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1. Introduction 
 

For the first time, the concept of functionally graded 

materials (FGM) was introduced by scientists in fields 

materials in the Sendai region of Japan in 1984 (Koizumi 

1997, Yaghoobi et al. 2015, Hadji et al. 2015, Avcar 2019, 

Ahmed et al. 2019, Balubaid et al. 2019, Addou et al. 2019, 

Boutaleb et al. 2019, Zarga et al. 2019, Karami et al. 

2019ab, Hellal et al. 2019, Salah et al. 2019, Menasria et al. 

2020, Zine et al. 2020, Khiloun et al. 2020, Matouk et al. 

2020, Hussain et al. 2020, Rahmani et al. 2020, Kaddari et 

al. 2020, Boussoula et al. 2020, Rachedi et al. 2020). 

Functional graded materials are a new class of advanced 

composites that are progressively changing in the 

constitution of materials from one surface to another. The 

main feature of FGM is to eliminate the stress concentration 

of conventional laminated composites (Lee et al. 2015). 

Functionally graded materials and structures attract 

many scientists in the various fields of research to develop 

their concept through theoretical and experimental research. 

Reddy (2000) analyzed functionally graded plates subjected 

thermo-mechanical loads using third-order theory and 

employed analytical approached and finite element method.  
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Matsunaga (2008) in studied the dynamics behaviors 

and buckling functionally graded materials by taking into 

account the effects of transverse shear and normal 

deformations and rotatory inertia. Grover et al. (2013) 

proposed a new inverse hyperbolic shear deformation 

theory of laminated composite and sandwich plates for the 

static and buckling responses. Jha et al. (2013) studied the 

static and free vibration analyses of functionally graded 

(FG) elastic, rectangular, and simply (diaphragm) supported 

plates by using a higher order shear and normal 

deformations plate theory. Thai and Kim (2013) developed 

a simple higher-order shear deformation theory for bending 

and free vibration analysis of functionally graded plates.  

Nguyen et al. (2014) presented the static, buckling and free 

vibration analyses of isotropic and functionally graded (FG) 

sandwich plates using an inverse trigonometric shear 

deformation theory. Pandey and Pradyumna (2015) 

developed a layerwise finite element formulation for 

dynamic analysis of two types of functionally graded 

material (FGM) sandwich plates with nonlinear temperature 

variation along the thickness and the FGM having 

temperature dependent material properties. The studies of 

dynamics and mechanical behavior of composite structures 

are developed in many research using higher order shear 

deformation theory (Katariya and Panda 2016, Sahoo et al. 

2016a, b, Singh et al. 2016 and 2018, Panda and Kolahchi 

2018, Faleh et al. 2018, Hirwani et al. 2017a, b and 2019, 
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Abstract.  In this study, dynamics responses of advanced composite plates resting variable elastic foundations via a quasi-3D 

theory are developed using an analytical approach. This higher shear deformation theory (HSDT) is included the shear 

deformation theory and effect stretching that has five unknowns, which is even inferior to normal deformation theories found 

literature and other theories. The quasi-three-dimensional (quasi-3D) theory accounts for a parabolic distribution of the 

transverse shear deformation and satisfies the zero traction boundary conditions on the surfaces of the advanced composite plate 

without needing shear correction factors. The plates assumed to be rest on two-parameter elastic foundations, the Winkler 

parameter is supposed to be constant but the Pasternak parameter varies along the long side of the plate with three distributions 

(linear, parabolic and sinusoidal). The material properties of the advanced composite plates gradually vary through the thickness 

according to two distribution models (power law and Mori-Tanaka). Governing differential equations and associated boundary 

conditions for dynamics responses of the advanced composite plates are derived using the Hamilton principle and are solved by 

using an analytical solution of Navier’s technique. The present results and validations of our modal with literature are presented 

that permitted to demonstrate the accuracy of the present quasi-3D theory to predict the effect of variables elastic foundation on 

dynamics responses of advanced composite plates. 
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Hussain and Naeem 2019, Belbachir et al. 2019, Sahla et al. 

2019, Abualnour et al. 2019, Belbachir et al. 2020, Katariya 

et al. 2017and 2020, Sahu et al. 2020). A comparison 

between a three-dimensional (3D) exact solution and 

several two-dimensional (2D) numerical solutions using 

numerical methods include classical 2D finite elements 

(FEs), and classical and refined 2D generalized differential 

quadrature (GDQ) solutions are presented by (Brischetto et 

al. 2016). Recently, Tran and Kim (2018) studied static and 

free vibration of multilayered plates based on isogeometric 

analysis (IGA) and higher-order shear and normal 

deformation theory. Sayyad and Ghugal (2018) investigated 

the bending, buckling, and vibration behavior of shear 

deformable laminated composite and sandwich beams using 

trigonometric shear and normal deformation theory. 

