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1. Introduction 
 

During the last decades a great number of 3D slope 

stability analysis methods has been proposed, either limit 

equilibrium (Anagnosti 1969, Chen and Chameau 1983, 

Chen et al. 2003, Cheng and Yip 2007, Gens et al. 1988, 

Hovland 1979 Huang et al. 2002, Hungr 1987, Hungr et al. 

1989, Leshchinsky et al. 1985, Leshchinsky and Huang 

1992, Sun et al. 2012, Ugai 1988, Xing 1988, Yamagami 

and Jiang 1997, Zhou and Cheng 2013) or limit analysis 

ones (Ganjian et al. 2010, Gao et al. 2013, Michalowski 

2010 Michalowski and Drescher 2009, Michalowski and 

Tabetha 2011, Nadukuru et al. 2011, Pan et al. 2017). In 

addition, Liu et al. (2017) proposed a three-dimensional 

slope stability analysis method using independent cover 

based numerical manifold and vector method, whilst 

Yamaguchi et al. (2018) a three-dimensional simplified 

slope stability analysis based on the hybrid-type penalty 

method. Zhang et al. (2013b) studied the effects of complex 

geometries on three-dimensional (3D) slope stability using 

an elastoplastic finite difference method (FDM) with a 

strength reduction technique, Jeldes et al. (2015) offered an 

approximate solution to the Sokolovskiĭ concave slope at  
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limiting equilibrium, whilst Zhang et al. (2013a) proposed 

an analytical method to evaluate the effect of a turning 

corner on 3D slope stability. Zhang et al. (2017), in turn, 

offered a 3D stability analysis method of concave slope 

based on the Bishop method. Yang and Xu (2017) 

investigated the influence of strength inhomogeneity on the 

seismic and static 3D stability of a two-stage slope based on 

limit analysis. Xu et al. (2018), Gao et al. (2014), Lim et al. 

(2016) and Sun et al. (2017) offered 3D slope stability 

charts for nonhomogeneous and anisotropic soils, four 

different types of drawdown processes, frictional fill 

materials over purely cohesive clay and convex and 

concave slopes in plan-view consisting of homogeneous 

soil respectively. Sun et al. (2019) used a modified strength 

reduction finite element method to propose stability charts 

for pseudostatic stability analysis of three-dimensional (3D) 

homogeneous soil slopes subjected to seismic excitation. 

Xu and Yang (2018) offered three-dimensional stability 

analysis of slope in unsaturated soils considering strength 

nonlinearity under water drawdown. Furthermore, Gao et 

al. (2016) suggested a 3D rock slope stability limit analysis 

method using non-linear failure criterion, while Yang 

(2017) studied the effect of pore-water pressure on 3D 

stability of rock slopes. Lin et al. (2020) investigated the 

effect of the dilatancy angle on slope stability using the 3D 

finite element method strength reduction technique. Review 

of the various three-dimensional limit equilibrium slope 

stability methods is out of the scope of the present paper; 

besides, the vast majority of the above mentioned works 

have already been reviewed by Kalatehjari and Ali (2013) 
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Abstract.  This paper investigates the effect of the width of failure and tension crack (TC) on the stability of cohesive-frictional 

soil slopes in three dimensions. Working analytically, the slip surface and the tension crack are considered to have spheroid and 

cylindrical shape respectively, although the case of tension crack having planar, vertical surface is also discussed; the latter was 

found to return higher safety factor values. Because at the initiation of a purely rotational slide along a spheroid surface no shear 

forces develop inside the failure mass, the rigid body concept is conveniently used; in this respect, the validity of the rigid body 

concept is discussed, whilst it is supported by comparison examples. Stability tables are given for fully drained and fully 

saturated slopes without TC, with non-filled TC as well as with fully-filled TC. Among the main findings is that, the width of 

failure corresponding to the minimum safety factor value is not always infinite, but it is affected by the triggering factor for 

failure (e.g., water acting as pore pressures and/or as hydrostatic force in the TC). More specifically, it was found that, when a 

slope is near its limit equilibrium and under the influence of a triggering factor, the minimum safety factor value corresponds to 
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and Chakraborty and Goswami (2016). 

