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1. Introduction 
 

The stability analysis of surrounding rock in 
underground engineering is a fundamental and significant 

problem in engineering design (Jeffery 1921, Mindlin 1940, 

Atkinson and Pott 1977, Gonzalez and Sagaset 2001, Pinto 

and Whittle 2013, Golpasand et al. 2018, Rezaei et al. 

2019, Aksoy et al. 2020, Zou et al. 2020, Zou et al. 2020, 

Qian et al. 2020, Zou and Zuo 2017, Chen et al. 2020, Chen 

and Zou, 2020, Xiao and Liu, 2017, Xiao et al. 2017, Xiao 

and Chen, 2020, Xiao et al. 2020, Li and Zhang 2020, 

Zhang et al. 2020, Zhang et al. 2020). Many methodologies 

have been proposed with different material constitutive 

models (e.g., elastic–perfectly plastic, elastic–brittle–

plastic, and elastic strain-softening models) and strength 

criteria (e.g., Mohr–Coulomb (M–C) and generalized 

Hoek–Brown (H–B)). Although the published results have 

solved many of the engineering problems, the effect of out-

of-plane stress has been neglected in most studies (e.g., 

Hoek and Brown, 2002, Carranza-Torres et al. 2004, Sharan 

2008, Alonso et al. 2003, Nam and Bobet 2006, Lee and 

Pietruszczak, 2008, Ahamad and Mohammad, 2009). If the 

out-of-plane stress is neglected, the calculated stress will 

decrease, and the displacement will increase in the stability 

analysis of the surrounding rock. The calculation of the out-

of-plane stress and determination of whether the out-of-

plane stress is the major, intermediate or minor  
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principle stress is an outstanding problem in strain-

softening rock. Although the effect of the out-of-plane 

stress on the stress and displacement of surrounding rock 

has been discussed and some corresponding approach has 

been proposed for determining the out-of-plane stress, few 

published papers studies the effect of out-of-plane stress on 

the stress and displacement of strain-softening surrounding 

rock incorporating the seepage force based on Biot’s 

effective stress principle. For example, Wang et al. (2012) 

considered the influence of out-of-plane stress on the 

distributions of stress, strain, and displacement based on the 

M–C failure criterion. But the seepage force is not taken 

into consideration is his study, which makes his solutions 

are not applicable for the water abundant area. Over 

decades, the solutions of steady seepage into a circular 

tunnel have also been investigated (Harr 1962, Schleiss 

1986, Lei 1999, Bobet 2001, Aalianvari 2017, Farhadian et 

al. 2017). 

In summary, the published literatures have principally 

focused on theoretical or numerical solutions for circular 

openings considering the single influencing factor among 

the strain-softening characteristic, out-of-plane stress and 

seepage force. Few studies on strain-softening surrounding 

rock have incorporated the effects of out-of-plane stress, 

seepage forces based on Biot’s effective stress principle 

variation in the elastic strain of the plastic zone. 

The main objective of this paper is to develop a simple 

numerical approach for a circular opening excavated in 

strain-softening rock masses. The numerical approaches are 

improved, and the computation procedures are performed 

incorporating Biot’s effective stress and the out-of-plane 

stress, based on M–C and generalized H–B criteria. The 
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number of annuli in the plastic zone and Biot’s coefficient 

are selected to conduct an analysis of the parameters. The 

results of the proposed approach show satisfactory 

agreement with that of previous reports and numerical 

simulation. 
 

 

2. Methodology 
 

2.1 Statement of the problem 
 

A circular opening of radius r0 is excavated in a 

continuous, homogeneous, isotropic, and initially elastic 

rock mass subjected to hydrostatic pressure (σ0) and an 

axial in situ stress (q) along the tunnel axis (Fig. 1). 

In Fig. 1, an internal support pressure (pin) uniformly 

acts on the tunnel wall surface in the radial direction after 

excavation. The stress and displacement of the surrounding 

rock depends on the radius of the cylindrical polar 

coordinate system without considering the gravity field. Fr 

is the seepage force along the radial direction of the tunnel. 