Researchers have extensively studied the interactions 

between structures, as like plates, beams and shell, and 

elastic foundations because of their use in many fields such 

as civil engineering, mechanics, etc. The Winkler linear 

model is the first type of elastic foundation in one parameter 

that consists of a series of separate springs without coupling 

effects between them (Winkler 1867). The Pasternak elastic 

foundation is a two-parameter parameter with a shear layer 

added to the Winkler spring to describe the interactions 

between them (Pasternak 1954). Huang et al. (2008) 

presented exact solutions for static behavior of functionally 

graded thick plates using the three-dimensional theory of 

elasticity. Malekzadeh (2009) studied the three-dimensional 

free vibration analyses of functionally graded plates are 

limited to plates with simply supported boundary conditions 

and with elastic foundations. Kumar et al. (2011) presented 

the hygro-thermal effects on the free vibration of laminated 

composite plates resting on elastic foundations with random 

system properties using micromechanical model via finite 

element method. Han et al. (2016) presented a quasi-three-

dimensional theory for dynamic responses of power law and 

sigmoid Functionally Graded Material plates. The first 

order shear theory are employed to predict free vibration 

and static responses of homogeneous and functionally 

graded structures resting on elastic foundations by (Mantari 

and Granados 2016, Park and Choi 2017). The mechanical 

responses and free vibration of functionally graded 

structures resting elastic foundation are widely studied 

using higher shear deformation theory (Said et al. 2014, 

Xiang et al. 2014, Lee et al. 2015, Shahsavari et al. 2018, 

Majeed and Sadiq 2018, Rezaiee-Pajand et al. 2018, Batou 

et al. 2019, Salah et al. 2019, Nebab et al. 2019, Chaabane 

et al. 2019, Tounsi et al. 2020, Rabhi et al. 2020, Chikr et 

al.2020, Refrafi et al. 2020). Recently, Lin and Shi (2018) 

investigated three-dimensional formulation for the free 

vibrations of thick rectangular plates with general boundary 

conditions and resting on elastic foundations by using the 

Rayleigh-Ritz method. Zhang et al. (2018) established a 

thin orthotropic rectangular fluid-structure coupled system 

resting on varying elastic Winkler and Pasternak 
foundations. The main objective of this study is the 
investigation of the effect of variables elastic foundations 

on dynamic responses of advanced composite plates using a 

new quasi-three-dimensional theory. This present quasi-3D 

theory has only four variables; the numbers of variables are  

 

Fig. 1 Typical advanced composite plates with Cartesian     

coordinates 

 

 

reduced by using undefined integral.  In order to check the 

accuracy of the present theory. The Hamilton principle is 

utilized to establish the equation of motion, where solved by 

analytical solution series.   The results are compared with 

the exiting results found in the literature. The effects of the 

power law index, two-parameter elastic foundation, aspect 

side-to-length ratios and side-to-thickness ratios on 

advanced composite plates responses on the Pasternak 

elastic foundation were examined. 
 

 

2. Problem formulation 
 

2.1 Geometrical configuration 
 

Let’s consider an isotropic advanced composite plate 

resting on two-parameters elastic foundation of length (a), 

width (b), with uniform constant thickness (h), as shown in 

Fig. 1, the plate has simply supported edge in four sides. 

The Cartesian coordinate system (x,y,z) is assumed to the 

basis extract mathematical formulations when x and y-axis 

are located in mid-plane of the plate. 

 

2.2 Material properties 
 
Advanced composite materials are functionally graded 

proprieties where the materials proprieties vary smoothly 

due to gradually changing the volume fraction of the 

constituent materials, generally in the thickness direction of 

plate. The Advanced composite plate is prepared from a 

mixture of ceramics and metal and the composition varies 

from the top to the bottom surface. In the case study, we 

have two types of volume fractional materials to describe its 

change in thickness, as follows: 
 

2.2.1 Types 1: Metal volume fractions 
We supposed the volume fraction in both Mori–Tanaka 

model and Voigt model follows a simple power law as: 

 

(1) 

Voigt model 

Using fraction volume of metal, the effective material 

properties of functionally graded plates such as Young’s 
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modulus E, mass density ρand Poisson’s ratio ν are 

considered to vary gradually through the thickness 

according to a power law distribution. Note that Eq. (1) also 

apply to the Voigt model. Which is given in Eq. (2) 

 

 

 

(2) 

Mori-tanaka model  

According to the Mori-Tanaka scheme, the effective 

local bulk modulus Kf and the shear modulus Gf are 

expressed: 

 

(3a) 

 

(3b) 

in which 

 

(3) 

The effective Young’s modulus Ef and Poisson’s ratio vf 

can be given by using Eq. (3): 

 

 

(4) 

 

2.2.2 Types 2: Ceramic volume fractions 
We supposed the volume fraction Vc in Voigt model 

follows a simple power law as: 

 
(5) 

Voigt model 

Using fraction volume of ceramic, the effective material 

properties of functionally graded plates such as Young’s 

modulus E(z), mass density ρ(z) and Poisson’s ratio v(z) are 

considered to vary gradually through the thickness 

according to a power law distribution, which is given in Eq 

(5): 

 

 

 

(6) 

 

2.3 Variables elastic foundations  
 

The advanced composite plates are supposed to be 

resting on elastic foundation that has two layers. The first 

layer is from spring of Winkler without considered effect 

coupled between them and a shear layer of Pasternak that 

interconnected springs of Winkler. The general formulation 

described the elastic foundations of Pasternak-Winkler are 

given as below: 

 

(7) 

where reaction of the elastic foundation is ( )ef x , pK  is 

shear layer is constant, if shear layer is not considered , the 

elastic foundation becomes Winkler foundation, and 

( )wK x is the variable Winkler parameter depend only in x

direction, as shown in Fig. 2. 

