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1. Introduction 

 
In the last years, functionally graded materials (FGM) as 

a new class of composite materials has attracted the 

intention in different sectors like engineering, aerospace and 

other industries due to the numerous advantages offered and 

their benefits of possessing supreme mechanical properties 

(Kar and Panda 2015ab and 2016, Kolahchi et al. 2016, 

Mahapatra et al. 2017, Dash et al. 2019, Barati 2017, Kar 

and Panda 2020, Khiloun et al. 2020, Kaddari et al. 2020, 

Hussain et al. 2020a). Beams have been widely used in 

different important systems and devices.  Functionally 

graded materials (FGMs) are used in beam forms (Gul et al. 

2019, Tounsi et al. 2019, Ahmed et al. 2019, Gafour et al. 

2020, Al-Maliki et al. 2020, Rachedi et al. 2020). However, 

FG beams are often exposed to mechanical, thermal and 

electrical loads during their operational life. Therefore, 

considering mechanic and thermal behavior of FG beams 

under different configurations is very important. 

The behavior of FG structures subjected to mechanical 

and thermal loads with or without considering the 

interaction between structure–foundation have been studied 

by many researchers and numerous papers have been 

presented (Balubaid et al. 2019, Batou et al. 2019, Zine et 

al. 2020, Rabhi et al. 2020, Chikr et al. 2020, Refrafi et al.  
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2020, Tounsi et al. 2020, Rahmani et al. 2020).  

Fallah and Aghdam (2012) have used Euler-Bernoulli 

theory together with von Kármán’s assumptions to study the 

thermo-mechanical buckling and large amplitude free 

vibration analysis of FG beams on nonlinear elastic 

foundation. Wang and Wu (2016) used the classical beam 

theory (CBT) and the Timoshenko beam theory (TBT) to 

analyze the dynamic response of an axially functionally 

graded (AFG) beam under thermal environment and 

subjected to a moving harmonic load. Avcar and 

Mohammed (2018) examined the free vibration of FG 

beams resting on elastic foundation using the CBT. Yas et 

al. (2017) analyze the free vibration of FG beams on 

variable elastic foundation by using Euler-Bernoulli theory 

and by means of Generalized Differential Quadrature 

(GDQ) method. 

Nguyen et al. (2013) used the first-order shear 

deformation beam theory (FSDBT) for static and free 

vibration of axially loaded rectangular FG beams. Pradhan 

and Chakraverty (2013) presented an investigation for the 

free vibration analysis of FG beams subjected to different 

sets of boundary conditions. The analysis is based on the 

CBT and FSDBT. Sun et al. (2016) studied the 

thermomechanical buckling and post-buckling deformations 

of a FG Timoshenko beam on nonlinear elastic foundation 

and subjected to only a temperature rise. Esfahani et al. 

(2013) studied nonlinear thermal buckling of temperature 

dependent FG Timoshenko beams on non-linear hardening 

elastic foundations with general boundary conditions. 

Dynamic buckling and imperfection sensitivity of the FG 

Timoshenko beam resting over a conventional three-

parameter elastic foundation and subjected to sudden 
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uniform temperature rise has been studied by Ghiasian et al. 

(2015). 
Based on the third-order shear deformation beam theory 

(TSDBT), Trinh et al. (2016) presented an analytical 
method for vibration and buckling analysis for FG beams 
subjected to thermo-mechanical loads. In the same 
framework, Wattanasakulpong et al. (2011) employed an 
improved TSDBT to study the free vibration and the 
thermal buckling of the FG beams. Also, The TSDBT was 
used by Zahedinejad (2015) for the free vibration of FG 
beams with various boundary conditions resting on a two-
parameter elastic foundation in the thermal environment. 

Based on the high order shear deformation beam theory 

(HSDBT) and the concept of physical neutral surface, 

Zhang (2014) analyzed the thermal post-buckling and 

nonlinear vibration behaviors of FG beams with 

temperature dependent materials. Shen and Wang (2014) 

studied the nonlinear bending and thermal postbuckling of 

FG beams on elastic foundation in thermal environments 

using the HSDBT. They consider two kinds of 

micromechanics models, Voigt and Mori-Tanaka. Ebrahimi 

and Jafari (2018) proposed an analytical solution based on a 

four-variable shear deformation refined beam theory to 

study the thermo-mechanical vibration characteristics of 

porous FG beams subjected to several kinds of thermal 

loadings. Frikha et al. (2016) developed a new finite 

element for FG beams based on the HSDT. 

