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Abstract.  In this study, dynamics responses of advanced composite plates resting variable elastic foundations via a quasi-3D
theory are developed using an analytical approach. This higher shear deformation theory (HSDT) is included the shear
deformation theory and effect stretching that has five unknowns, which is even inferior to normal deformation theories found
literature and other theories. The quasi-three-dimensional (quasi-3D) theory accounts for a parabolic distribution of the
transverse shear deformation and satisfies the zero traction boundary conditions on the surfaces of the advanced composite plate
without needing shear correction factors. The plates assumed to be rest on two-parameter elastic foundations, the Winkler
parameter is supposed to be constant but the Pasternak parameter varies along the long side of the plate with three distributions
(linear, parabolic and sinusoidal). The material properties of the advanced composite plates gradually vary through the thickness
according to two distribution models (power law and Mori-Tanaka). Governing differential equations and associated boundary
conditions for dynamics responses of the advanced composite plates are derived using the Hamilton principle and are solved by
using an analytical solution of Navier’s technique. The present results and validations of our modal with literature are presented
that permitted to demonstrate the accuracy of the present quasi-3D theory to predict the effect of variables elastic foundation on

dynamics responses of advanced composite plates.
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1. Introduction

For the first time, the concept of functionally graded
materials (FGM) was introduced by scientists in fields
materials in the Sendai region of Japan in 1984 (Koizumi
1997, Yaghoobi et al. 2015, Hadji et al. 2015, Avcar 2019,
Ahmed et al. 2019, Balubaid et al. 2019, Addou et al. 2019,
Boutaleb et al. 2019, Zarga et al. 2019, Karami et al.
2019ab, Hellal et al. 2019, Salah et al. 2019, Menasria et al.
2020, Zine et al. 2020, Khiloun et al. 2020, Matouk et al.
2020, Hussain et al. 2020, Rahmani et al. 2020, Kaddari et
al. 2020, Boussoula et al. 2020, Rachedi et al. 2020).
Functional graded materials are a new class of advanced
composites that are progressively changing in the
constitution of materials from one surface to another. The
main feature of FGM is to eliminate the stress concentration
of conventional laminated composites (Lee et al. 2015).

Functionally graded materials and structures attract
many scientists in the various fields of research to develop
their concept through theoretical and experimental research.
Reddy (2000) analyzed functionally graded plates subjected
thermo-mechanical loads using third-order theory and
employed analytical approached and finite element method.
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Matsunaga (2008) in studied the dynamics behaviors
and buckling functionally graded materials by taking into
account the effects of transverse shear and normal
deformations and rotatory inertia. Grover et al. (2013)
proposed a new inverse hyperbolic shear deformation
theory of laminated composite and sandwich plates for the
static and buckling responses. Jha et al. (2013) studied the
static and free vibration analyses of functionally graded
(FG) elastic, rectangular, and simply (diaphragm) supported
plates by wusing a higher order shear and normal
deformations plate theory. Thai and Kim (2013) developed
a simple higher-order shear deformation theory for bending
and free vibration analysis of functionally graded plates.
Nguyen et al. (2014) presented the static, buckling and free
vibration analyses of isotropic and functionally graded (FG)
sandwich plates using an inverse trigonometric shear
deformation theory. Pandey and Pradyumna (2015)
developed a layerwise finite element formulation for
dynamic analysis of two types of functionally graded
material (FGM) sandwich plates with nonlinear temperature
variation along the thickness and the FGM having
temperature dependent material properties. The studies of
dynamics and mechanical behavior of composite structures
are developed in many research using higher order shear
deformation theory (Katariya and Panda 2016, Sahoo et al.
20164, b, Singh ef al. 2016 and 2018, Panda and Kolahchi
2018, Faleh et al. 2018, Hirwani et al. 2017a, b and 2019,

ISSN: 2005-307X (Print), 2092-6219 (Online)



416 Mokhtar Nebab, Soumia Benguediab, Hassen Ait Atmane and Fabrice Bernard

Hussain and Naeem 2019, Belbachir et al. 2019, Sahla et al.
2019, Abualnour et al. 2019, Belbachir et al. 2020, Katariya
et al. 2017and 2020, Sahu et al. 2020). A comparison
between a three-dimensional (3D) exact solution and
several two-dimensional (2D) numerical solutions using
numerical methods include classical 2D finite elements
(FEs), and classical and refined 2D generalized differential
quadrature (GDQ) solutions are presented by (Brischetto et
al. 2016). Recently, Tran and Kim (2018) studied static and
free vibration of multilayered plates based on isogeometric
analysis (IGA) and higher-order shear and normal
deformation theory. Sayyad and Ghugal (2018) investigated
the bending, buckling, and vibration behavior of shear
deformable laminated composite and sandwich beams using
trigonometric shear and normal deformation theory.
Researchers have extensively studied the interactions
between structures, as like plates, beams and shell, and
elastic foundations because of their use in many fields such
as civil engineering, mechanics, etc. The Winkler linear
model is the first type of elastic foundation in one parameter
that consists of a series of separate springs without coupling
effects between them (Winkler 1867). The Pasternak elastic
foundation is a two-parameter parameter with a shear layer
added to the Winkler spring to describe the interactions
between them (Pasternak 1954). Huang et al. (2008)
presented exact solutions for static behavior of functionally
graded thick plates using the three-dimensional theory of
elasticity. Malekzadeh (2009) studied the three-dimensional
free vibration analyses of functionally graded plates are
limited to plates with simply supported boundary conditions
and with elastic foundations. Kumar et al. (2011) presented
the hygro-thermal effects on the free vibration of laminated
composite plates resting on elastic foundations with random
system properties using micromechanical model via finite
element method. Han et al. (2016) presented a quasi-three-
dimensional theory for dynamic responses of power law and
sigmoid Functionally Graded Material plates. The first
order shear theory are employed to predict free vibration
and static responses of homogeneous and functionally
graded structures resting on elastic foundations by (Mantari
and Granados 2016, Park and Choi 2017). The mechanical
responses and free vibration of functionally graded
structures resting elastic foundation are widely studied
using higher shear deformation theory (Said et al. 2014,
Xiang et al. 2014, Lee et al. 2015, Shahsavari ef al. 2018,
Majeed and Sadiq 2018, Rezaiee-Pajand et al. 2018, Batou
et al. 2019, Salah et al. 2019, Nebab et al. 2019, Chaabane
et al. 2019, Tounsi et al. 2020, Rabhi et al. 2020, Chikr et
al.2020, Refrafi et al. 2020). Recently, Lin and Shi (2018)
investigated three-dimensional formulation for the free
vibrations of thick rectangular plates with general boundary
conditions and resting on elastic foundations by using the
Rayleigh-Ritz method. Zhang et al. (2018) established a
thin orthotropic rectangular fluid-structure coupled system
resting on varying elastic Winkler and Pasternak
foundations. The main objective of this study is the
investigation of the effect of variables elastic foundations
on dynamic responses of advanced composite plates using a
new quasi-three-dimensional theory. This present quasi-3D
theory has only four variables; the numbers of variables are