R is the plastic radius; Rs is the plastic radius for the 

softening region. R  is the radius of the interface between 

the inner and outer plastic regions. 

In this paper, Biot’s effective stress principle is adopted 

for the rock mass (Bui et al. 2014, Detournay 1993). When 

considering the seepage flow surrounding tunnel, the 

deformation of rock is determined by Biot’s effective stress 

(Biot and Wills 1957), defined as, 

 
(1) 

where, '  is Biot’s effective stresses and σ is total stresses 

(radial and circumferential stresses) in surrounding rock, α0  

is the Biot’s coefficient, and pw is pore-water pressure. 

When α0=1, the Biot’s effective stress principle can be 

transformed to the famous Terzaghi’s effective stress 

principle. The value of α0 may reach 0.5 in a saturated 

pervious rock. 

Much research has been conducted to determine the 

value of Biot’s coefficient α0 (Cosenza et al. 2002). Biot’s 

effective stress principle is more widely applied to studies 

of rock mass than Terzaghi’s effective stress principle based 

on historic research. 

 

2.2 Assumptions 
 

The following assumptions are made for studying the 

influence of the seepage force and out-of-plane stress on the 

stress and displacement around the circular opening 

excavated in the strain-softening rock mass. The rock mass 

around the circular opening is a homogeneous, isotropic, 

continuous, and permeable medium, and the seepage force 

is treated as body force. The hydrostatic pressure in the 

seepage field is assumed to be uniformly distributed in the 

radial direction. The rock masses surrounding the circular 

opening obey the M–C or the generalized H–B failure 

criterion under the plane-strain condition. The elastic–

brittle–plastic and strain-softening constitutive models with 

a non-associated flow rule are employed for analysis. The 

elastic strain in the plastic region of the surrounding rock  

 

Fig. 1 Analytical model of the circular opening in a 

strain-softening rock mass 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 2 Elastic-brittle-plastic material behaviour model 
 

 

obeys Hooke’s law. The strength parameters of the rock 

mass deteriorate with plastic deformation development after 

the post-peak-strength surface. The axial in situ stress is the 

axial stress and is defined as the out-of-plane stress in the 

paper (i.e., q=σz’). Compressive stress and direct strains are 

taken as positive. Biot’s effective stress principle was 

adopted to conduct the analysis of tunnels below the 

groundwater table.  

 

2.3 Elastic-brittle-plastic behaviour of the rock mass 
 

The stress-strain relationship of the elastic-brittle-plastic  
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(a) 

 
(b) 

 
(c) 

Fig. 3 Strain-softening material behaviour model 
 

 

rock mass is presented in Fig. 2. 

In Fig. 2, the rock mass strength decreases from peak to 

residual strength after yielding. σ’1 and σ’3 are the major and 

minor principal stresses, respectively. εr, εθ and εz are the 

radial, circumferential, and axial strains, respectively. εv is 

the volumetric strain. ε1 and ε3 are the major and minor 

principle strains, respectively. ε1e is the elastic strain of the 

interface between the plastic and elastic regions. ε1
p and ε3

p 

are the major and minor plastic principal strains, 

respectively. 

 

2.4 Strain-softening behaviour of the rock mass 
 

A strain-softening material behaviour model proposed 

by Brown et al. (1983) is adopted for analysis in this study. 

The idealized relationships of ε1 and σ’1− σ’3, ε3, and εv 

used in this behaviour model are represented in Fig. 3. The 

strength reduction from the peak and the continued 

deformation at the residual region are both accompanied by 

plastic dilation. In Fig. 3, λε1e is the maximum principal 

strain component at the interface between the softening and 

residual regions. Therefore, the strain components (i.e., ε1
p, 

ε3
p, and εv

p) are the post-peak plastic strain increments. 

The elastic volume increases when stresses are reduced. 