Mantari and Yarasca (2015) presented a quasi-3D hybrid 

theory with 4-unknown for the bending analysis of FG 

beam. Using a quasi 3D theory, Vo et al. (2015) presented a 

finite element model for free vibration and buckling 

analyses of FG sandwich beams. Karamanlı (2017) analyze 

the static behaviour of two-directional FG sandwich beams 

subjected to various sets of boundary conditions by using a 

quasi-3D shear deformation theory. Chen et al. (2019) used 

the 3D theory in conjunction with the isogeometric analysis 

(IGA) to investigate the vibration of the FG beams. Fahsi et 

al (2019) presented a refined quasi-3D shear deformation 

theory for bending, buckling, and free vibration analyses of 

a FG porous beam on an elastic foundation.  

Kumar and Devi (2017) investigate the thermoelastic 

FG beam in a modified couple stress theory subjected to a 

dual-phase-lag model. 

Tounsi and his co-workers have presented very 

interesting research on the behavior of FG beams using 

several beam theories (Chaabane et al. 2019, Bourada et al. 

2019 and 2020, Arioui et al. 2018, Kaci et al. 2018, Matouk 

et al. 2020, Bousahla et al. 2020).  

Most of the research cited above uses a rule of mixture 

called Voigt model to evaluate the effective material 

properties of FG element. A suitable micromechanical 

model should be applied to accurately estimate the effective 

multiphysical properties (Nemati et al. (2019)). 

Yahiaoui et al. (2018) have investigated the role of the 

micromechanical models on the bending, buckling and free 

vibration of FG sandwich beams on elastic foundation. 

They have used a refined quasi-3D solution. Mahmoudi et 

al. (2018) presented a 2D solution for free vibration of FG 

plate on elastic foundation. The influence of the several 

micromechanicals on the fundamental frequencies has been 

studied. In the same framework, Bachir Bouiadjra et al. 

(2018) studied the impact of the micromechanical models 

on the bending of FG plates using a refined 3D theory. 

Most of the research work in the literature studies plates, 

beams or FG elements on elastic foundations with constant 

moduli. However, those who deal FG structures resting on 

variable elastic foundation are really limited. We cite as an 

example the works of (Eisenberger and Clastornik 1987, 

Zhou 1993, Pradhan and Murmu 2009, Sobhy 2015, Attia et 

al. 2018, Al-Furjan et al. 2020, Shariati et al. 2020ab). 

According to authors’ best knowledge and the literature 

search there is no report investigating on the thermoelastic 

bending of FG beams resting on variable elastic foundation 

with consideration of the micromechanical models effect. 

Therefore, the aim of present study is to investigate the 

thermo-mechanical bending of temperature-dependent FG 

beams resting on variable elastic foundation using two 

different theories (2D and quasi-3D shear deformation 

theories). 

Undetermined integral terms are employed in the used 

displacement field in which the normal stresses effects are 

considered in the quasi-3D shear deformation theory and 

omitted in the 2D theory. The mechanical characteristics of 

the beams that vary through the thickness direction are 

evaluated using several micromechanical models. The 

effects of these models, the elastic foundation parameters 

and the thermo-mechanical loading on the response of FG 

beams will be analyzed and discussed through a detailed 

parametric study. 
 

 

2. Effective properties of FGMs 
 

2.1 Temperature-dependent materials 
 

FGMs are composite materials most often made of 

ceramic and metal. Since they are used in high temperature 

environments, the constituents of FGM may possess 

temperature-dependent properties (Reddy and Chin 1998). 

Therefore, the properties including Young’s modulus E, 

thermal expansion α and thermal conductivity k are 

assumed to be temperature-dependent and are expressed as 

function of temperature (Attia et al. 2018, Nemati and 

Mahmoodabadi 2019). 