advanced composite plates

Pasternak modulus
Winkler modulus

Fig. 1 Typical advanced composite plates with Cartesian
coordinates

reduced by using undefined integral. In order to check the
accuracy of the present theory. The Hamilton principle is
utilized to establish the equation of motion, where solved by
analytical solution series.  The results are compared with
the exiting results found in the literature. The effects of the
power law index, two-parameter elastic foundation, aspect
side-to-length ratios and side-to-thickness ratios on
advanced composite plates responses on the Pasternak
elastic foundation were examined.

2. Problem formulation

2.1 Geometrical configuration

Let’s consider an isotropic advanced composite plate
resting on two-parameters elastic foundation of length (a),
width (), with uniform constant thickness (%), as shown in
Fig. 1, the plate has simply supported edge in four sides.
The Cartesian coordinate system (x,),z) is assumed to the
basis extract mathematical formulations when x and y-axis
are located in mid-plane of the plate.

2.2 Material properties

Advanced composite materials are functionally graded
proprieties where the materials proprieties vary smoothly
due to gradually changing the volume fraction of the
constituent materials, generally in the thickness direction of
plate. The Advanced composite plate is prepared from a
mixture of ceramics and metal and the composition varies
from the top to the bottom surface. In the case study, we
have two types of volume fractional materials to describe its
change in thickness, as follows:

2.2.1 Types 1: Metal volume fractions
We supposed the volume fraction in both Mori—Tanaka
model and Voigt model follows a simple power law as:

T 4 ’ (1)
m 2 h
Voigt model
Using fraction volume of metal, the effective material
properties of functionally graded plates such as Young’s



A simple quasi-3D HDST for dynamic behavior of advanced composite plates with the effect of variables elastic foundations 417

modulus E, mass density pand Poisson’s ratio v are
considered to vary gradually through the thickness
according to a power law distribution. Note that Eq. (1) also
apply to the Voigt model. Which is given in Eq. (2)

E(Z)ZEC +(Em _Ec)vm
pP@)=p. +(Pn =PI Vn (2)
V(Z)=Vc +(Vm _Vc)vm

Mori-tanaka model

According to the Mori-Tanaka scheme, the effective
local bulk modulus Ky and the shear modulus Gy are
expressed:

K =K +(K,-K)- Ve
R

.
Gr=6.+(6,-C) —— 55 (3b)

in which

G.[9K, +8G]
L=—F—— 3)

6[ K. +2G. ]

The effective Young’s modulus £y and Poisson’s ratio vy
can be given by using Eq. (3):
5 - 9K G,
3K, +G,

“)
8K, -G,

T o(K,+G)

2.2.2 Types 2: Ceramic volume fractions
We supposed the volume fraction V. in Voigt model
follows a simple power law as:

v, :(%Hﬂp (5)

Voigt model

Using fraction volume of ceramic, the effective material
properties of functionally graded plates such as Young’s
modulus E(z), mass density p(z) and Poisson’s ratio v(z) are
considered to vary gradually through the thickness
according to a power law distribution, which is given in Eq

(5):

X2) = E, +(E —E)DV,
P =p, +(p —p V. (6)

vad =v, +0. —v OV

2.3 Variables elastic foundations

The advanced composite plates are supposed to be
resting on elastic foundation that has two layers. The first

layer is from spring of Winkler without considered effect
coupled between them and a shear layer of Pasternak that
interconnected springs of Winkler. The general formulation
described the elastic foundations of Pasternak-Winkler are
given as below:
2 2
=K w-k |20, 27 ™
‘ \ox oy

where reaction of the elastic foundation is f,(x), Kp is

shear layer is constant, if shear layer is not considered , the
elastic foundation becomes Winkler foundation, and
Ky (x) is the variable Winkler parameter depend only in X

direction, as shown in Fig. 2.

The variation of Winkler elastic foundation is found in
previous studies as follow (Pradhan and Murmu 2009,
Sobhy 2015, Nebab et al. 2019)

1+¢ x Linear
a

J.D. X : .
K (=-"120 1+ = Parabolic (8)
a a

1+ ¢ sin [n Ej Sinusoidal
a

where J1 isa constant and ¢ is a varied parameter. Where
that if ¢ is zero, the foundation becomes uniform Winkler
and if the rigidity of the shear layer is neglected, the
foundation of Pasternak becomes the Winkler foundation.

2.4 Kinematics and strains

Based on assumption higher shear deformation theory
for advanced composite plates is used to describe her field
displacement as follows:

M550 = U550 -2 20 4 K K]0k 0as

Ux 320 = v(x % 0) _Z%+/{Z f(Z)JH(th)dx ©)

wx 20 = %(xyt)+g(z)¢(x,y,t)

where, U;and V, are the mid-plane displacement of the

plate in the x and y directions,W,,6 and ¢ are the
bending , shear and stretching components of transverse
displacement, respectively. f(z) is a new shape function
determining the distribution of the transverse shear are

b c

Fig. 2 distributions types of Winkler elastic foundation
along the axial direction of the FG plate: (a) linear type,
(b) parabolic type and (c) sinusoidal type
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taken to satisfy the stress-free boundary conditions on the
top and bottom surfaces of the plate, as follows:

-3 (5o (5]
and (10)

0f(2)