The evolution of the strength and deformation parameters 

(e.g., the dilation angle, cohesion, internal friction angle, 

elastic modulus, and Poisson’s ratio) occur in the post-peak 

region, which is explicitly considered. h and H represent the 

gradients of the ε3−ε1 and εv−ε1 curves, respectively,  

 

Fig. 4 Evolution of the strength parameter in the plastic 

region 
 
 

corresponding to the post-peak condition. The strain 

components (i.e., ε1
p, ε3

p, and εv
p) are considered as the 

plastic strains. Experiments are required to determine the 

parameters (e.g., λ, f, h, F, and H) and their dependences on 

σ’3. 
 

2.5 Failure criterion 
 

The yielding function in rock mass is expressed as 

follows: 

 
(2a) 

where, γp is the deviatoric plastic strain controlling the 

evolution of the strain-softening behaviour in the softening 

region, which can be expressed by the following equation 

(Alonso et al. 2003) 

 
(2b) 

where, γ1
p and γ3

p are the major and minor deviatoric 

strains, respectively. 

For the M-C failure criterion, H in Eq. (2a) becomes 

 
(3) 

where, N and Y are the strength parameters defined by the 

cohesion c(γp) and internal friction angle ϕ (γp), 

 

(4) 

In Eq. (2a), H can be expressed by Eq. (5) if the 

generalized H–B failure criterion is adopted. 

 

(5) 

where, σc is the uniaxial compressive strength of the rock 

mass and a, m, and s are the strength parameters of the 

generalized H–B failure criterion (Ogawa 1987). 
 

2.6 Strength parameter evolution 
 

The strength parameter reduction of the surrounding 
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rock presented by Lee and Pietruszczak (2008) can be 

expressed as follows  

 

(6) 

where, ω represents one of the following strength 

parameters: ϕ, c, σc, m, s, a, and φ. γp. Subscripts p and r 

represent the peak and residual values, respectively. 

 

2.7 Seepage force 
 

This study adopts an effective method to define the 

seepage force. In the axisymmetric plane-strain problem, 

the seepage force Fr is the volume force 

 
(7) 

where, α is a constant of the seepage force and α =30 is 

sufficient to satisfy engineering accuracy, I is the hydraulic 

gradient, ξ is the rock effective coefficient of the pore water 

pressure, γw is the unit weight of water, pw is the pore water 

pressure, H is the water level fluctuation, r donates the 

radial distance from the centre of the opening, h0 and ha are 

respectively the waterhead on tunnel wall and infinity after 

excavation. 

When taking into account of the seepage force, the 

Biot’s effective stresses are adopted in the equilibrium 

differential equation. The stress equilibrium differential 

equation can be shown as follows, 

 
(8) 

where, σ’r and σ’θ are the radial and circumferential effective 

stresses, respectively. 

The stress and displacement in the elastic region can be 

expressed as follows (Bui et al. 2014), 

 

(9) 

 

(10) 

 
(11) 

 

(12) 

where, b is a relatively large constant, which represents 

infinity away from the tunnel wall. 

 

2.8 Types of plastic zone around the tunnel 
 

The plastic region occurs when the internal support 

pressure reaches a critical value. The plastic region can be 

divided into the softening and residual regions in strain-

softening surrounding rock. So the softening radius Rs in 

Fig. 1 is used for dividing the softening and residual 

regions. 

Previous theories have stated that the relationship of 

stress in the inner plastic region is ' ' '

z r     (i.e., the 

out-of-plane stress is the major principal stress). '

z  

decreases and '

  increases with decreasing internal 

pressure (pin) until ' ' '

z r     appears at a certain stage. 

The plastic radius of the circle opening between two regions 

with ' ' '

z r     and ' ' '

z r     is expressed by 𝑅̅. 

The second stage appears with ' ' '

z r     (i.e., the 

out-of-plane stress is the intermediate principal stress). 

When the internal support pressure (pin) continuously 

decreases, two states will appear with ' ' '

z r     or 

' ' '

z r    . 

The third stage emerges with ' ' '

r z     (i.e., the 

out-of-plane stress is the minor principal stress). Another 

stage corresponding to ' ' '

r z     occurs as the internal 

support pressure (pin) further decreases. 