Application of the various 3D slope stability methods 

(e.g., Chen and Chameau 1983, Morimasa and Miura 2008, 

Michalowski and Drescher 2009), generally, refer to fully 

drained slopes without the influence of tension crack and 

indicates that a 3D analysis is always less conservative 

compared to the respective 2D analysis. Very recently, 

Wang et al. (2019) studied the influence of tension crack in 

the stability of slopes in three-dimensions. More 

specifically, they developed an upper bound limit analysis 

solution to evaluate the 3D stability of unsaturated soil 

slopes with tension crack under steady infiltration 

conditions. They concluded that, the effect of crack on slope 

stability generally decreases with reducing the inclination 

angle and increases with increasing the width constraint 

B/H (B and H are the width of the landslide measured on the 

slope face and the slope height respectively). The stability 

of slopes can also be evaluated with the finite element (FE) 

method. However, the later has the major disadvantage that 

the FE mesh cannot break to form crack were tension exists. 

As known, depending on the case, the safety factor of a 

slope in a 2D analysis can be by 20% lower when the effect 

of tension crack is considered (see Baker 1981); this 

statement has been validated by the first author working 

with the 2D closed-form solution proposed by Pantelidis 

and Griffiths (2013b). 

In the present paper, the effect of the third dimension 

and tension crack (TC) on the stability of soil slopes is 

investigated. The analysis is based on the 3D analytical 

solution for the stability analysis of homogenous, cohesive-

frictional slopes proposed by Pantelidis and Griffiths 

(2013a). Working with infinite number of vertical columns 

and their associated vertical and horizontal intercolumn 

forces, Pantelidis and Griffiths offered a solution for slides 

along spherical surfaces (see appendix in Pantelidis and 

Griffiths 2013a; for the 2D case, that is, for sliding along a 

circular arc or cylindrical surface of infinity length, see 

Pantelidis and Griffiths 2013b). The same authors have also 

shown that the resultant gravity force of the sliding mass 

(assumption of rigid body), when projected onto the 

(spherical) failure surface and split into two components 

(one tangential and one radial), returns the same safety 

factor value with the rigorous analysis based on infinite 

number of columns mentioned above. A comparison graph 

between the 2D analytical solution proposed by Pantelidis 

and Griffiths (2013b) and Bishop’s (1955) method of slices 

for various water table levels inside the slope mass is given 

in the next section. As it will be shown, the two methods 

give similar results. Regarding the three-dimensions, for the 

example slope with c’/γΗ = 0.116, φ’=15ο and inclination 

angle 60o presented by Leshchinsky et al. (1985), the latter 

reported a safety factor value F = 1.25, Hungr et al. (1989) 

F = 1.230 with their 3D simplified Bishop method, Huang 

et al. (2002) F = 1.204 and 1.243 with their simplified and 

rigorous limit equilibrium method respectively and 

Pantelidis and Griffiths (2013a) F = 1.258 considering 

spherical failure surface. All these safety factor values refer 

to fully drained slopes, whilst the possible development of 

tension crack has been ignored. As in the case of circular 

and spherical failure surfaces, because at the initiation of a 

purely rotational slide along a spheroid surface no shear 

forces are developed inside the failure mass, the rigid body 

concept is valid and thus, it is conveniently used in the 

analysis below in studying the effect of the third dimension 

and tension crack on the stability of soil slopes. 
 

 

2. Methodology 
 

The preliminary analysis carried out by the authors 

showed that a tension crack of vertical, cylindrical shape 

produces lower safety factor values comparing to a tension 

crack of vertical, planar surface. An example case 

comparing the two cases is illustrated in Fig. 1. Thus, 

hereafter, the tension crack is simulated by the curved 

surface of a cylinder having axis of rotation parallel to the 

y-axis; the problem is considered symmetrical as for the xy-

plane and, thus, the axis of rotation of the cylinder intersects 

the x-axis. The rational assumption that the periphery of the 

cylinder passes through the points intersecting the failure 

surface, the slope face and the slope crest (points M and N 

in Fig. 1; left case) has also been made. The failure surface 

is considered to be of spheroid shape defined by the radius 

r, which is the rotation arm measured from the centre of 

rotation to the failure surface on the plane of symmetry and 

the radius R defining the half width of the spheroid (the 

ratio of the two radii defines the parameter f; f = R/r). The f 

= 1 case is presented in Fig. 1 for illustration purposes.  
Adopting Coulomb’s failure criterion, the safety factor 

for the simple geometry shown in Fig. 1 (left) and Fig. 2 
considering only the self-weight of the sliding mass and the 
effect of pore water pressures, is given by the following 
equation: 
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where, c’ and φ’ are the effective shear strength parameters 

of soil, Α is the surface area of the sliding mass, W and U 

are the resultant weighing force of the sliding mass and the 

resultant hydrostatic force acting radially on the slip surface 

respectively and δ1 = π/2-δ; see Fig. 2. An iterative 

(optimization) procedure is needed for obtaining the 

minimum safety factor value; the optimization parameters 

are five, namely, the coordinates of the center of rotation 

(xo, yo), the two radii of the spheroid (r and R) and the x-

coordinate of the axis of cylinder (xcyl). However, for 

studying the effect of the third dimension on the stability of 

slopes and, simultaneously, reducing the CPU time, the 

radius R in the parametric analysis of the next sections is 

manually changed. 