42 = oz

The linear strain is definite by deriving from the
kinematic of Eq. (9), based the application of the linear,
small-strain elasticity theory, valid for thin, moderately
thick and thick plates under consideration are as expressed:

e| e K &
g, 1= g‘[ +z kf’ + A2k 4,
S VS T K,
0 (11)
}/}7 — g(Z) }/_/:JZ ,
74Q }/M
& =802¢ 0
where
ou, _'w
0 ox © x
£0 _ % 2l=1_ o*w
0 oy , b azy
Tou) |ou o | (K|, dw
oy  0x 0°x0%y
(12a)
K ko
©|= kp
@ 8 F
. klgvjedxug&jady
;/() 9
{ytf}— tel=e.
= Odx+—=
foas 20 (12b)
and
- %2
o0z

The undefined integral that is found in strains relation, it
can be simplified in format derivation by using Navier
techniques, rewritten as follows:

2 [odc= A o0
0y0x
ai [ody=B ;Zg ,
X
(13)
J.de 89 ,
Joci— 80,

where A’ and B’ coefficients are assumed according to
the technique of solution; in this case, the technique is used
Navier methods Consequently, A',B', k1 and k, are written
as follows:

A=-=, B=-—, k=d k=p (14)

2.4 Constitutive equations

The stress-strain relationships, which take into account
transverse shear and normal deformations, can be expressed
as follows:

o] [@ @ & 0 0 0]fe
o, &y @ & 0 0 0]fe
o . .. . O 0 O0]]e
0T Y e 0 ol 09
| [0 0 0 0 @, 0]y
t,) [0 0 0 0 0 @

where, (O'x 10y 073 Txy 1 Tyz 1 Txz ) and (gxx vy 1822 Vxy 1 Vyz 1 Iz )are the

stress and strain components, respectively. The constitutive
coefficients Q; may be expressed in terms of the
engineering isotropic characteristics as:

Q. =Q, =@ :w (16a)
un = (-2 (1)
_ B B v(l—v)E‘(Z)
G = Qy =@ = -2)(+v) (16b)
E(2)
Q=0 =0 = m (16¢)

2.4 Equations of motion

Hamilton’s principle is used to guide the equations that
govern and can be expressed by the following relation:

[6U+sU, - sK)dt =0 (17)
0

where ¢ indicates a variation, and U, Ugrand K represent the
strain energy of FG-plate, the strain energy of elastic
foundations and the kinetic energy, respectively.

The variation in kinetic energy based on higher-order
shear deformation theory can be expressed as follows:

SK = J'p(z)(ua‘u i nS W)V (182)

1, (uéu +L5V+W5u)

0 0 0 0
_ 00w, oW,
4, Ai
7 ox ox
o oow, ow,
i+
oy oy

(M)[_aba 00 )
oxX

1
(@B‘)[vo‘a;%g—‘gﬁ%]

o, [ 26205 77] 1 (18b)

oX ox oy 0y

ae asej (kB) [ae a&a)]
l 2 6}/ a)
8»1056‘ céuogj (kl?)
0X ox  ox @
('}u 65(9 el el
Ey oy oy 6}/]
+7, (@87, + W5p) + K, (9 69 )

n—
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where, the point-exponent convention indicates the
differentiation with respect to the time variable t, p(z) is the
density. Mass inertias is defined as:

h2

| Qg2),22)p(2dz

we (19)
| (12,7 £2), R27, L") p(Ddz

-h/2

(75:1,1,) =

071772

(/1 K, K ) =

The variation of the deformation energy of the plate
written by:

SO/ — J. o O+ o-y)ds_w +0o _Oc v
> +T‘w5}/‘w + Tﬂé‘yﬂ +7 Oy

NX(SSS + NJ ,58? +NV, 555 + N\;&g
=[| MoK MK 05K, + ISR
A +MIOK + M, Ok + R 0K + R 0K,

(20a)

(20b)

where,

N, N, N

X | hi2 1
ME Ml; ng I (o’x,cry,rxy){ 7 dz
M§ ME MB | 2 f(z)
’ @n
hl2
w2 -
- [0 ar (RoR)= [ Gordao
—hl2 —h/2

The variation of the deformation energy of the variable
elastic foundations indicated as

d'w, di
2 dyg

50;[ - J.(K“(X) %5146 - K [ jéw)dA (22)
A

By substituting the expressions for, 6K , U ,and Ue
from the Egs. (18), (20) and (21) in Eq. (17) and integrating
by parts and collecting the coefficients of (dUg, Vg, g,
o0 and dp), the following equations of advanced composite
plate motion are obtained as

ON. 6/\/ o
ouy - 6X+ 5 —[L -/ a—%
o Lox (23a)
.00
+J, kA —
lki 0x
ON ON_ o
Y% 6J+ ax}zjo.‘./o_[ aWO
v X v
. ' (23b)
kB2
oy
Fam o, da
R T oy L K
dw, d'w, B .
x >t = | =P
ax’ ay’
(23¢)

oi, oV,
+1 | —+—— [V‘
ox oy

+J, klA'aerk)B‘ag
oxX © 8y

o

A2 s

) ) , L O°M
801 —k M - kM - (kA + kD) X
” ‘ 0X0,

S s
e oRS kB oRS
-J [/(114 o, kB (23d)
3% N2 %0
-K [(kA) 7 (@B a;%]
o o
AT kB
+J[ aXZJrk 5 ]
S RS‘
L A (23¢)
o0x oy

Substituting Eq. (11) into Eq. (15) and integrating across
the thickness of the advanced composite plate, the stress
resultants are expressed as:

N | |A B Blle| |X

Mi=|B D D [{RL+{Y (&
vl e o el (24a)
S=Ay
N X(g +¢& )+Y(kf+kf’)
. 0 (24b)
+Y (k*+k*)+Z(s/)
where
N={N, N, NJ.aw={m m o),
2 ’ : . - (25a)
L
_ 0 0 0 ‘ _ ! *
e=fel & &), K=K K &)
, (25b)
K=k k &}
and
Au Au 0 Bll BIZ 0
A= Aﬁ Azz 0 B=|5, By, 01
0 0 A, 0 By
(26a)
Dll D]Z O
D= D21 Dzz 0
0 Dy,
Bi By O Dy Dy 0
B*=|By By 0| D°=|Dj By O
0 0 Bg 0 0 Dg
(26b)
Hi H 0
H® = H;1 H;z 0
0 0 H
Z 1
X hl2
Y zf/z/zQU f() 0@ (269
Ve g2
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s={R. R} r={r. 7