 

2.9 Internal supporting pressure in the critical state 
 

The internal support pressure (pin) in the critical state is 

related to σ’z, σ’θ, and σ’r. σ’θ is always larger than σ’r 

according to the mechanical analysis. When the surrounding 

rock is in the elastic–plastic critical state, Eq. (10) becomes 

 

(13) 

(1) M–C failure criterion 

When the out-of-plane stress along the tunnel axis is the 

major, intermediate or minor principal stresses, the 
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corresponding critical internal pressures (
MC

c1p , 
MC

c2p  and 

MC

c3p ) can be respectively expressed by: 

 
(14) 

 

(15) 

 

(16) 

(2) Generalized H–B failure criterion 

When the out-of-plane stress is the major, intermediate 

or minor principal stresses, the corresponding critical 

internal pressures (
HB

c1p , 
HB

c2p  and 
HB

c3p ) are expressed by 

the following equations: 

 

(17) 

 

(18) 

 

(19) 

When the out-of-plane stress is the intermediate 

principal stress, according to Eq. (18), pin=pc2 and 

0

'

r r r inp   , which is defined by 

 (20) 

The circumferential stress is determined by 

 

(21) 

 

 
(22) 

Since q2>q>q1, combining Eqs. (20)-(22), the out-of-

plane stress can be obtained. 

The radial stress (σ’R) acting on the elastic–plastic 

interface is equal to pci (i.e.,  ' '

R r ciR p   ), when the 

plastic region is formed. 

 

2.10 Increments of strain and stress 
 

The plastic region is divided into n concentric annuli. 

The ith annulus is bounded by two circles of normalized 
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1   on the outer boundary of the plastic region 

(elastic-plastic interface). The stress and strain components 

can be written as 
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(24) 

Combining Eqs. (12) and (24), the original strains can 

be expressed as follows: 

 

(25) 

The internal support pressure is assumed to decrease 

monotonically from σ’R to pin with step of Δσ’r in Eq. (26). 

This numerical method is proposed by Park et al. (2008) 

and Lee et al. (2008) based on finite difference principle. 
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The radial stress increment can be determined by 

 
(26) 

The radial stress can be calculated by, 

 
(27) 

The stress and plastic strain increments are expressed as, 

 
(28) 

 
(29) 

 
(30) 

Strain at any point in the plastic region is composed of 

elastic and plastic parts. Therefore, the strain of the ith 

annulus at any point is equal to the sum of  i 1


  and the 

elastic and plastic increments:    
e p

i i 1
   


   . 

The plastic shear strain is then obtained by 

 
(31) 

where, ε1 and ε3 are the major and minor plastic strains, 

respectively. 
 
 

3. Governing equation (control equation) and 
solutions 
 

3.1 σz is the major principal stress 
 

(1) Failure criterion 

When the out-of-plane stress is the major principal 

stress (i.e., ' ' '

z θ rσ >σ σ ). The failure criteria are given by 

defining ' '

1 z=   and ' '

3 r =   in Eq. (2a). 

(2) Initial stress and strain 

According to Eqs. (13) and (23), the initial stress is 

represented as 

 
(32) 

 

(33) 

In Eqs. (32) and (33), MC

c1 c1p p  for the M–C failure 

criterion, and HB

c1 c1p p  for the generalized H–B failure 

criterion, derived using Eqs. (14) and (17), respectively. 

Accordingly, 

 
(34) 

The corresponding initial strain is presented in Eq. (25). 

(3) Radius 

The strain compatibility equation is given by 

 
(35) 

The following equation can be obtained in terms of 

strain compatibility equation, non-associate flow rule (𝜀𝑟
𝑝
+

𝛽𝜀𝑧
𝑝
=0) and Hooke’s law: 

 

(36) 
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
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( ) / 2  


  . 

The equilibrium differential equation is expressed as 

follows considering the seepage force: 

 
(37) 

We solve Eq. (37) as: 

 

(38) 

The following equation is obtained by substituting Eq. 