 
(1) 

1 0 1 2, , ,P P P P and 3P are the coefficients of temperature T 

expressed in Kelvin and are unique to the constituent 

materials. T is rise temperature through the thickness 

direction. ( , )fP T z it is an effective property. In our case, it 

can be either metal or ceramic. The values of each of the 

coefficients appearing in the preceding equation are listed in 

Table 1. 
 

2.2 Micromechanical models 
 

Unlike traditional microstructures, in FGMs the material 
properties are spatially varying, which is not trivial for a 
micromechanics model (Jaesang and Addis 2014). 

A number of micromechanics models have been 
proposed for the determination of effective properties of 

 1 2 3
0 1 1 2 3( , ) ( ) 1 ( ) ( ) ( )fP T z P P T z P T z P T z P T z

    
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FGMs.  
In this work, various micromechanical models such the 

Voigt, Reuss, LRVE, Tamura, Mori-Tanaka and Halpin-Tsai 

models are used to determine the effective material 

properties of the FG beams. 
 

2.2.1 Voigt model  
The Voigt model is relatively simple; this model is 

frequently used in most FGM analyses estimates properties 

of FGMs as (Mishnaevsky 2007, Zimmerman 1994): 

 
(2) 

 

2.2.2 Reuss model 
Reuss assumed the stress uniformity through the 

material and obtained the effective properties as 

(Mishnaevsky 2007, Zimmerman 1994): 

 
(3) 

 

2.2.3 Tamura model 
The Tamura model uses actually a linear rule of 

mixtures, introducing one empirical fitting parameter 

known as “stress-to-strain transfer” (Gasik 1995, Zuiker 

1995) 

 
(4) 

Estimate for q=0 correspond to Reuss rule and with

q to the Voigt rule, being invariant to the 

consideration of with phase is matrix and which is 

particulate. The effective property is found as: 

 
(5) 

 

2.2.4 Description by a representative volume element 
(LRVE) 

The LRVE is developed based on the assumption that 

the microstructure of the heterogeneous material is known. 

The input for the LRVE for the deterministic 

micromechanical framework is usually volume average or 

ensemble average of the descriptors of the microstructures. 

The effective property is expressed as follows by the LRVE 

method (Akbarzadeh et al. 2015): 

  

(6) 

 

2.2.5 Mori-Tanaka model 
According to Mori–Tanaka homogenization scheme, the 

effective Bulk Modulus (K) and the effective shear modulus 

(G) are given by Mori and Tanaka (1973): 

 

(7a) 

where     

 

(7b) 

 

2.2.6 Halpin-Tsai (H-T) model 
The Halpin-Tsai model is a mathematical scheme for 

prediction of composite materials’ elasticity based on the 

geometry of inclusions and the elastic properties of both 

matrix and inclusions (Halpin 1969, Nemati and 

Mahmoodabadi 2019). The estimate of Young’s modulus by 

this model is given by:      

 

(8a) 

where      

 

(8b) 

and “s” is the aspect ratio of inclusions or particles (s = 1 

for solid spheres). 

In all models outlined above, the subscripts c and m 

refer to the ceramic and metal respectively and ( , )P T z it’s 

a property that can be, Young’s modulus E, thermal 

expansion α or thermal conductivity k of the FG beams. 

The volume fractions of the ceramic and metal phases are 

related by 1C mV V   , and CV  is expressed as: 

  

(9) 

 

 

3. Theoretical developments 
 

Consider a FG beam of thickness h and length L as 

shown by the Fig. 1. The beam is assumed to rest on a 

Winkler-Pasternak elastic foundation. The mechanical 

characteristics of the beam are assumed to be varied across 

the thickness.  
 