(& o (260
o

In addition, the stiffness components are given as
follows

A'll Bll Dll Bh DS Hfl
AlZ Blz DlZ de sz H;Z

A, B, Dy B, D, H,

66 66 66 66

(27a)
hl2 1
= [ QU272 12,22, z {dr
-l A2)
(AZZ ’ BZZ ’ D BZSZ ’ DjZ: [—[:S) ) (27b)
:(An’ By, Dy, B, Dy, ‘Hn)
42
Ay =4 = .[ &y K2 dz (27¢)
-h/2

2.5 Equations of motion via terms of displacements

Substituting Eq. (24) Into Eq. (23), the equations of
motion of the presented theory can be rewritten in terms of

displacements (Sug, Vg, g, 06 and Sp) as follows:
o o
A‘Jl ¥ 4, A(i(igv() +(A11 +A%)6X6yvo
2 3
_Bni K _(Bw +ZB )7 Wb
ox 0x0y” (28a)

+(B, (lgA+kB))T6+(B*k1+ k)

ai;
xane):[Ouo—[ Ny kA ?

1

2 2

4,5 5% w A, (4, +A,)

P) %
ox 0X0y
83 ( ) o’
=B, ——w, =B, + 2B, W,
22 : 0 12 0
oy’ 0x’0y (28b)
+(By (kA +k5’))%0+(3 K, + Bk
2 oy,
2 o=1i -1 +J, kB@
oy 1 3 oy
B, — u0+(312+23m)6 . (B, +28,)
83‘ 63 6u
6)(25)/ 0 2267}/‘;‘/0 1167)/‘{ 0
o o
_2(D12+ZDGG)5)<26)/2 %_Dzzg% (280)
62 62
KW + K| — W+ —
ox oy
s N ; ‘
( ?1’4@ + Dk )ga ( G)(k]A +/<B))

2 . . 0 S
X‘i'g"'(Dizkl +Dzzkz)§‘9:‘[u(p_[owo

X0y
0%
LA kA ZZ 28¢
+ll[%+%]—[2v2ﬁ6+./2 ' é)gzg (28¢)
+k,B —
oy
(- Bukl+Buk2) Uy~ (B (Ak, +B 'k, ))
A3 3
xJWuo—(Bgﬁ(A‘klﬁ-B‘kJ)(;%ayvc
(Blzk1+BZZk2) 2 <D11k1+D12k2)
4
x%wo+2(D§6(A‘lirB'kz))aX?Tw0

. sp ) 0 : ‘
+(D12k1+Dzzkz)ywo —H:k20-HLk26

o At 28d
23k 0-(HE (AK, +Bk,) )GXZ’TQ (28d)

. 0?
5 (A%, ) 50

AL (B, ) aiz

b 0 0°
_X13 g{_uo _Xza a/vo +Y13§% +Y23
2
<% yvko- mgze -4 (kB)
ayl 13 :
az
aﬁ
2

. 0
+A° o -
55} a 2

(28e)

s o s 0
= _9- A(/gA) ¢9+A44af

2@, =J W + K.p

3. Analytical solution

The Navier technique from analytic solution types is
purposed to solve a differential equation of problem for the
free vibration of advanced composite plates resting two-
parameter variables elastic foundations. The advanced
composite plates are considered to have simply supported
edge in all sides. The solution is assumed to be from a
series of Fourier as follows:

U cosla x)sin(B y) €

V. sinla x) cos(B y) €
W sinle x)sin(B ») & (29)
X sinla ©sin(g » &

mn

m=0n=0

S oF &~ &
1]

sin(a X sin(B 3 &

11]17

U; V; W; X and Y are arbitrary unknown parameters to

be determined and w is the natural frequency. \E =-11is
the imaginary unit.

The displacement functions are given in Eq. (23) satisfy
the kinematic boundary conditions of the simply supported
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plate, which are given below:

v= Wy:g:N\':Mx:Rx:(p:O

at x=0,a,
u=w=0=N =M =R =p=0 (30)
y V y
at y=0,h

By substituting the Eq. (29) for the equations of motion
(28), we obtain below the equation of the eigenvalue for
any fixed value of m and n, for a free vibration problem:

L, 12 rH L, rls Mn Mlz Mla Mm Mlﬁ U 0
2 1—23 rZ«l FZE ‘]WZZ jWZB JWZ\ [MZG V O
Ty Ty Ty-0 My My Mg |\e=10¢ (31)
sym. r, T, Sym. M, Mg|||X 0
T M|l | o
where
I, = _(Auaz + 16'82)’
r,= _aﬂ(Am +Aﬁﬁ)’
T, =aBa’+B,p* + 2B,
Ty = a(kB+ kB, - (kA + kB ) Bp°).
[y=aX,
r,= 7(A66a2 + Azzﬂz)’
r, = BB, B +B,a’+2B.a",
T, = B(kB,+ kB, - (kA + kB) Bya®),
[y =-BX,
Ty, =—(Dya' +2(D, + 2D, )a*F* + D, p") (322)
-K, -K,(a"+ %)
r, =-k (D;‘la2 + Dfﬁzﬁz) + 2(1{114' + kZB')Dg6
xa’f’ — k(D" + Dy’
S S ' y 2
Ty =~k (Hik + Hik )= (kA + kB
x Hyor'B* =k (H + Hi k)
N2 . N\ 2 L.
- (kA ) Ao’ - (kB ) A
o= kY5 + kY, + ' KAAL + Bk BA,
Iy = aZ/L:S + ﬂZAi + 2
My =—-lg, Myz=al;, My=-JikAd,
Mg ==lo, Mag=pl1, May=-JiksB A,
Mag=—lg—12(a+4%)
(32b)

Mas =3y (Akya? +B ko2,

M g4 :—Kz[(A'kl)zaz +(B'k2)2 ﬁzj

Msgs =Kg,M1p =M 15 =M o5 =M 45 =0

4. Numerical results

In this part of the research paper, the various present

Table 1 Material properties of the functionally graded plates

Properties
Material
E(GPa) v p(Kg/m?)