(36) into Eq. (38): 

 

(39) 

Then ρ(i) can be solved using Eq. (39). σ’θ(i) can also be 

obtained by substituting the calculated ρ(i) into Eq. (36). σ’z(i) 

is then given by the M–C or the generalized H–B failure 

criterion. 

(4) Displacement 
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p e
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   . The following equation is obtained using 

the non-associate flow rule: 
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dilation angle. 
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Solution for a circular tunnel in strain-softening rock with seepage forces   

shown as, 

 (41) 

The following formula is obtained because of εθ=u/r: 

 
(42) 

The displacement of each concentric circle can be 

determined using Eq. (43) as following: 

 
(43) 

The softening region occurs with ' ' '

z r     when 

the internal support pressure further decreases. In this case, 

the solutions of the stress, strain, and plastic radius can also 

be determined using similar solving methods as the 

condition under which the out-of-plane stress is the 

intermediate principal stress and ' ' '

z r    . This 

method will be presented in the following section. 
 

3.2 σz is the intermediate principal stress 
 

(1) Failure criterion 

The failure criteria can be described by denoting 
' '

1    and ' '

3 r   in Eq. (2a) because the out-of-plane 

stress is the intermediate principal stress in this case. 

(2) Initial stress and strain 

According to Eq. (23), the radial stress leads to 

 
(44) 

In Eq. (44), MC

c2 c2p p  and HB

c2 c2p p  for the M–C 

and the generalized H–B failure criterion obtained using 

Eqs. (15) and (18), respectively. 

Combining Eqs. (21) and (24), the circumferential initial 

stress is solved using Eq. (21). 

Substituting Eq. (21) into Eq. (25), the initial strain in 

the critical state is obtained. 

(3) Stress increment 

The circumferential stress can be obtained using the 

failure criterion. The axial in situ stress is given by Eq. (45): 

 
(45) 

(4) Radius of each concentric circle 

Solving Eq. (38), the control equation of the radius for 

each concentric circle is given by 

 

(46) 

where,  
'

r i
H( , )   is the coefficient in Eqs. (3) and (5). 

Solving Eq. (46), the radius of each concentric circle is 

determined by Eq. (47) as follows: 

 

(47) 

(5) Plastic radius and displacement 

The following equation is obtained according to Eq. 

(35): 

 
(48) 

Subsequently, Eq. (48) can be rewritten as 

 
(49) 

The following equation is obtained considering the non-

associate flow rule and boundary condition: 

 

(50) 

Eq. (51) is derived using Eqs. (49) and (50): 

 

(51) 

The following equation is subsequently obtained: 

 
(52) 

The plastic radius and the displacement are obtained 

using Eqs. (41) and (43), respectively. 

Eqs. (50)-(52) are used to calculate the plastic strains 

when the stress state is ' ' '

z r     in the plastic region. 

The following paragraphs describe the plastic strains when 

the stress state is ' ' '

z r     or ' ' '

z r     in the 

plastic region. 

The plastic region appears with ' ' '

z r     when the 

out-of-plane stress (q) is sufficiently large and the internal 

support pressure (pin) is sufficiently small. At this point, the 

radial stress can be obtained using Eq. (27). Moreover, the 

circumferential and axial stresses are given by the M–C or 

the generalized H-B failure criterion. The radius of each 

concentric circle is determined by Eq. (47). 
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=0), Eq. (53) 

is derived as follows: 
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The plastic radius and the displacement can be 

determined using Eqs. (41) and (43), respectively.  
p

i
  

can be solved using Eq. (53). 

The plastic region occurs with ' ' '

r z     when the 

out-of-plane stress (q) and the internal support pressure (pin) 

continuously decrease. The radial stress is obtained using 

Eq. (27), and the circumferential stress is determined by the 

M–C or the generalized H–B failure criterion. The radius of 

each concentric circle is given by Eq. (47). 

The following equation is obtained based on Eq. (48), 

the non-associate flow rule ( p p p

r z 0     ) and the 

boundary condition ( p

r 0  ): 

 

(54) 

 
p

i
  can be determined using Eq. (54). The 

displacement and the plastic radius are similar to those in 

Eqs. (41) and (43), respectively.  
 