The variation of Winkler elastic foundation is found in 

previous studies as follow (Pradhan and Murmu 2009, 

Sobhy 2015, Nebab et al. 2019) 

 

(8) 

where 1J  is a constant and  is a varied parameter. Where 

that if is zero, the foundation becomes uniform Winkler 

and if the rigidity of the shear layer is neglected, the 

foundation of Pasternak becomes the Winkler foundation. 

 

2.4 Kinematics and strains 
 

Based on assumption higher shear deformation theory 

for advanced composite plates is used to describe her field 

displacement as follows: 

 

(9) 

where, and  are the mid-plane displacement of the 

plate in the x and y directions, ,  and  are the 

bending , shear and stretching components of transverse 

displacement, respectively. f(z) is a new shape function 

determining the distribution of the transverse shear are 
 
 

 

Fig. 2 distributions types of Winkler elastic foundation 

along the axial direction of the FG plate: (a) linear type, 

(b) parabolic type and (c) sinusoidal type 
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taken to satisfy the stress-free boundary conditions on the 

top and bottom surfaces of the plate, as follows: 

 

(10) 

The linear strain is definite by deriving from the 
kinematic of Eq. (9), based the application of the linear, 
small-strain elasticity theory, valid for thin, moderately 
thick and thick plates under consideration are as expressed: 

 

 

(11) 

where  

 

 

(12a) 

 

(12b) 

The undefined integral that is found in strains relation, it 

can be simplified in format derivation by using Navier 

techniques, rewritten as follows: 

 

(13) 

where A  and B coefficients are assumed according to 

the technique of solution; in this case, the technique is used 

Navier methods Consequently, A , B , k1 and k2 are written 

as follows: 

 
(14) 

2.4 Constitutive equations 
 

The stress-strain relationships, which take into account 

transverse shear and normal deformations, can be expressed 

as follows: 

 

(15) 

where,  , , , , ,     x y z xy yz xz and  , , , ,     xx yy zz xy yz xz are the 

stress and strain components, respectively. The constitutive 

coefficients Qij may be expressed in terms of the 

engineering isotropic characteristics as: 

 
(16a) 

 
(16b) 

 
(16c) 

 

2.4 Equations of motion 
 

Hamilton’s principle is used to guide the equations that 

govern and can be expressed by the following relation: 

 
(17) 

where δ indicates a variation, and U, Uef and K represent the 

strain energy of FG-plate, the strain energy of elastic 

foundations and the kinetic energy, respectively. 

The variation in kinetic energy based on higher-order 

shear deformation theory can be expressed as follows: 
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where, the point-exponent convention indicates the 

differentiation with respect to the time variable t, ρ(z) is the 

density. Mass inertias is defined as: 

 

(19) 

The variation of the deformation energy of the plate 

written by: 

 
(20a) 

 

(20b) 

where, 

, 

,  

(21) 

The variation of the deformation energy of the variable 

elastic foundations indicated as 

 
(22) 

By substituting the expressions for, K , U ,and  efU   

from the Eqs. (18), (20) and (21) in Eq. (17) and integrating 

by parts and collecting the coefficients of ( 0u , 0v , 0w ,

 and ), the following equations of advanced composite 

plate motion are obtained as 

 

(23a) 

 

(23b) 

 

(23c) 

 

(23d) 

 
(23e) 

Substituting Eq. (11) into Eq. (15) and integrating across 

the thickness of the advanced composite plate, the stress 

resultants are expressed as: 
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(26d) 

In addition, the stiffness components are given as 

follows 

 

(27a) 

 

(27b) 

 

(27c) 

 

2.5 Equations of motion via terms of displacements 
 

Substituting Eq. (24) Into Eq. (23), the equations of 

motion of the presented theory can be rewritten in terms of 

displacements ( 0u , 0v , 0w , 0 and  )  as follows: 
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(28b) 

 

(28c) 
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(28e) 

 

 

3. Analytical solution 
 

The Navier technique from analytic solution types is 

purposed to solve a differential equation of problem for the 

free vibration of advanced composite plates resting two-

parameter variables elastic foundations. The advanced 

composite plates are considered to have simply supported 

edge in all sides. The solution is assumed to be from a 

series of Fourier as follows: 
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U; V; W; X and Y are arbitrary unknown parameters to 

be determined and ω is the natural frequency. 1i  
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plate, which are given below: 

 

(30) 

By substituting the Eq. (29) for the equations of motion 

(28), we obtain below the equation of the eigenvalue for 

any fixed value of m and n, for a free vibration problem: 

 

(31) 

where 

 

(32a) 

 

(32b) 

 
 

4. Numerical results 
 

In this part of the research paper, the various present  

Table 1 Material properties of the functionally graded plates 

Material 
Properties 

E(GPa) 
  

Aluminum  (Al) 70 0.3 2702 

Alumina (Al2O3) 380 0.3 3800 

Zirconia (ZrO2) 200 0.3 5700 

Ti–6Al–4V 105.7 0.2981 4429 

aluminum oxide 320.24 0.26 3750 

 
 

examples and validations are presented to verify the 

accuracy of the current method studying free vibration of 

the advanced composite plates resting on variables elastic 

foundations. We should be indicated that this analytical 

method is employed a quasi -3D shear deformation theory. 

The materials proprieties are assumed to be changes 

through the thickness of plates following the Eqs. (2), (4) 

and (5) and are given in Table 1. 