Aluminum (Al) 70 0.3 2702
Alumina (A1203) 380 0.3 3800
Zirconia (ZrO,) 200 0.3 5700
Ti-6Al-4V 105.7 0.2981 4429
aluminum oxide 320.24 0.26 3750

examples and validations are presented to verify the
accuracy of the current method studying free vibration of
the advanced composite plates resting on variables elastic
foundations. We should be indicated that this analytical
method is employed a quasi -3D shear deformation theory.
The materials propricties are assumed to be changes
through the thickness of plates following the Egs. (2), (4)
and (5) and are given in Table 1.
The used non-dimensional parameters are:

3 3
D - chz D - Emh
. -~ D, :
‘ 12(1—2%) 12(1—2%)
rh _ r r
J= w(azh)i v = wd’ |=, W= wh|-Z, V= uh|-<
E D. E E
m m C
kD.
K = SDI, I=mc
2

4.1 Validations

4.1.1 Example 1: Analysis of FGM plates

The functionally graded plates are made of AI/AI203
that has materials proprieties as shown in table (1). The
plates have(a/b=1), (a/b=2) and (h/a =10), (h/a =5) and (h/a
=2) and are used Eq. (6) to describe the variation of
materials properties. The comparison of non-dimensional
fundamental frequencies isgiven in the Table 2. The current
method is compared with the 3D exact solution provided by
Jin et al. (2014), the solution of Mantari (2015) where based
quasi-3D shear deformation theory and analytical solution
of Zaoui et al. (2019) based quasi-3D four variables higher
shear deformation theory. It can be seen that present results
are closure to preceding studies. It can be seen that, for a
given relation (b/a) and an index (p), as the side-to-
thickness ratio (a/h) decreases, the present results diverge
with those of the literature.

4.1.2 Example 2: Analysis of advanced composite
plates

The advanced composite plates are prepared from the
aluminum oxide and Ti—6Al-4V. The distributions of
material properties use Eq. (1) of the volume fraction and
Eq. (2) are used for the Voigt model and Eq. (3) of the
More-Tanaka model. The advanced composite square plate
has a=b =0.4 m and h = 5 mm. Table 3 presents the first
six dimensional natural frequencies (Hz) for the two cases,
i.e., volume fraction index p = 0 and 2000. The present
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Table 2 Comparison of non-dimensional frequencies ¥ Table 3 Continued
for P-FG plates

p Source fit fi=fa I fis=fa fi=fn Fu=fu
b/a ah p (Jinetal 2014) (Mantari2015) (Zaoui et al. 2019) Present (Mf’;e;el:(tjel) 2710842 677.1739 1082.6224 1352.5665 1756.9526 2295.1488
0 0.1135 0.1135 0.1137 0.11359 2000 Present
(Voigt 271.1141 677.2487 1082.7419 1352.7158 1757.1463 2295.4015
1 0.0870 0.0882 0.0883 0.08824 model)
10
2 0.0789 0.0806 0.0807 0.08059
5 0.0741 0.0755 0.0756 0.07562 Table 4 Comparison of the nor'l-dlmensmna.l natural
frequency parameters w/z of isotropic plates resting on an
0 0.4169 0.4169 0.4178 0.41779 . .
elastic foundation
1 0.3222 0.3261 0.3267 0.32670
1 5 h/a Kw Methods w11 @12 w2
2 0.2905 0.2962 0.2968 0.29677
Present 2.2439 5.1067 8.0721
5 0.2676 0.2722 0.2725 0.27249
(Zhang et al. 2015) 22260 5.0860  8.0478
0 1.8470 1.8510 1.8583 1.85830
100 (Zhou et al. 2004) 22413 5.0973  8.0527
1 1.4687 1.4778 1.483 1.48306 -
5 (Leissa 1973) 22420 5.1016  8.0639
2 1.3095 13223 1.3269 1.32688
B@i‘%ﬂ%’;‘h 22450 51643 8.1338
5 1.1450 1.1557 1.1576 1.15761 0.001 aradara
Present 3.0235 54941  8.3226
0 0.0719 0.0718 0.0719 0.07193
(Zhang et al. 2015) 3.0213 54832  8.2923
1 0.0550 0.0557 0.0558 0.05581
10 500 (Zhou et al. 2004) 3.0214 54850  8.3035
2 0.0499 0.0510 0.0511 0.05107
(Leissa 1973) 3.0221 54804 83146
5 0.0471 0.0479 0.048 0.04799 e
(Dehghan an 3.0242 55474 83821
0 0.2713 0.2713 0.2718 0.27180 Baradaran 2011)
| 02088 02115 02110 021189 Present 23966 4.8290  7.2368
2 5
Zh 201 23791 47912 1
2 0.1888 0.1926 0.193 0.19301 200 (Zhang et al. 2015) 37 ” 71637
Zh 2004 23951  4.8262 2
5 0.1754 0.1786 0.1788 0.17879 (Zhou et al. 2004) 39 826 72338
(Dehghan and
0 0.9570 13044 13086 130865 ol Baradaran 2011) 2.3903 48098 7.2186
) 0.7937 1.0348 10378 103785 Present 37047 55705  7.7376
2
5 0.7149 0.9296 0.9322 0.93224 o0 (Zhang et al. 2015) 37059 55510 7.7251
5 0.6168 0.8241 0.825 0.82499 (Zhou et al. 2004) 37008 55661  7.7335
(Dehghan and
Baradaran 2011) 3.6978 55521  7.7193

Table 3 Comparison of natural frequencies fi=w/2z for FG
plates with Mori-Tanaka’s mixture