3.3 σz is the minor principal stress 
 

(1) Failure criterion 

The failure criterion is given by defining ' '

1    and 

' '

3 z   in Eq. (2a) because the out-of-plane stress is the 

minor principal stress. 

The following formula is derived according to Eq. (48), 

the non-associate flow rule ( p p

z 0   ), the boundary 

condition ( p

r 0  ) and Hooke’s law: 

 

(55) 

The following equation is obtained by solving Eq. (55): 

 

(56) 

(2) M–C failure criterion 

Substituting the M–C failure criterion ' '

zN Y    

into Eq. (56), we obtain 
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We derive the following by substituting Eq. (59) into the 

M–C failure criterion: 
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The following equation is derived by combining Eqs. 

(38) and (58): 

 

(59) 

where, ρ(i) is given by Eq. (59) using the iterative method. 

σ’z(i) and σ’θ(i) are solved using Eqs. (57) and (58), 
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respectively. 

(3) Generalized H–B failure criterion 

The generalized H–B failure criterion is given by 

 

(60) 

The following equation is obtained according to Eq. 

(38): 

 

(61) 

'

z(i) , 
'

(i) , and (i)  are then determined by Eqs. 

(56), (60), and (61), respectively. 

The plastic radius and displacement are obtained using 

Eqs. (41) and (43), respectively. 

The plastic region with ' ' '

r z     occurs in the 

softening region when the internal support pressure (pin) is 

sufficiently small. The solving methods of stress, strain, and 

displacement are similar to the condition under which the 

out-of-plane stress is the intermediate principal stress with 
' ' '

r z    . 

 

 

4. Verification 
 

To confirm the validity and accuracy of the proposed 

solution, the results of the presented approach for elastic–

brittle–plastic, elasto–plastic and strain-softening models  

 

 

Table 1 Results of plastic radius and displacement (The 

results of Wang et al. (2012) are enclosed in parentheses) 

q (MPa) Dilation angle R/r0 2uG/(r0σ0)  

60 

ebp (φ =7.5°) 1.88 (1.88) 5.63 (5.60) 

ebp (φ =19.5°) 1.88 (1.88) 9.33 (9.27) 

ep (φ =7.5°) 1.31 (1.31) 1.83 (1.82) 

ep (φ =19.5°) 1.31 (1.31) 2.25 (2.24) 

54.22 

ebp (φ =7.5°) 1.82 (1.82) 5.21(5.19) 

ebp (φ =19.5°) 1.82 (1.82) 8.42 (8.38) 

ep (φ =7.5°) 1.29 (1.29) 1.78 (1.78) 

ep (φ =19.5°) 1.29 (1.29) 2.16 (2.15) 

30.00 

ebp (φ =7.5°) 1.82 (1.82) 4.54 (4.52) 

ebp (φ =19.5°) 1.82 (1.82) 6.95 (6.90) 

ep (φ =7.5°) 1.29 (1.29) 1.65 (1.64) 

ep (φ =19.5°) 1.29 (1.29) 1.91 (1.91) 

13.20 

ebp (φ =7.5°) 1.82 (1.82) 4.35 (4.33) 

ebp (φ =19.5°) 1.82 (1.82) 6.58 (6.53) 

ep (φ =7.5°) 1.29 (1.29) 1.63 (1.62) 

ep (φ =19.5°) 1.29 (1.29) 1.88 (1.88) 

5.77 ebp (φ =7.5°) 1.83 (1.82) 4.26 (4.22) 

Table 1 Continued 

q (MPa) Dilation angle R/r0 2uG/(r0σ0)  

5.77 

ebp (φ =19.5°) 1.83 (1.82) 6.51 (6.45) 

ep (φ =7.5°) 1.29 (1.29) 1.61 (1.61) 

ep (φ =19.5°) 1.29 (1.29) 1.87 (1.87) 