The used non-dimensional parameters are: 

 

 

 

4.1 Validations  
 

4.1.1 Example 1: Analysis of FGM plates  
The functionally graded plates are made of Al/Al2O3 

that has materials proprieties as shown in table (1). The 

plates have(a/b=1), (a/b=2) and (h/a =10), (h/a =5) and (h/a 

=2) and are used Eq. (6) to describe the variation of 

materials properties. The comparison of non-dimensional 

fundamental frequencies isgiven in the Table 2. The current 

method is compared with the 3D exact solution provided by 

Jin et al. (2014), the solution of Mantari (2015) where based 

quasi-3D shear deformation theory and analytical solution 

of Zaoui et al. (2019) based quasi-3D four variables higher 

shear deformation theory. It can be seen that present results 

are closure to preceding studies. It can be seen that, for a 

given relation (b/a) and an index (p), as the side-to-

thickness ratio (a/h) decreases, the present results diverge 

with those of the literature.  
 

4.1.2 Example 2: Analysis of advanced composite 
plates  

The advanced composite plates are prepared from the 

aluminum oxide and Ti–6Al–4V. The distributions of 

material properties use Eq. (1) of the volume fraction and 

Eq. (2) are used for the Voigt model and Eq. (3) of the 

More-Tanaka model. The advanced composite square plate 

has a = b = 0.4 m and h = 5 mm. Table 3 presents the first 

six dimensional natural frequencies (Hz) for the two cases, 

i.e., volume fraction index p = 0 and 2000. The present  
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Table 2  Comparison of non-dimensional frequencies 

for P-FG plates 

b/a a/h p (Jin et al. 2014) (Mantari 2015) (Zaoui et al. 2019) Present 

1 

10 

0 0.1135 0.1135 0.1137 0.11359 

1 0.0870 0.0882 0.0883 0.08824 

2 0.0789 0.0806 0.0807 0.08059 

5 0.0741 0.0755 0.0756 0.07562 

5 

0 0.4169 0.4169 0.4178 0.41779 

1 0.3222 0.3261 0.3267 0.32670 

2 0.2905 0.2962 0.2968 0.29677 

5 0.2676 0.2722 0.2725 0.27249 

2 

0 1.8470 1.8510 1.8583 1.85830 

1 1.4687 1.4778 1.483 1.48306 

2 1.3095 1.3223 1.3269 1.32688 

5 1.1450 1.1557 1.1576 1.15761 

2 

10 

0 0.0719 0.0718 0.0719 0.07193 

1 0.0550 0.0557 0.0558 0.05581 

2 0.0499 0.0510 0.0511 0.05107 

5 0.0471 0.0479 0.048 0.04799 

5 

0 0.2713 0.2713 0.2718 0.27180 

1 0.2088 0.2115 0.2119 0.21189 

2 0.1888 0.1926 0.193 0.19301 

5 0.1754 0.1786 0.1788 0.17879 

2 

0 0.9570 1.3044 1.3086 1.30865 

1 0.7937 1.0348 1.0378 1.03785 

2 0.7149 0.9296 0.9322 0.93224 

5 0.6168 0.8241 0.825 0.82499 

 

Table 3 Comparison of natural frequencies fij=ω/2π for FG 

plates with Mori-Tanaka’s mixture 

p Source f11 f12= f21 f22 f13= f31 f32= f32 F14= f41 

0 

(Bishop 

1969) 
145.04 362.61 580.18 725.22 942.79 1233 

(He et al. 

2001) 
144.66 360.53 569.89 720.57 919.74 1225.72 

(Kitipornchai 

et al. 2006) 
143.96 360.07 568.87 718.22 916.4 1207.06 

(Park and 

Kim 2006) 
145.06 362.41 579.39 724.62 – – 

(Shen and 

Wang 

2012)(M–T) 

144.97 362.13 578.94 723.29 939.53 1227.31 

(Shen and 

Wang 

2012)(Voigt ) 

144.97 362.13 578.94 723.29 939.53 1227.31 

Present (M–

T model) 
145.1143 362.4875 579.5042 723.9849 940.4112 1228.4323 

Present 

(Voigt 

model) 

145.1143 362.4875 579.5042 723.9849 940.4112 1228.4323 

2000 

(Bishop 

1969) 
271.23 678.06 1084.9 1356.1 1763 2305.4 

(He et al. 

2001) 
268.92 669.4 1052.49 1338.52 1695.23 2280.95 

(Kitipornchai 

et al. 2006) 
261.46 653.13 1044.31 1304.79 1694.98 2214.32 

(Park and 

Kim 2006) 
274.23 685.18 1095.4 1369.98 – – 

(Shen and 

Wang 

2012)(M–T ) 

271.05 677.1 1082.53 1352.47 1756.87 2295.1 

(Shen and 

Wang 2012) 

(Voigt ) 

271.06 677.12 1082.57 1352.52 1756.93 2295.19 

Table 3 Continued 

p Source f11 f12= f21 f22 f13= f31 f32= f32 F14= f41 

2000 

Present  

(M–T model) 
271.0842 677.1739 1082.6224 1352.5665 1756.9526 2295.1488 

Present 

(Voigt 

model) 

271.1141 677.2487 1082.7419 1352.7158 1757.1463 2295.4015 

 