3.1 Kinematics 
 

The displacement field of the conventional HSDT is 

given by: 
 

 

 

Fig. 1 Coordinate system and geometry for FG beams on 

elastic foundation 
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(10) 

 “n” is a coefficient that equal 

0 2

1 3

n for D

n for D




  

0 0, , ,x xu w   are the four unknown displacement of the 

mid-plane of the beam. By considering that x ( x )dx  
and and taking into account the stretching effect, we will 

have 

 

(11a) 

where 

 
(11b) 

The new shape function ( )f z  is given as follows: 

 
(12a) 

and 

 

(12b) 

The kinematic relations can be obtained as follows: 

  , 

 ,  

(13a) 

where 

,  , 

(13b) 

,  
(13c) 

The integrals used in the above equations shall be 

resolved by a Navier type method and can be given as 

follows:  

 

where the coefficient 'A is expressed according to the type 

of solution used, in this case via Navier. Therefore, 'A and 

1k  are expressed as follows:  

, ,
 

(14) 

3.2 Constitutive relations 

 

The linear constitutive relations of a FG beam can be 

expressed as 

 

(15) 

The Cij(i,j=1,3,5.) expressions in terms of engineering 

constants are depends on the normal strain εz  

- If the 2D shear deformation is used, the εz=0 , then Cij 

are:  

 

(16a) 

 

(16b) 

 

(16c) 

- If the 3D shear deformation is used, the εz≠0, then Cij 

are:  

 

(17a) 

 

(17b) 

 

(17c) 

The beam is assumed to rest on two-parameter elastic 

foundation model, which consists of closely spaced springs 

interconnected through a shear layer made of 

incompressible vertical elements, which deform only by 

transverse shear. The response equation of this foundation is 

given: 

 
(18) 

where R is the density of the reaction force of elastic 

foundation, K  is Winkler parameter depended on x only. 

It is assumed to be linear, parabolic or sinusoidal (Sobhy 

2015, Attia et al. 2018, Pradhan and Murmu 2009): 

 

(19) 
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operator in x and y, and w is the deflection of the beam. 

Note that, if ξ=0, the elastic foundation becomes Pasternak 

foundation and if the shear layer foundation stiffness is 

neglected, the Pasternak foundation becomes the Winkler 

foundation. 

 

3.3 Equations of motion 
 

The principle of virtual work is here in utilized to 

determine the equations of motion.  

The variation of strain energy of the plate is calculated 

by (Draiche et al. 2019, Abualnour et al. 2019, Sahla et al. 

2019, Berghouti et al. 2019, Zarga et al. 2019, Salah et al. 

2019): 

 

(20) 

where A is the surface; and stress resultants N, M, Q, and S 

are defined by 

 

(21a) 

 

(21b) 

The variation of potential energy of the applied loads 

can be expressed as 

 
(22) 

The variation of potential energy of the foundation can 

be expressed as 

 
(23) 

Substituting the expressions of δU, δV and δUR : 

 

(24) 

Integrating by parts, and collecting the coefficients of 

δu0, δv0, δw0, and δθ, and the following equations of motion 

of the plate are obtained: 

 

(25) 

The stress resultants are obtained as: 

,
 

(26a) 

 

 

(26b) 

where  

 (27a) 

 

(27b) 

 

(27c) 

 
(27d) 

 

(27e) 

The equations of motion can be expressed in terms of 

displacements (δu0, δw0, δθ) as: 

 

 

 

(28) 

 

3.4 Temperature field  
 

The nonlinear temperature rise across the thickness of 

the plate is determined by solving the one-dimensional heat 

conduction equation. The one dimensional steady-state heat 

conduction equation in the z-direction is given by:  

 
(29) 

0 0

0 1

[

] 0

b b

x x z z x x

A

s s

x x xz xz xz xz

U N N M k

M k Q S dA

   

  

  

   



/2

/2

1

( )  

( )

x h

b
x x

s h
x

N

M z dz

f zM





   
   

   
   

  



/2

/2

 g'(z) 

h

z z

h

N dz



 
/2

/2

( ) ( ) g(z) 

h

xz xz

h

S dz



 
/2

/2

( ) ( ) '( ) 

h

s
xz xz

h

Q f z dz



 

0( ( ) ( ) ( ))
A

V q w x g z x dA    

0( ( ) ( ) ( ))R

A

U R w x g z x dA   

0 0

0 1

0

0

[

]  ( )

( ) 0

b b s s

R x x z z x x x x

A

xz xz xz xz

A A

A A

U V U N N M k M k

Q S dA q w dA qg z dA

R w dA Rg z dA

      

   

 

     

   

  



 

 