5.00 

ebp (φ =7.5°) 2.23 (2.22) 4.81 (4.80) 

ebp (φ =19.5°) 2.22 (2.22) 7.66 (7.66) 

ep (φ =7.5°) 1.49 (1.49) 1.59 (1.61) 

ep (φ =19.5°) 1.49 (1.49) 1.79 (1.86) 

Note: ebp denotes the elastic–brittle–plastic model, and ep 

represents the elastic–plastic model 

 

Table 2 Results of the plastic and softening radii and 

displacement 

q (MPa) Dilation angle R/r0 u/r0 (%) 

50.00 

ebp (φ =0°) 2.556 (2.552) 2.624 (2.597) 

ebp(φ =19.5°) 2.556 (2.556) 6.403 (6.272) 

ep (φ =0°) 1.866 (1.858) 1.238 (1.217) 

ep (φ =19.5°) 1.8646 (1.858) 1.812 (1.891) 

44.16 

ebp (φ =0°) 2.192 (2.192) 2.253 (2.250) 

ebp (φ =19.5°) 2.192 (2.192) 4.844 (4.790) 

ep (φ =0°) 1.652 (1.652) 1.088 (1.086) 

ep (φ =19.5°) 1.652 (1.652) 1.605 (1.595) 

35.00 

ebp (φ =0°) 2.192 (2.192) 2.117 (2.095) 

ebp (φ =19.5°) 2.192 (2.192) 4.206 (4.003) 

ep (φ =0°) 1.652 (1.652) 1.050 (1.041) 

ep (φ =19.5°) 1.652 (1.652) 1.464 (1.450) 

22.50 

ebp (φ =0°) 2.192 (2.192) 2.051 (2.037) 

ebp (φ =19.5°) 2.192 (2.192) 3.992 (3.970) 

ep (φ =0°) 1.652 (1.652) 1.043 (1.033) 

ep (φ =19.5°) 1.652 (1.652) 1.444 (1.431) 

15.83 

ebp (φ =0°) 2.192 (2.192) 2.032 (2.019) 

ebp (φ =19.5°) 2.192 (2.192) 3.969 (3.953) 

ep (φ =0°) 1.652 (1.652) 1.047 (1.033) 

ep (φ =19.5°) 1.652 (1.652) 1.442 (1.431) 

15.00 

ebp (φ =0°) 2.390 (2.391) 2.102 (2.106) 

ebp (φ =19.5°) 2.390 (2.391) 4.389 (4.321) 

ep (φ =0°) 1.759 (1.759) 1.091 (1.037) 

ep (φ =19.5°) 1.759 (1.759) 1.433 (1.433) 

14.00 

ebp (φ =0°) 2.657 (2.657) 2.142 (2.142) 

ebp (φ =19.5°) 2.642 (2.642) 4.54 (4.487) 

ep (φ =0°) 1.927 (1.927) 1.026 (1.034) 

ep (φ =19.5°) 1.922 (1.922) 1.470 (1.432) 

Note: ebp denotes the elastic–brittle–plastic model, and ep 

represents the elastic–plastic model 
 

 

are compared with the results of numerical simulation and 

those of Wang et al. (2012). The derived formulations are 

converted into computer code, and a set of rock parameters  

( i 1 )

a
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is adopted from Wang et al. (2012) as follows: r0 = 3.0 m, σ0 

= 30 MPa, pin = 0 MPa, E= 27.0 GPa, υ = 0.22, c = 1.5 

MPa, cr = 0.7 MPa, ϕ = 50.9°, ϕr = 39° and φ = 7.5° (or 

19.5°). The results of the proposed approach and those of 

Wang’s solution (enclosed in parentheses) are presented in 

Table 1 for n = 1000 with different out-of-plane stresses 

(e.g., 60, 54.22, 30, 13.2, 5.77 and 5.0 MPa). 

Table 1 shows that the results of the proposed approach 

agree well with those in Wang et al. (2012). Furthermore, 

the maximum difference ((u−uexact)/uexact×%) is less than  

 

 

 

 

0.208%. The proposed approach can also be transformed to 

Wang’s solutions with Fr=0 and γp*=0 under M-C criterion. 