Table 4 Comparison of the non-dimensional natural 

frequency parameters ϖ/π of isotropic plates resting on an 

elastic foundation 

h/a Kw Methods ϖ11 ϖ12 ϖ22 

0.001 

100 

Present 2.2439 5.1067 8.0721 

(Zhang et al. 2015) 2.2260 5.0860 8.0478 

(Zhou et al. 2004) 2.2413 5.0973 8.0527 

(Leissa 1973) 2.2420 5.1016 8.0639 

(Dehghan and 

Baradaran 2011) 
2.2450 5.1643 8.1338 

500 

Present 3.0235 5.4941 8.3226 

(Zhang et al. 2015) 3.0213 5.4832 8.2923 

(Zhou et al. 2004) 3.0214 5.4850 8.3035 

(Leissa 1973) 3.0221 5.4894 8.3146 

(Dehghan and 

Baradaran 2011) 
3.0242 5.5474 8.3821 

0.1 

200 

Present 2.3966 4.8290 7.2368 

(Zhang et al. 2015) 2.3791 4.7912 7.1637 

(Zhou et al. 2004) 2.3951 4.8262 7.2338 

(Dehghan and 

Baradaran 2011) 
2.3903 4.8098 7.2186 

1000 

Present 3.7047 5.5705 7.7376 

(Zhang et al. 2015) 3.7059 5.5510 7.7251 

(Zhou et al. 2004) 3.7008 5.5661 7.7335 

(Dehghan and 

Baradaran 2011) 
3.6978 5.5521 7.7193 

 

Table 5 Non-dimensional fundamental frequencies ϖ for 

isotropic plates resting on elastic foundation (a/h=5) 

kw kp Frequencies 
(Akavci 

2014) 

(Thai and 

Choi 

2012) 

(Mantari et 

al. 2014) 

(Zaoui et al. 

2019) 
Present 

0 

0 

ϖ11 

17.5149 17.4523 17.4537 17.5677 17.5332 

10 17.7859 17.7248 17.7257 17.8261 17.7919 

102 20.0603 20.0076 20.0084 19.9988 19.9677 

103 35.5261 35.5039 35.5044 34.8113 34.7905 

104 45.526 45.5255 45.526 45.526 45.5260 

105 45.526 45.5255 45.526 45.526 45.5260 

0 

10 

22.2607 22.2145 22.2154 22.1062 22.0774 

10 22.4745 22.4286 22.4297 22.3111 22.2825 

102 24.3133 24.2723 24.2731 24.0743 24.0473 

103 38.0839 38.065 38.0651 37.2488 37.2290 

104 45.526 45.5255 45.526 45.526 45.5260 

105 45.526 45.5255 45.526 45.526 45.5260 

0 

0 ϖ12 

38.4722 38.1883 38.1966 38.6161 38.4856 

10 38.5929 38.3098 38.3184 38.7262 38.5959 

102 39.662 39.3895 39.3975 39.702 39.5737 

w
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Table 5 Continued 

kw kp Frequencies 
(Akavci 

2014) 

(Thai and 

Choi 

2012) 

(Mantari et 

al. 2014) 

(Zaoui et al. 

2019) 
Present 

103 

0 

ϖ12 

47.0757 48.8772 48.8829 48.28 48.1667 

104 71.9829 71.9829 71.9829 71.9829 71.9829 

105 71.983 71.9829 71.9829 71.9829 71.9829 

0 

10 

44.0294 43.7943 43.8014 43.6871 43.5663 

10 44.1347 43.9009 43.9075 43.7831 43.6625 

102 45.0711 44.8445 44.8509 44.6367 44.5175 

103 53.5296 53.358 53.363 52.3134 52.2062 

104 71.9829 71.9829 71.9829 71.9829 71.9829 

105 71.9829 71.9829 71.9829 71.9829 71.9829 

0 

0 

ϖ13 

66.1207 65.3135 65.3447 66.3436 66.0105 

10 66.1899 65.3841 65.415 66.4043 66.0713 

102 66.8087 66.0138 66.0445 66.9471 66.6150 

103 72.6997 72.0036 72.0298 72.0778 71.7543 

104 101.799 101.799 101.7992 101.7992 101.7992 

105 101.799 101.799 101.7992 101.7992 101.7992 

0 

10 

72.6178 71.9198 71.9467 72.007 71.6834 

10 72.6806 71.9839 72.0104 72.0613 71.7378 

102 73.243 72.5554 72.5812 72.5474 72.2248 

103 78.6389 78.029 78.0519 77.1736 76.8599 

104 101.799 101.799 101.7992 101.799 101.7992 

105 101.799 101.799 101.7992 101.799 101.7992 

 

Table 6 Comparison of the non-dimensional natural 

frequency  parameters of P-FG plates resting on an 

elastic foundation 

(Kw,Kp) a/h p Theories 

   

(Hasani 

Baferani et 

al. 2011) 

(Hosseini-

Hashemi 

et al. 2010) 

(Akavci 

2014) 

(Mantari 

2015) 
Present 

(0,0) 

