf  . Unity value of a/f at 

any point denotes yielding of that point. Non-yielding is 

denoted by the value of a/f < 1. Figs. 11(a) and 11(b) show 

the failure patterns of unreinforced and reinforced slopes 
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obtained from the deterministic study. It is clearly visible 

that for both the unreinforced and reinforced slopes, the 

failure surface propagates easily towards the slope face 

side. However, with the inclusion of reinforcement layer 

stresses propagate more in the downward direction in 

comparison to the unreinforced slope, then it reaches to the 

slope face. Failure patterns are also plotted for slope having 

different combinations of spatially variable soil shear 

strength as depicted in Figs. 3(a)-3(e). When the correlation 

lengths in x and y directions are very less (Lx = Ly = 0.25B), 

failure patterns of the reinforced slope become very 

disperse (refer: Fig. 11(c)) with respect to the deterministic 

case (refer: Fig. 11(b)) and with the higher value of CoVc, 

dispersion in the failure pattern increases (refer: Figs. 11(d) 

and 11(e)). The dispersion in the failure patterns are obvious 

as lower values of correlation length indicate more 
randomness and with the increment in the magnitude of 

CoVc, randomness increases. However, with the increment  

 

 

in the magnitude of correlation length, failure pattern tends 

to be smooth (refer: Figs. 11(f) and 11(g)). As the 

magnitude of Lx and Ly becomes very high (Lx = Ly = 40B) 

which is similar to the case of the slope where soil shear 

strength value is constant, failure pattern becomes almost 

smooth rather than being dispersed (refer: Fig. 11(h)). 
 

 

7. Remarks 
 

(i) The mean value of the undrained shear strength of 

soil is considered as 20 kN/m2. Expression for 

dimensionless bearing capacity factor N (= Qu/cB) indicates 

that the ultimate collapse load changes with the change in 

the magnitude of c which in turn makes the non-

dimensional factor N independent on the value of c. Thus, 

design engineers can use the present design charts for any 

other values of c.  

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

 
(g) (h) 

Fig. 11 Failure patterns obtained for (a) unreinforced slope with β = 20°, (b) reinforced slope with β = 20°, dcr/B = 0.26; ηc-

det = 1.15, (c) reinforced slope with β = 20°, CoVc = 15%, Lx/B = 0.25; Ly/B = 0.25, (d) reinforced slope with β = 20°, CoVc 

= 25%, Lx/B = 0.25; Ly/B = 0.25, (e) reinforced slope with β = 20°, CoVc = 35%, Lx/B = 0.25; Ly/B = 0.25, (f) reinforced 

slope with β = 20°, CoVc = 35%, Lx/B = 0.25; Ly/B = 5, (g) reinforced slope with β = 20°, CoVc = 35%, Lx/B = 0.25; Ly/B = 

40 and (h) reinforced slope with β = 20°, CoVc = 35%, Lx/B = 40, Ly/B = 40 
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(ii) Present study only predicts the lower bound bearing 

capacity of strip footing placed on a purely cohesive soil 

slope. However, a true solution always lies in between 

upper and lower bound values. 

 

 

8. Conclusions 
 

Outcomes of the present study will contribute to 

practical methodologies and guidelines to account the 

spatial variability and randomness in undrained soil shear 

strength in the investigation of behaviour of strip footing 

placed on a reinforced cohesive soil slope. Utilizing the 

design charts presented in this study, practicing engineers 

can predict the bearing capacity of strip footing for different 

combinations of slope angle, loading conditions and 

material heterogeneity. Salient features of the present study 

are detailed below.  

• For the smaller correlation lengths, the mean of the 

probabilistic bearing capacity factor is noted to be much 

smaller in comparison to the deterministic bearing capacity 

factor of the strip footing placed on both unreinforced and 

reinforced soil slope. With the increment in the value of 

CoVc, difference in the magnitude of probabilistic and 

deterministic bearing capacity further increases. However, 

with the increment in the value of Lx, and Ly, the magnitude 

of the mean value of dimensionless probabilistic bearing 

capacity factor approaches to the deterministic N value. 

• Failure probability of the N associated with the strip 

footing placed on the reinforced slope (pfNr) is found to be 

reducing constantly with the increase in the value of factor 

of safety. Failure of the efficiency factor (pfη) is also 

obtained and found that the magnitude of pfη increases up to 

a certain value of Lx and Ly and after attaining maximum 

value it becomes almost constant with the increasing value 

of Lx and Ly.  

• The probabilistic bearing capacity factor obtained for 

the unreinforced and reinforced slopes under eccentric 

loading is always lesser than that obtained for unreinforced 

and reinforced slopes under vertical loading.  
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