0

2

0 2

1 1

:   0

:  0

:   N ' + ( ) ( ) 0

x

b

x

s xz xz
z x

N
u

x

M
w q R

x

Q S
k M k A qg z Rg z

x x













  



 
     

 

0

0 

s
x

b s b a z
x x

s s s s s
x x

N A B B L

M B D D k L

RM B D H k





      
       

       
      
         

0

1

s s

s s

Q F X

S X A





      
     
       

0 0( ) ( ) ( )a a b s
z z x x xN R L L k R k    

   ,  xz xzS S Q Q 

/2

/2

'( )
( )

'( )

ii
ha

ii

ii
h

a
ij

L C

C zL
g z dz

C f zR

C g zR


   
   
   

   
   
   

  



 
/2

2 2

/2

1, , , ( ), ( ), ( )

s s s

h

ii

h

A B D B D H

C z z f z zf z f z dz





 
 

44 44 44 , ,s s s s s sF F A A X X  

44 44 44

/2

/2

( , , )

( , )
(  [ '? ), '( ) ( ), ? )]) 
2(1 )

s s s

h

h

F X A

E z T
f z f z g z g z dz

v






2 3
0 0

0 12 3
: ( ) 0su w

u A B B k L
xx x




  
   

 

3 4 2
0 0

0 11 13 4 2
: ( ) 0s au w

w B D D k L q R
x x x




  
     

  

2
20 0

1 11 1 11 1 11 12

2 2
2 2

1 44 1 44 44 1 442 2

: ( ) +( ) ( 2 )

( ' ' ) ( ' )

( ) ( ) 0

s a s s a

s s s s

u w
L k B L k D k H k R R

x x

k A F k A X A k A X
x x

qg z Rg z

 

 

 
     

 

 
   

 

  

( ) 0
d dT

k z
dz dz

 
  

 

365



 

Mostafa Merzoug et al. 

With the boundary condition T(h/2) = Tt and 

T(−h/2)=Tb=T0. Here a stress-free state is assumed to exist 

at T0=300 K. The analytical solution of Eq: 

 

(30) 

In the case of power-law FG plate, the solution of Eq. 

(29) also can be expressed by means of a polynomial series:  

 

(31a) 

with  

 

(31b) 

where ktb=kt−kb, with kt and kb are the thermal conductivity 

of the top and bottom faces of the plate, respectively. 

 

 

4. Exact solution for simply supported FG Plate 
 

Beams are generally classified according to the type of 

support used. This paper is concerned with the exact 

solutions of Eq. (28) for a simply supported FG beam. 

The following boundary conditions are imposed at the 

edges: 

 

(32) 

Following the Navier solution procedure, the authors 

assume the following solution from for u0, w0, and θ that 

satisfies the boundary conditions given in: 

 

(33) 

where mnU , mnW  and mnX and are arbitrary parameters 

to be determined and α are defined as: 

 (34) 

The transverse load q is also expanded in the double-

Fourier sine series as 

 (35) 

The analytical solutions can be obtained from: 

 

(36) 

in which: 

 

 

 

(37) 

 

 

5. Numerical results and discussion 
 

In this section, thermal bending response of FG beam 

resting on variable elastic foundation is analyzed based on 

2D and quasi 3D computational models. The FG beam is 

subjected to thermo-mechanical loading. 

As discussed before, and in the absence of previous 

works that addresses the same thematic, the results of the 

present models have not been validated against data in the 

literature. 

The mechanical characteristics of metal and ceramics 

used in the FG beam are listed in Table 1. 

For convenience, the following expressions to compute 

the non-dimensional central deflection, stresses and 

foundation parameters were used: 

  

 

 

 

Table 1 Material properties used in the FG plate 

 P0 P−1 P1 P2 P3 

ZrO2 (Ceramic) 

E 244.27 e+9 0 -1.371 e–3 1.214 e–6 –3.681e–10 

α 12.766 e-6 0 -1.491 e–3 1.006 e–5 –6.778e–11 

k 1.7 0 0 0 0 


 

0.3 0 0 0 0 

Ti–4V–6Al (Metal) 

E 122.56e+9 0 -4.586e-4 0 0 

α 7.5788e–6 0 6.638e–4 –3.147e–6 0 

k 1 0 0 0 0 


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Unless otherwise specified the Voigt model is used in 

the different calculations. 