20 

0 – 0.02392 0.02393 0.02393 0.02395 

0.25 – 0.02269 0.02309 0.02293 0.02314 

1 – 0.02156 0.02202 0.02218 0.02219 

5 – 0.0218 0.02244 0.0226 0.02262 

10 

0 – 0.09188 0.09203 0.09207 0.09213 

0.25 – 0.08603 0.08895 0.08888 0.08916 

1 – 0.08155 0.08489 0.0855 0.08533 

5 – 0.08171 0.08576 0.08639 0.08645 

5 

0 – 0.32284 0.32471 0.32504 0.32498 

0.25 – 0.31003 0.31531 0.31424 0.31594 

1 – 0.29399 0.30152 0.30354 0.30349 

5 – 0.29099 0.3186 0.29987 0.30001 

(250,25) 

20 

0 0.03421 0.03421 0.03422 0.03417 0.03419 

0.25 0.03321 0.03285 0.03312 0.03296 0.03311 

1 0.03249 0.03184 0.03213 0.0322 0.03221 

5 0.03314 0.03235 0.03277 0.03283 0.03285 

10 
0 0.13365 0.13365 0.13375 0.13302 0.13307 

0.25 0.13004 0.12771 0.12959 0.1288 0.12900 

Table 6 Comparison of the non-dimensional natural 

frequency  parameters of P-FG plates resting on an 

elastic foundation 

(Kw,Kp) a/h p Theories 

   

(Hasani 

Baferani et 

al. 2011) 

(Hosseini-

Hashemi 

et al. 2010) 

(Akavci 

2014) 

(Mantari 

2015) 
Present 

(250,25) 

10 
1 0.12749 0.12381 0.12585 0.12557 0.12635 

5 0.1295 0.12533 0.12778 0.12756 0.12761 

5 

0 0.43246 0.49945 0.50044 0.48949 0.48956 

0.25 0.42868 0.48327 0.48594 0.47498 0.47545 

1 0.46406 0.46997 0.47298 0.46405 0.46412 

5 0.44824 0.474 0.47637 0.46836 0.46862 

 

 

results are compared with previous results that are reported 

in Table 3. The classical analytical solutions using on the 

classical plate theory (CPT) of Bishop (1969), the linear 

FEM results employing on the CPT of He et al. (2001), the 

semi-numerical results based on the higher order shear 

deformation plate theory (HSDT) of Kitipornchai et al. 

(2006), and the nonlinear FEM results based on the first 

shear deformation plate theory (FSDT) of Park and Kim 

(2006), the solutions of Shen and Wang (2012) based on a 

higher order shear deformation theory are listed of 

comparison. It can be observed that current Voigt and Mori–

Tanaka models are similar for an isotropic plate (p = 0), but 

there is a small difference in (p=2000). It is clear that the 

results of the two models are almost similar to the studies of 

Shen and Wang (2012) and those of Bishop (1969), but they 

are further from the results given by Kitipornchai et al. 

(2006), Park and Kim (2006) and He et al. (2001). 

  

4.1.3 Example 3: Analysis of homogenous plates 
resting on elastic foundations 

The homogenous isotropic plates are made by aluminum 

(Al). The square plates have a/h=1000, 10 sides to thickness 

ratio. The Winkler foundation parameters are defined as 

KW=KWDC/2πa4. In Table 4, the non-dimensional frequency 

parameters of thin and moderately thick plates resting on an 

elastic foundation are carried out with different values of 

Winkler modulus. The results are reported in Table 4 

together with the vibration solutions reported by Leissa 

(1973), Zhou et al. (2004), Dehghan and Baradaran (2011) 

and Zhang et al. (2015). It can be seen that the current 

results are in agreement with the other results, with slight 

differences, since the theories used in the methods of the 

other works are not similar. 

In another comparison, Table 5 shows the results of the 

three non-dimensional natural frequencies of a square 
homogenous thick plate on two-parameter elastic 
foundation with side to thickness ratio (a/h=5). The current 

results are compared with the shear deformation theory 

given by Thai and Choi (2012) and a Higher shear 
deformation theory proposed by Akavci (2014), quasi-3D 

shear deformation theory presented by Zaoui et al. (2019) 

and the results presented by Mantari et al. (2014). The 

results are closer to the solutions obtained by Zaoui et al.  

ŵ

ŵ
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(2019). It is clear that as the value of (Kw and kp) increases, 

the current solution and the results of other theories tend to 

approach a similar value. 

 

4.1.4 Example 4: Analysis of FG plates resting on 
elastic foundations 

The advanced composite plates are made by FGM of 

Aluminum (Al) / Zirconia (ZrO2) and Eqs. (6) are used to 

describe the variation of materials proprieties. The square 

plates has uniform thickness with different values (a/h=20, 

10 and 5). In Table 6, dimensionless fundamental 

frequencies of FGM plates resting on elastic foundations are 

presented. The present results are compared with the first 

shear deformation theory results by Hosseini-Hashemi et al. 

(2010), and the higher shear deformation theory by Hasani 

Baferani et al. (2011), the HSDT by Akavci (2014) and the 

solution of Mantari (2015) based qausi-3D higher shear 

theory. It can be seen that the results of the present theory 

are closer to the pervious results reported in Table 6. 
 