Table 5 Non-dimensional fundamental frequencies w for

P Source Ju fmtu f2 sl fmfe Fusfa isotropic plates resting on elastic foundation (a/h=5)
(Bishop p
1969) 145.04 36261  580.18 72522  942.79 1233  (Akavei (Thaiand b et (Zaoui et al.
(He et . kw  kp  Frequencies 2014) Choi al. 2014) 2019) Present
2000) 144.66  360.53  569.89 72057  919.74  1225.72 2012) :
(Kitipornchai | v o 40000 ses87 71822 9164 1207.06 0 17.5149 17.4523 174537  17.5677  17.5332
et al. 2006) : : : : : :
(Parkand 0T T o030 1 - ~ 10 17.7859 17.7248  17.7257  17.8261  17.7919
Kim 2006)
(Shen and 10? 20.0603 20.0076  20.0084  19.9988  19.9677
0  Wang 14497 36213 57894 72329  939.53  1227.31 0
2012)(M=T) 10° 355261 355039 35.5044  34.8113  34.7905
(Shen and .
Wang 14497 36213 57894 72329  939.53  1227.31 10 45526 455255 45526  45.526  45.5260
2012)(Voigt )
Prosent (M 10° 45526  45.5255 45526 45526  45.5260
Twmodel) 1451143 3624875 5795042 7239849 9404112 12284323 - o
Prosont 0 222607 222145 222154 22.1062  22.0774
151\(1(()1153 145.1143  362.4875 579.5042 723.9849 940.4112 1228.4323 o DATAS 224086 224297 233111 229825
(]13;56h9(;p 27123 678.06 10849 13561 1763 2305.4 10 243133 242723 242731  24.0743  24.0473
10
(”;08‘1‘)‘1‘ 268.92 6694 105249 133852 169523  2280.95 10° 38.0839  38.065  38.0651  37.2488  37.2290
(I;igf"z'(‘]‘gg*;i 26146 65313 104431 130479 169498  2214.32 10* 45526 455255 45526 45.526  45.5260
2000 (Parkand o 0 cesi8 10954 1369.98 _ _ 10° 45526 455255 45526 45526  45.5260
Kim 2006) : : : ;
(Shen and 0 38.4722 38.1883  38.1966  38.6161  38.4856
Wang 27105 677.1  1082.53 135247  1756.87  2295.1 —_—
2012)(M-T) 10 0 @1 38.5929 383098 38.3184  38.7262  38.5959
(Shen and 2
Wang 2012)  271.06 677.12  1082.57  1352.52 175693  2295.19 10 39.662  39.3895  39.3975 39.702  39.5737

(Voigt )
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Table 5 Continued

kw  kp Frequencies (Akavei (Tl(];lioaind (Mantari et (Zaoui et al. Present
2014) 0100 @l 2014)  2019)
10° 470757 48.8772 48.8829 4828  48.1667
10° 0 71.9829 719829 719829  71.9829  71.9829
10° 71.983 719829 719829  71.9829  71.9829
0 44.0294 437943  43.8014  43.6871  43.5663
10 o1 44.1347 439009 43.9075 437831  43.6625
102 450711 44.8445 448509 44.6367 44.5175
10° 10 53.5296 53.358  53.363 523134  52.2062
10° 71.9829 719829 719829  71.9829  71.9829
10° 71.9829 719829 719829  71.9829  71.9829
0 66.1207 653135 653447 663436  66.0105
10 66.1899 653841 65415 664043  66.0713
102 66.8087 66.0138  66.0445  66.9471  66.6150
10° ’ 726997 720036 720298  72.0778  71.7543
10° 101.799 101799 1017992 101.7992 101.7992
10° 101.799 101799 1017992 101.7992 101.7992
0 o 726178 719198 719467  72.007  71.6834
0 726806 719839 720104  72.0613  71.7378
102 73243 725554 725812 725474 722248
10° 10 78.6389  78.029 780519  77.1736  76.8599
10* 101,799 101799 101.7992  101.799  101.7992
10° 101,799 101799 101.7992  101.799  101.7992
Table 6 Comparison of the non-dimensional natural
frequency {y parameters of P-FG plates resting on an
elastic foundation
(Kw,Kp) a/h p Theories
Bglfigf;rinet (ggss li:lr:;_ (%?X)C i (1\243 ?;z;ri Present
al. 2011) _et al. 2010)
0 - 002392 0.02393 0.02393  0.02395
0.25 - 002269  0.02309 0.02293  0.02314
2 1 - 002156  0.02202 0.02218  0.02219
5 - 0.0218  0.02244 00226  0.02262
0 - 0.09188  0.09203 0.09207  0.09213
0.25 - 0.08603  0.08895 0.08888  0.08916
00 10
1 - 0.08155  0.08489  0.0855  0.08533
5 - 0.08171  0.08576 0.08639  0.08645
0 - 032284 032471 032504 032498
0.25 - 031003 031531 031424 031594
’ 1 - 029399 030152 030354 030349
5 - 029099 03186  0.29987  0.30001
0 003421 003421 003422 0.03417 0.03419
025 003321  0.03285 003312 003296 0.03311
2 1 003249 003184 003213 00322  0.03221
(250,25)
5 003314 003235 003277 0.03283  0.03285
0 013365 0.13365  0.13375 0.13302  0.13307
0 025 0.13004 012771  0.12959  0.1288  0.12900

Table 6 Comparison of the non-dimensional natural
frequency fy parameters of P-FG plates resting on an
elastic foundation

(Kw,Kp) a/h p Theories

(Hasani  (Hosseini-
Baferani ez Hashemi
al. 2011) et al. 2010)

1 0.12749 0.12381 0.12585  0.12557  0.12635

(Akavei  (Mantari

2014)  2015)  Present

10
501295 012533  0.12778 0.12756  0.12761
0 043246 049945 050044 0.48949  0.48956
(250,25)
025 042868 048327 048594 047498 0.47545
5

1 0.46406 0.46997  0.47298  0.46405  0.46412

5 0.44824 0.474 0.47637  0.46836  0.46862

results are compared with previous results that are reported
in Table 3. The classical analytical solutions using on the
classical plate theory (CPT) of Bishop (1969), the linear
FEM results employing on the CPT of He et al. (2001), the
semi-numerical results based on the higher order shear
deformation plate theory (HSDT) of Kitipornchai et al.
(2006), and the nonlinear FEM results based on the first
shear deformation plate theory (FSDT) of Park and Kim
(2006), the solutions of Shen and Wang (2012) based on a
higher order shear deformation theory are listed of
comparison. It can be observed that current Voigt and Mori—
Tanaka models are similar for an isotropic plate (p = 0), but
there is a small difference in (p=2000). It is clear that the
results of the two models are almost similar to the studies of
Shen and Wang (2012) and those of Bishop (1969), but they
are further from the results given by Kitipornchai et al.
(2006), Park and Kim (2006) and He ef al. (2001).