In Table 2, the central deflection wagainst length-to-

thickness ratio (L/h) computed with the present 2D and  

 

 

 

 

quasi-3D models are presented for different values of the 

power law index “p”. 

It can be seen from this figure that the central deflection 

increases with the increase of the power-law index. It is due  

Table 2  The central deflection  versus length-to-thickness ratios of FG beam without elastic foundations (ΔT =300) 

L/h Theory 
p 

0 1 2 5 10 

5 
Present 2D (εz=0) 2.1224 2.6324 2.7588 2.8862 2.9815 

Present  quasi-3D (εz≠ 0) 2.0912 2.5934 2.7206 2.8501 2.9441 

10 
Present 2D  (εz=0) 7.8420 9.7355 10.1724 10.6108 10.9698 

Present  quasi-3D (εz≠ 0) 7.7996 9.6843 10.1230 10.5688 10.9277 

20 
Present 2D  (εz=0) 30.7198 38.1468 39.8259 41.5075 42.9218 

Present  quasi-3D (εz≠ 0) 30.6525 38.0749 39.7514 41.4568 42.8775 

30 
Present 2D  (εz=0) 68.8493 85.4988 89.2482 93.0021 96.1751 

Present  quasi-3D (εz≠ 0) 68.7443 85.3979 89.1358 92.9393 96.1300 

50 
Present 2D  (εz=0) 190.8638 237.0252 247.3997 257.7845 266.5855 

Present  quasi-3D (εz≠ 0) 190.6396 236.8335 247.1674 257.6844 266.5393 

Table 3  The transverse shear stress versus length-to-thickness ratios (L/h) of FG beam without elastic foundations 

(ΔT =300) 

L/h Theory 
p 

0 1 2 5 10 

5 
Present 2D  (εz=0) 0.4746 0.4775 0.4693 0.4634 0.4694 

Present  quasi-3D (εz≠ 0) 0.5095 0.5165 0.4968 0.4809 0.4899 

10 
Present 2D  (εz=0) 0.4751 0.4780 0.4698 0.4639 0.4699 

Present  quasi-3D (εz≠ 0) 0.5635 0.5740 0.5448 0.5214 0.5329 

20 
Present 2D  (εz=0) 0.4752 0.4781 0.4699 0.4640 0.4700 

Present  quasi-3D (εz≠ 0) 0.5886 0.6009 0.5669 0.5397 0.5524 

30 
Present 2D  (εz=0) 0.4753 0.4781 0.4700 0.4641 0.4700 

Present  quasi-3D (εz≠ 0) 0.5943 0.6070 0.5718 0.5438 0.5566 

50 
Present 2D  (εz=0) 0.4753 0.4781 0.4700 0.4641 0.4700 

Present  quasi-3D (εz≠ 0) 0.5973 0.6103 0.5744 0.5459 0.5590 

Table 4 The normal stress  versus length-to-thickness ratios (L/h) of FG beam without elastic foundations (ΔT =300) 

L/h Theory 
p 

0 1 2 5 10 

5 
Present 2D  (εz=0) 5.7331 6.6152 6.8754 7.2884 7.6676 

Present  quasi-3D (εz≠ 0) 5.7495 6.6365 6.8948 7.3058 7.6862 

10 
Present 2D  (εz=0) 5.6571 6.5215 6.7749 7.1820 7.5598 

Present  quasi-3D (εz≠ 0) 5.6643 6.5308 6.7835 7.1896 7.5679 

20 
Present 2D  (εz=0) 5.6380 6.4980 6.7498 7.1553 7.5328 

Present  quasi-3D (εz≠ 0) 5.6402 6.5008 6.7523 7.1576 7.5352 

30 
Present 2D  (εz=0) 5.6345 6.4937 6.7451 7.1504 7.5278 

Present  quasi-3D (εz≠ 0) 5.6355 6.4950 6.7463 7.1515 7.5289 

50 
Present 2D  (εz=0) 5.6327 6.4914 6.7427 7.1479 7.5252 

Present  quasi-3D (εz≠ 0) 5.6331 6.4919 6.7432 7.1483 7.5256 

w

xz

xx
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Fig. 2 The deflection  of FG beam versus length-to-thickness ratios (L/h) for different micromechanical models (a) 

beam without elastic foundation and (b) beam on elastic foundation 

 
Fig. 3 Relative percentage difference of deflection  between micromechanical models versus power law index p 