For the generalized H–B failure criterion, the following 

parameters for surrounding rock are adopted: r0=5 m , σ0 = 

30 MPa, pin = 5 MPa, E=5.5 GPa, υ = 0.25, ψ=0°, σcr =30 

MPa, mb=1.7, a=0.55, s=0.0039, mbr=0.85, sr=0.0019, 

ar=0.6, rω=0.01, ξ=1, and ha−h0=50 m. A comparison of the 

results from this study and Wang’s solution (enclosed in 

parentheses) is presented in Table 2 for n = 1000. 

As shown in Table 2, the results of 

  
(a) Constraints and external force conditions (b) Model mesh for quarter of opening 

Fig. 5 The numerical simulation model for analysis 

  
(a) M–C (b) Generalized H–B 

Fig. 6 Results of the proposed solution and FLAC for the elastic–brittle–plastic model 

  
(a) M–C (b) Generalized H–B 

Fig. 7 Results of the proposed solution and FLAC for the strain-softening model 
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(u−uexact)/uexact×100% are less than 5.2% (Table 2). 

Therefore, the differences are sufficiently small when the 

high non-linearity of the generalized H–B failure criterion is 

considered. 

After the validation of the proposed analytical model by 

comparing with the solutions from Wang et al. (2012), the 

proposed approach is compared with numerical results in 

this section. To validate the analytical model, the results of 

the analytical model are compared with those obtained from 

numerical simulation computations. Based on the 

axisymmetric boundary conditions in this study, quarter of 

opening and surrounding rock is built in model instead of 

the whole opening. The applied constraints and external 

force conditions are shown in Fig. 5(a). The adopted 

method of numerical simulation for strain-softening 

surrounding rock is presented in Guan et al. (2007) except 

the deviatoric plastic strain in Eq. (2b) is selected as the 

softening parameter in this study. The results for elastic–

brittle–plastic model can be obtained by setting 0p*γ  . 

This model was made up of 3000 zones as a plane strain 

model with the plane of analysis oriented normal to the axis 

of the hole. The results for the elastic–brittle–plastic and 

strain-softening models are shown in Figs. 6 and 7, 

respectively.  

Tables 1 and 2 and Figs. 6 and 7 show that the results of 

the proposed approach are consistent with those of both 

Wang et al. (2012) and FLAC for both the elastic–brittle–

plastic model and the strain-softening model. 

 

 

5. Conclusions 
 

This study presents a simple numerical method to 

calculate the displacement and stress of surrounding rock 

and determines the relationships of the out-of-plane stress 

and the major, intermediate and minor principle stresses for 

strain-softening surrounding rock. The study further 

considers the out-of-plane stress and the seepage force 

based on Biot’s effective stress principle for the M–C and 

generalized H–B failure criteria. The elasto–perfectly 

plastic and the elasto–brittle–plastic models are special 

cases of the proposed approach. Compared with the 

previous results, the following improvements have been 

achieved. 

(1) Incorporating the effects of the out-of-plane stress 

and seepage force, the new approach extends the 

application of cavity contraction theory in tunnel excavation 

based on Biot’s effective stress principle. The rock effective 

coefficient is introduced as a correction coefficient that is 

independent of the effective stress. 

(2) In the process of solving the stresses and 

displacements in the strain-softening surrounding rock, the 

strain-softening model is simplified as a multi-step brittle–

plastic model, and the plastic region is divided into a 

number of concentric rings. In each ring, the strength 

parameters are assumed to be the same, and the continuity 

relations of stress and displacement are fulfilled.  

(3) The proposed approach can describe the change of 

the stress distributions in the tunnel opening and provide a 

reference for design. When the directions of the principal 

tectonic stresses do not coincide with the axis of the 

underwater tunnel, we can apply the proposed approach in 

this situation to avoid the substantial error of ignoring the 

out-of-plane stress. 

Additional work is planned to determine the possible 

range of the dilation angle and its influence on the evolution 

of the out-of-plane stress. This theory requires more 

verification in the context of practical engineering. 
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