4.1.3 Example 3: Analysis of homogenous plates
resting on elastic foundations

The homogenous isotropic plates are made by aluminum
(Al). The square plates have a/h=1000, 10 sides to thickness
ratio. The Winkler foundation parameters are defined as
Kw=KwDc/2ma*. In Table 4, the non-dimensional frequency
parameters of thin and moderately thick plates resting on an
elastic foundation are carried out with different values of
Winkler modulus. The results are reported in Table 4
together with the vibration solutions reported by Leissa
(1973), Zhou et al. (2004), Dehghan and Baradaran (2011)
and Zhang et al. (2015). It can be seen that the current
results are in agreement with the other results, with slight
differences, since the theories used in the methods of the
other works are not similar.

In another comparison, Table 5 shows the results of the
three non-dimensional natural frequencies of a square
homogenous thick plate on two-parameter elastic
foundation with side to thickness ratio (a/h=5). The current
results are compared with the shear deformation theory
given by Thai and Choi (2012) and a Higher shear
deformation theory proposed by Akavci (2014), quasi-3D
shear deformation theory presented by Zaoui et al. (2019)
and the results presented by Mantari et al. (2014). The
results are closer to the solutions obtained by Zaoui et al.
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Table 7 Comparison of the non-dimensional natural frequency parameters J of non-homogenous plates resting on an

elastic foundation

Mokhtar Nebab, Soumia Benguediab, Hassen Ait Atmane and Fabrice Bernard

= p=1 p=s p= p=10
ah  Kw Kp
Voigt M-T Voigt M-T Voigt M-T Voigt M-T Voigt M-T
0 5.7784 5.7784 8.2044 7.9947 9.5336 9.3443 9.8620 9.7037 10.0002 9.8591
0 10 71377 7.1377 9.2920 9.1075 10.5374 10.3665 10.8449 10.7012 10.9741 10.8458
100 14.4484 14.4484 16.0463 15.9407 17.0959 16.9914 17.3401 17.2508 17.4408 17.3605
0 5.8548 5.8548 8.2630 8.0548 9.5870 9.3987 9.9142 9.7567 10.0518 9.9115
0 90 10 71997 7.1997 9.3437 9.1603 10.5857 10.4156 10.8923 10.7492 11.0211 10.8934
100 14.4791 14.4791 16.0762 15.9709 17.1257 17.0213 17.3698 17.2806 17.4704 17.3903
0 65026 6.5026 8.7723 8.5765 10.0547 9.8754 10.3716 102212 10.5049 10.3707
100 10 7.7355 7.7355 9.7970 9.6222 11.0111 10.8477 11.3102 11.1725 11.4358 11.3128
100 147522 14.7522 16.3435 16.2399 17.3916 17.2888 17.6346 17.5468 17.7347 17.6558
0 5.9241 5.9241 8.4010 8.1908 9.7431 9.5470 10.0818 9.9167 10.2251 10.0777
O 10 7281 7.2811 9.4862 9.3007 10.7461 10.5686 11.0633 10.9131 11.1975 11.0630
100 14.6385 14.6385 16.2693 16.1620 17.3331 17.2237 17.5838 17.4897 17.6876 17.6029
0 6.0002 6.0002 8.4593 8.2507 9.7964 9.6013 10.1338 9.9695 10.2766 10.1299
20 10 10 73432 7.3432 9.5379 9.3534 10.7944 10.6178 11.1108 10.9612 11.2445 11.1106
100 14.6695 14.6695 16.2995 16.1924 17.3631 17.2539 17.6136 17.5198 17.7174 17.6329
0 6.6463 6.6463 8.9672 8.7707 10.2635 10.0775 10.5904 10.4334 10.7288 10.5884
100 10 7.8799 7.8799 9.9911 381.5676 11.2201 11.0502 11.5288 11.3847 11.6592 11.5301
100 14.9453 14.9453 16.5688 16.4634 17.6309 17.5234 17.8802 17.7878 17.9835 17.9002
21.00
alh=10,
(2019). It is clear that as the value of (K, and k) increases, w80y _ 100
the current solution and the results of other theories tend to mol | e
approach a similar value. A - Sinsoicel k=10

4.1.4 Example 4: Analysis of FG plates resting on
elastic foundations

The advanced composite plates are made by FGM of
Aluminum (Al) / Zirconia (ZrO2) and Egs. (6) are used to
describe the variation of materials proprieties. The square
plates has uniform thickness with different values (a/h=20,
10 and 5). In Table 6, dimensionless fundamental
frequencies of FGM plates resting on elastic foundations are
presented. The present results are compared with the first
shear deformation theory results by Hosseini-Hashemi et al.
(2010), and the higher shear deformation theory by Hasani
Baferani et al. (2011), the HSDT by Akavci (2014) and the
solution of Mantari (2015) based qausi-3D higher shear
theory. It can be seen that the results of the present theory
are closer to the pervious results reported in Table 6.

4.2 Parametric study

4.2.1 Example 1: comparison of two advanced
composite models plates resting on elastic foundations

In the second part, advanced composite plates made of
the aluminum oxide and Ti—6Al-4Vare used. Voigt model
and Mori-Tanaka model based on the volume fraction of
metal are used. The square plates are considered to be
resting two parameters Winkler (Kw)-Pasternak (Kp) with
different for Kw and Kp. It has two sides to thickness ratio
(a/h=10,20). In Table 7, non-dimensional natural frequency

2550

25.00 |

2450

24.00 |

2350

23.00 |

22.50

Fig. 3 Influence of the different types of elastic
foundation on non-dimensional frequencies V of
advanced square plates versus index power

parameters J of non-homogenous plates resting on a two-
parameter elastic foundation with various values of index
power (p=0,1,5,8 and 10), is presented. It can be seen that
the results for homogenous plates (p=0) are given identical
results, however for other differences are not significant.
The results of non-dimensional natural frequency between
Mori-Tanaka model and Voigt model converge for isotropic
plates with p=0 and p= co. In addition, the non-dimensional
frequency of the plate increase with increase of elastic
foundation effect.