(L/h=10, ΔT=300) 

Table 5 The deflection  of FG beam with or elastic foundations (ΔT=300, p=1, ξ=0)   

  

Theory 
L/h 

5 10 20 30 50 

0 0 
Present 2D  (εz=0) 2.6324 9.7355 38.1468 85.4988 237.0252 

Present  quasi-3D (εz≠ 0) 2.5934 9.6843 38.0749 85.3979 236.8335 

1000 0 
Present 2D  (εz=0) 1.2823 4.9330 19.5257 43.8458 121.6699 

Present  quasi-3D (εz≠ 0) 1.2835 4.9315 19.5191 43.8316 121.6318 

1000 1000 
Present 2D  (εz=0) 0.2115 0.8406 3.3562 7.5489 20.9655 

Present  quasi-3D (εz≠ 0) 0.2145 0.8439 3.3596 7.5521 20.9680 

Table 6 The transverse shear stress  in FG beam with or without elastic foundation, (ΔT=300, p=1, ξ=0)   

  

Theory 
L/h 

5 10 20 30 50 

0 0 
Present 2D  (εz=0) 0.4775 0.4780 0.4781 0.4781 0.4781 

Present  quasi-3D (εz≠ 0) 0.5165 0.5740 0.6009 0.6070 0.6103 

1000 0 
Present 2D  (εz=0) 0.2326 0.2422 0.2447 0.2452 0.2454 

Present  quasi-3D (εz≠ 0) 0.2557 0.2923 0.3081 0.3116 0.3134 

1000 1000 
Present 2D  (εz=0) 0.0384 0.0413 0.0421 0.0422 0.0423 

Present  quasi-3D (εz≠ 0) 0.0427 0.0500 0.0530 0.0537 0.0540 

w
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to the fact that a higher value of (p) corresponds to lower 

value of volume fraction of the ceramic phase, and thus 

makes the beam become the softer ones. 

Another remark is noted, when the ratio L/h increases, 

the results of the 2D and quasi-3D models come closer and 

this whatever the value of the power index p. This can be 

explained by the fact that, when the L/h ratio increases the 

beam becomes thin and the stretching effect taken into 

account in the quasi-3D model will have no impact. 

In Tables 3 and 4 we present respectively shear stress 

xz and normal stress xx  versus length-to-thickness 

ratios of FG beam without elastic foundations for different 

values of the power law index “p”.  

From Table 3, it can be seen that the shear stress 

calculated by the 2D model is very little influenced by the 

increase of “p” and “L/h”. Indeed, the increase in the power 

index “p” leads to a very slight decrease of this stress and 

the increase in the “L/h” ratio to a slight increase that 

quickly becomes constant when the beam becomes thin. For 

the results obtained by the quasi-3D model, the same 

observation is noticed for the variation of the power index 

“p”. As for the “L/ h” ratio, the increase in the stresses is 

slightly greater than that of the 2D model. 

In general, it can be said that this stresses is insensitive to 

the variation of the two parameters “p” and “L/h”. 

The results of axial stresses reported in Table 4 reveal an 

increase in these stresses with the increase of the index “p” 

and a decrease with the increase in the “L/h” ratio for both 

2D and quasi-3D models. Moreover, both models give the 

same results with the increase of the L/h ratio (beam 

becomes thin). 

Fig. 2 shows the effect of the different micromechanical 

models on the deflections calculated from the quasi-3D 

model for two cases of beam with and without elastic 

foundation. 

From this figure it is clear that all the micromechanical 

models give practically the same result. Moreover, as can be 

seen from this figure, the displacements increase rapidly 

with the increase of the “L/h” ratio and that the presence of 

the elastic foundation allows to reduce the displacements by 

more than 50%. 