4.2 Parametric study 
 

4.2.1 Example 1: comparison of two advanced 
composite models plates resting on elastic foundations 

In the second part, advanced composite plates made of 

the aluminum oxide and Ti–6Al–4Vare used. Voigt model 

and Mori-Tanaka model based on the volume fraction of 

metal are used. The square plates are considered to be 

resting two parameters Winkler (Kw)-Pasternak (Kp) with 

different for Kw and Kp. It has two sides to thickness ratio 

(a/h=10,20). In Table 7, non-dimensional natural frequency  

 

 
Fig. 3 Influence of the different types of elastic 

foundation on non-dimensional frequencies V of 

advanced square plates versus index power 
 

 

parameters J of non-homogenous plates resting on a two-

parameter elastic foundation with various values of index 

power (p=0,1,5,8 and 10), is presented. It can be seen that 

the results for homogenous plates (p=0) are given identical 

results, however for other differences are not significant. 

The results of non-dimensional natural frequency between 

Mori-Tanaka model and Voigt model converge for isotropic 

plates with p=0 and p= ∞. In addition, the non-dimensional 

frequency of the plate increase with increase of elastic 

foundation effect. 
 

4.2.2 Example 2: Analysis of advanced composite 
plates resting on variables elastic foundations 
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Table 7 Comparison of the non-dimensional natural frequency parameters J of non-homogenous plates resting on an 

elastic foundation 

a/h Kw Kp 
p = 0 p = 1 p =5 p = 8 p = 10 

Voigt M-T Voigt M-T Voigt M-T Voigt M-T Voigt M-T 

10 

 

0 

0 5.7784 5.7784 8.2044 7.9947 9.5336 9.3443 9.8620 9.7037 10.0002 9.8591 

10 7.1377 7.1377 9.2920 9.1075 10.5374 10.3665 10.8449 10.7012 10.9741 10.8458 

100 14.4484 14.4484 16.0463 15.9407 17.0959 16.9914 17.3401 17.2508 17.4408 17.3605 

10 

0 5.8548 5.8548 8.2630 8.0548 9.5870 9.3987 9.9142 9.7567 10.0518 9.9115 

10 7.1997 7.1997 9.3437 9.1603 10.5857 10.4156 10.8923 10.7492 11.0211 10.8934 

100 14.4791 14.4791 16.0762 15.9709 17.1257 17.0213 17.3698 17.2806 17.4704 17.3903 

100 

0 6.5026 6.5026 8.7723 8.5765 10.0547 9.8754 10.3716 10.2212 10.5049 10.3707 

10 7.7355 7.7355 9.7970 9.6222 11.0111 10.8477 11.3102 11.1725 11.4358 11.3128 

100 14.7522 14.7522 16.3435 16.2399 17.3916 17.2888 17.6346 17.5468 17.7347 17.6558 

20 

0 

 

0 5.9241 5.9241 8.4010 8.1908 9.7431 9.5470 10.0818 9.9167 10.2251 10.0777 

10 7.2811 7.2811 9.4862 9.3007 10.7461 10.5686 11.0633 10.9131 11.1975 11.0630 

100 14.6385 14.6385 16.2693 16.1620 17.3331 17.2237 17.5838 17.4897 17.6876 17.6029 

10 

0 6.0002 6.0002 8.4593 8.2507 9.7964 9.6013 10.1338 9.9695 10.2766 10.1299 

10 7.3432 7.3432 9.5379 9.3534 10.7944 10.6178 11.1108 10.9612 11.2445 11.1106 

100 14.6695 14.6695 16.2995 16.1924 17.3631 17.2539 17.6136 17.5198 17.7174 17.6329 

100 

0 6.6463 6.6463 8.9672 8.7707 10.2635 10.0775 10.5904 10.4334 10.7288 10.5884 

10 7.8799 7.8799 9.9911 381.5676 11.2201 11.0502 11.5288 11.3847 11.6592 11.5301 

100 14.9453 14.9453 16.5688 16.4634 17.6309 17.5234 17.8802 17.7878 17.9835 17.9002 
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Fig. 4 Influence of the different types of elastic 

foundation on non-dimensional frequencies V of 

advanced square plates versus a/h ratio 

 

 

Fig. 5 Influence of the different types of elastic 

foundation on non-dimensional frequencies V of 

advanced plates versus a/b ratio 

 

 

Fig. 6 Influence of the different types of elastic 

foundation on non-dimensional frequencies V of 

advanced plates versus z coefficient 
 

 

The second example, it is functionally graded plates 

prepared from Al/Al2O3 where the Voigt model is used to 

describe the material distribution according to the thickness  

 

Fig. 7 Influence of the different types of elastic 

foundation on non-dimensional frequencies J of 

advanced square  plates 

 

 

Fig. 8 Influence of the different types of elastic 

foundation on non-dimensional frequencies J of 

advanced square  plates 
 

 

direction.  Figs. 3, 4 and 5, show the variation of non-

dimensional frequencies of advanced plates sitting on 

different types (linear, parabolic, sinusoidal and uniform) of 

elastic foundation with some parameters like index power 

(p), side-to-thickness ratio (a/h) and side-to-length (a/b). In 

Fig. 3, it can be seen that non-dimensional frequencies are 

decreased with increased values of index material p. In 

Figs. 4 and 5, non-dimensional frequencies are increased 

with increased of (a/h) and (a/b) ratios. Fig. 6 shows the 

influence of ξ  coefficient with non-dimensional 

frequencies of advanced square plates. It can be observed 

that frequency increased with an increase of  ξ coefficient. 