4.2.2 Example 2: Analysis of advanced composite
plates resting on variables elastic foundations
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The second example, it is functionally graded plates
prepared from Al/Al,O3 where the Voigt model is used to
describe the material distribution according to the thickness
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Fig. 7 Influence of the different types of elastic
foundation on non-dimensional frequencies J of
advanced square plates
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Fig. 8 Influence of the different types of elastic
foundation on non-dimensional frequencies J of
advanced square plates
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direction. Figs. 3, 4 and 5, show the variation of non-
dimensional frequencies of advanced plates sitting on
different types (linear, parabolic, sinusoidal and uniform) of
elastic foundation with some parameters like index power
(p), side-to-thickness ratio (a/h) and side-to-length (a/b). In
Fig. 3, it can be seen that non-dimensional frequencies are
decreased with increased values of index material p. In
Figs. 4 and 5, non-dimensional frequencies are increased
with increased of (a/h) and (a/b) ratios. Fig. 6 shows the
influence of § coefficient with non-dimensional
frequencies of advanced square plates. It can be observed
that frequency increased with an increase of & coefficient.
The effect of Winkler (Kw) and Pasternak (Kp) parameters
on non-dimensional frequencies of advanced composite
square plates are presented in Figs. 7 and 8 respectively. It
is clear those current results are increased with an increase
in the parameter of the foundation. In all Figs. 3-8, we can
easily classify the effect types variables elastic foundation
from grated to down in this order uniform, parabolic, linear
and sinusoidal. It can be concluded that the present method
can predict the effect variables elastic foundation on
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21.50

21.00

26.50

26,00

2550

2500

24.50
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2350 L

Fig. 9 Comparison of non-dimensional frequencies V' of
advanced square plates on variable elastic foundations
versus a/h ratios

Table 8 Comparison of dimensional frequencies f~w/2p of
advanced square plates with different mass density versus
a/h ratios, (z=0.8, kw=100 and kp=10)

Material properties
p1=1500 kg/m*

Material properties
p2=3500 kg/m?

ah e~0 e'=0 e~0 e:'=0

4 1984.487465 1948.932440 1299.15200 1275.875777
6 1387.268698 1377.060008 908.1805453 901.4973889
8 1062.579939 1058.475291 695.6218581 692.9347351
10 859.3066164 857.3576419 562.5482309 561.2723271
15 579.4788533 579.0712392 379.3579584 379.0911125
20 436.4464187 436.3776090 285.7212500 285.6762034

30 291.8626891 291.9303145 191.0689808 191.1132522

Table 9 Comparison of dimensional frequencies f~w/2p of
advanced square plates with different young modulus
versus a/h ratios (z=0.8, kw=100 and kp=10)

Material properties

Material properties E=66 Gpa

E=150 Gpa

a/h =0 e:'=0 e~0 e:'=0

4 1958.5453 1923.4551 1299.1520 1275.8757
6 1369.1336 1359.0584 908.1805 901.4973
8 1048.6894 1044.6384 695.6218 692.9347
10 848.07336 846.1498 562.5482 561.2723
15 571.9036 571.5013 379.3579 379.09111
20 430.74099 430.6730 285.7212 285.6762
30 288.0473 288.1140 191.0689 191.1132

vibrational of advanced plates.

4.2.3 Example 3: effect of the normal deformation on
the plates resting on elastic foundations

In order to verify the effect of the normal deformation
along the z direction, we carried out a comparative study of
evolution of the frequency according to the power index of
FG plate resting variables elastic foundation (parabolic
variation type) with and without stretching effect for

different values of (a/h). The results of this parametric study
are presented in Fig. 9. It should be noted that for all the
values of p the effect of the deformation becomes
significant when the plate becomes thick.

It should be noted that the effect of the variation of the
density and the young modulus cannot be seen in Fig. 9; so
another purely theoretical study was done to show the effect
of density and Young modulus on the stretching effect.

To study the effect of the normal deformation according
to z with respect to the density we took two materials with a
constant young modulus of 66 Gpa the densities are pl=
1500 kg/m® and p2= 3500 kg/m?>. The results of this study
are grouped in Table 8.

Even with the change in density the rate of change in
frequency for thin plates is minimal, while for thick plates
this rate becomes more significant, since the difference
between the results of frequencies with and without
stretching effect is greater when the density is small.

To study the effect of the normal deformation along z
with respect to the Young E module, we took two materials
with a constant density of p= 3500 kg/m?, the young
modules are E1 = 150 Gpa and E2 = 66 Gpa. The results of
this study are grouped in Table 9.

Even with the change of the module of young the rate of
change of the frequency for the thin plates is almost zero,
while for the thick plates this rate becomes more significant,
since the difference between the results of the frequencies
with and without stretching effect is greater when the
module of young is large.

5. Conclusions

Free vibration of advanced composite plates resting
variables elastic foundations are investigated using new
quasi-3D higher shear deformation theory with success. The
present qausi-3D HSDT has only five unknowns without
needing shear corrector coefficient, which means it’s better
than others similar qausi-3D HSDTs found in literature.
Consequently, the present qausi-3D HSDT was allowed to
reduce time of calculates. The advanced composite plates
are supposed to resting on tow parameter elastic foundation
(Pasternak- Winkler). We supposed to have variation in
Winkler modulus, however Pasternak modulus are to be
constant. Hamilton principle are employed to derived the
equations motions for dynamics of advanced composite
plates resting variables elastic foundations. The effect
variables elastic foundation, power index, thickness-to-side,
length to side are present in part of numerical results.
Finally, it can be conclude that the present methods are
efficient to predict the effect of elastic foundation on
vibrational analysis of advanced composite plates. An
improvement of the current analytical formulation will be
considered in the future work to consider other type of
structures and materials (Hirwani et al. 2017c, Narwariya et
al. 2018, Ayat et al. 2018, Behera and Kumari 2018, Jamali
et al. 2019, Hussain et al. 2019, Alimirzaei et al. 2019,
Medani et al. 2019, Draiche et al. 2019, Al-Furjan et al.
2020, Khosravi et al. 2020, Bourada et al. 2020, Shariati et
al. 2020, Bousahla et al. 2020, Bellal et al. 2020, Asghar et
al. 2020, Mehar et al. 2020, Dewangan et al. 2020).
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