Relative Percentage difference of deflection between 

micromechanical models versus power law index p is 

shown in Fig. 3. The discrepancy between the estimated  

 

 
Fig. 5 The deflection  of FGM plate (p=1) against the 

side-to-thickness ratio L/h under thermomechanical load 

ΔT=300 for different values of the sinusoidal parameter ξ 

(j1=1000, j2=0) 
 

 

deflection of FG beams by the Voigt, Reuss and other 
micromechanical models is little influenced by the power 
law index “p”. 

According to this figure, all models give practically the 
same result. The difference in results between the micro-
mechanical models reaches a maximum of 2% between the 
Voigt and Reuss models for a value of the power index less 
than 1. Then this difference decreases rapidly with the 
increase of “p”. 

In general, we can say that the difference between the 

different micro-mechanical models is minimal and can 

therefore be neglected. 

Another example is to analyze the effect of the elastic 

foundation on the deflection and stresses of FG beams. 

Tables 5 and 6 present respectively the deflection w and 

transverse shear stress xz  of FG beams with and without 

elastic foundation for different values of the side-to-

thickness ratio a/h. The results are presented for both 2D 

and quasi-3D models.   

As can be seen, the presence of an elastic foundation 

with one or two parameters strongly influences the response 

of the FG beam. In fact, taking into account an elastic 

foundation, especially the two-parameter one (Pasternak’s 

model) increases the rigidity of the beam and consequently 

leads to a significant reduction of displacements and 

stresses.  
Fig. 4(a) and 4(b) compare the deflection of a simply 

w

  
Fig. 4 The deflection  of FG beam (p=1, ξ=20 ) versus to the side- to- thickness ratio L/h under (a) mechanical load and 

(b) thermomechanical load ΔT=300 for various types of Winkler parameter j1=1000, j2=0  

w
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supported beam subjected to mechanical and thermo-
mechanical load respectively for three different types of 
elastic foundations.  It can be seen from this figure that the 
deflection strongly depends on the type of foundation. Also, 
beam under thermo-mechanical load gives deflections 
slightly higher compared to the mechanical load and this 
whatever the type of elastic foundation. 

Fig. 5 depicts the variation of the deflection of simply 
supported beam under thermo-mechanical load and resting 
on elastic foundation with different values of parabolic 
parameter. It is clear from this figure that the deflection is 
strongly influenced by this parameter. Its increase leads to a 
reduction in deflections. This can be explained by the fact 
that the increase in this parameter makes the foundation 
more rigid and consequently it prevents the beam from 
deforming. 
 
 

6. Conclusions 
 

The present work is focused on thermomechanical 
bending of FG beams in thermal environment and resting 
on variable elastic foundation by using 2D and quasi-3D 
HSDT. Various micromechanical models have been 
employed to obtain the effective material properties of the 
FG beams which vary across thickness direction and they 
are considered to be temperature-dependent. The equations 
of motion are obtained through the Hamilton’s principle. 
These equations are solved by employing Navier’s 
procedure. A parametric study has been carried out to 
highlight the effect the side-to-thickness ratio, the parabolic 
parameter and the micromechanical models on the 
deflection and stress of beam under thermomechanical 
loading and resting on variable elastic foundation. 

The present model can be used as a reference to check 

the efficiency of approximate numerical methods. The 

extension of this study is also envisaged by considering 

other types of materials and other models with shear 

deformation effect. Other works can be carried out in future 

by considering other types of materials and other models 

with shear deformation effect (Kar et al. 2015, Mahapatra et 

al. 2016, Mehar and Panda 2017a,b,c, 2018a,b,c and 2019, 

Panjehpour et al. 2018, Othman and Fekry 2018, Behera 

and Kumari 2018, Mehar et al. 2018a, b, Mehar et al. 2019, 

Alimirzaei et al. 2019, Gupta and Anandkumar 2019, 

Karami et al. 2019a,b,c, Bedia et al. 2019, Semmah et al. 

2019, Draoui et al. 2019, Boutaleb et al. 2019, Shadravan et 

al. 2019, Medani et al. 2019, Selmi 2019, Timesli 2020, 

Bellal et al. 2020, Mehar and Panda 2020, Kim et al. 2020, 
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