The effect of Winkler (Kw) and Pasternak (Kp) parameters 

on non-dimensional frequencies of advanced composite 

square plates are presented in Figs. 7 and 8 respectively. It 

is clear those current results are increased with an increase 

in the parameter of the foundation. In all Figs. 3-8, we can 

easily classify the effect types variables elastic foundation 

from grated to down in this order uniform, parabolic, linear 

and sinusoidal. It can be concluded that the present method 

can predict the effect variables elastic foundation on  
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Fig. 9 Comparison of non-dimensional frequencies V of 

advanced square  plates on variable elastic foundations 

versus a/h ratios 

 

Table 8 Comparison of dimensional frequencies f=w/2p of 

advanced square plates with different mass density versus 

a/h ratios, (z=0.8, kw=100 and kp=10) 

 

Material properties 

1=1500 kg/m3 

Material properties 

2=3500 kg/m3 

a/h ez=0 ez
1=0 ez=0 ez

1=0 

4 1984.487465 1948.932440 1299.15200 1275.875777 

6 1387.268698 1377.060008 908.1805453 901.4973889 

8 1062.579939 1058.475291 695.6218581 692.9347351 

10 859.3066164 857.3576419 562.5482309 561.2723271 

15 579.4788533 579.0712392 379.3579584 379.0911125 

20 436.4464187 436.3776090 285.7212500 285.6762034 

30 291.8626891 291.9303145 191.0689808 191.1132522 

 

Table 9 Comparison of dimensional frequencies f=w/2p of 

advanced square plates with different young modulus 

versus a/h ratios (z=0.8, kw=100 and kp=10) 

 

Material properties 

E=150 Gpa 
Material properties E=66 Gpa 

a/h ez=0 ez
1=0 ez=0 ez

1=0 

4 1958.5453 1923.4551 1299.1520 1275.8757 

6 1369.1336 1359.0584 908.1805 901.4973 

8 1048.6894 1044.6384 695.6218 692.9347 

10 848.07336 846.1498 562.5482 561.2723 

15 571.9036 571.5013 379.3579 379.09111 

20 430.74099 430.6730 285.7212 285.6762 

30 288.0473 288.1140 191.0689 191.1132 

 

 

vibrational of advanced plates. 
 

4.2.3 Example 3: effect of the normal deformation on 
the plates resting on elastic foundations 

In order to verify the effect of the normal deformation 

along the z direction, we carried out a comparative study of 

evolution of the frequency according to the power index of 

FG plate resting variables elastic foundation (parabolic 

variation type) with and without stretching effect for 

different values of (a/h). The results of this parametric study 

are presented in Fig. 9. It should be noted that for all the 

values of p the effect of the deformation becomes 

significant when the plate becomes thick. 

It should be noted that the effect of the variation of the 

density and the young modulus cannot be seen in Fig. 9; so 

another purely theoretical study was done to show the effect 

of density and Young modulus on the stretching effect. 

To study the effect of the normal deformation according 

to z with respect to the density we took two materials with a 

constant young modulus of 66 Gpa the densities are 1= 

1500 kg/m3 and 2= 3500 kg/m3. The results of this study 

are grouped in Table 8. 

Even with the change in density the rate of change in 

frequency for thin plates is minimal, while for thick plates 

this rate becomes more significant, since the difference 

between the results of frequencies with and without 

stretching effect is greater when the density is small. 

To study the effect of the normal deformation along z 

with respect to the Young E module, we took two materials 

with a constant density of = 3500 kg/m3, the young 

modules are E1 = 150 Gpa and E2 = 66 Gpa. The results of 

this study are grouped in Table 9. 

Even with the change of the module of young the rate of 

change of the frequency for the thin plates is almost zero, 

while for the thick plates this rate becomes more significant, 

since the difference between the results of the frequencies 

with and without stretching effect is greater when the 

module of young is large. 
 

 

5. Conclusions 
 

Free vibration of advanced composite plates resting 

variables elastic foundations are investigated using new 

quasi-3D higher shear deformation theory with success. The 

present qausi-3D HSDT has only five unknowns without 

needing shear corrector coefficient, which means it’s better 

than others similar qausi-3D HSDTs found in literature. 

Consequently, the present qausi-3D HSDT was allowed to 

reduce time of calculates. The advanced composite plates 

are supposed to resting on tow parameter elastic foundation 

(Pasternak- Winkler). We supposed to have variation in 

Winkler modulus, however Pasternak modulus are to be 

constant. Hamilton principle are employed to derived the 

equations motions for dynamics of advanced composite 

plates resting variables elastic foundations. The effect 

variables elastic foundation, power index, thickness-to-side, 

length to side are present in part of numerical results. 

Finally, it can be conclude that the present methods are 

efficient to predict the effect of elastic foundation on 

vibrational analysis of advanced composite plates. An 

improvement of the current analytical formulation will be 

considered in the future work to consider other type of 

structures and materials (Hirwani et al. 2017c, Narwariya et 

al. 2018, Ayat et al. 2018, Behera and Kumari 2018, Jamali 

et al. 2019, Hussain et al. 2019, Alimirzaei et al. 2019, 

Medani et al. 2019, Draiche et al. 2019, Al-Furjan et al. 

2020, Khosravi et al. 2020, Bourada et al. 2020, Shariati et 

al. 2020, Bousahla et al. 2020, Bellal et al. 2020, Asghar et 

al. 2020, Mehar et al. 2020, Dewangan et al. 2020). 
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