For calculating the resistance to sliding due to cohesion, 

the area of slip surface is needed (recall Eq. (1)). This is 

calculated exactly as follows (see Arfken et al. 2012): 
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where, the function ys(x,z) is obtained solving the equation 

of spheroid as for the y-coordinate: 
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The zin integral limit is defined by the equation of 

cylinder 
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whilst the zout limit by the intersection between the spheroid 

and the slope face (curve MTN in Fig. 2) 
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W is calculated as follows,  
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Also, from Fig. 2 
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Fig. 1 Perspective view of the failure surface and the sliding mass of an example slope for the case of tension crack of 

cylindrical and planar shape (left and right set of drawings respectively). Optimization for finding the minimum safety 

factor value in both cases was involved 

 

Fig. 2 Definition of symbols used in the analysis. Case of tension crack of cylindrical shape. Figure showing the cross-

section for z = 0 (plane of symmetry, xy) 
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Fig. 3 Comparison example for investigating the action 

of water in slope stability analysis; the notation “CFS” 

refers to the closed-form solution proposed by Pantelidis 

and Griffiths (2013b) 

 

 

where, the x-coordinate of the center of the sliding mass, xC, 

is 

 

 

tan

0

0

tan 0

,
2

tan ,

in

cyl cyl

out

H z

s
x R

C z

s
H

x H y x z dzdx

x
W

x x y x z dzdx











     
  

    

 

 
 

(9) 

and the y-coordinate of the point where the vector of W is 

projected on the spheroid surface is  

 
22
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(10) 

Generally, the water in slope mass can be treated as 

either buoyancy or surface force; please compare Eq. (C-

12) with (C-13) in EM 1110 (US Army Corps of Engineers, 

1990). Working with the 2D version of the closed-form 

solution (CFS) of Pantelidis and Griffiths (2013b), the 

authors found that considering water as surface force, the 

method returns absolutely comparable safety factor values 

with those obtained using the Finite Element method* or 

the Limit Equilibrium method; such a comparison in given 

in Fig. 3 (slope referring to c’ = 20 kPa, φ’ = 31o, γ = 20 

kN/m3, tanβ = 1 and H = 10 m; Hw is the height of the water 

table which is considered horizontal and does not extend 

outside the slope; Hw is measured from slope toe). Thus, 

water herein is treated as surface force.  

Assuming that the water table is horizontal inside the 

soil mass and that, it cannot exceed in height the geometry 

of slope, U is calculated as follows,  

   

   

tan

0

0

tan 0

, , z

2

tan , , z

w in

cyl cyl

out

w

H z

w s
x R

w z

s
H

H y x z s x dzdx

U

x y x z s x dzdx











     
  

     

 

 
 

(11) 

Finally, the safety factor is calculated using Eq. (1). It is 

reminded that the effect of water-filled tension crack has 

                                           
*The freely available finite element program Slope1 for 

slope stability analysis was used 

http://inside.mines.edu/fs_home/vgriffit/ 

not yet been considered. As known, the additional 

hydrostatic force due to water in the tension crack lowers 

the safety factor. In this respect, the moment of the resultant 

hydrostatic force V due to the water in the tension crack is 

added in the denominator of the safety factor equation: 
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(12) 

One could subtract this moment from the numerator, 

taking: 
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(13) 

However, the latter is not consistent with the definition 

of safety factor with respect to shear strength of soil. 

Instead, other factoring strategies could be explored, such 

as, the one with respect to U (see also Pantelidis and 

Griffiths 2012, 2013c): 
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(14) 

where, Ulim is the hydrostatic force corresponding to a just 

stable slope and U is the available hydrostatic force. 

However, this is beyond the scopes of the present paper.  

Eq. (12) needs both V and yw to be known. These 

magnitudes can be calculated as follows: 
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(16) 

where, from the equation of cylinder for x=xMw 
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with xMw to be obtained from y = ywtc and the equations of 

spheroid and cylinder, i.e.,  
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The hydrostatic water pressure γw(ywtc-y) in Eq. (15) 
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(also in Eq. (16)) is multiplied by a cosine term because 

only the component parallel to the direction of sliding (i.e., 

along the x-axis) contributes to failure. In this respect, the z-

components cancel-out due to the symmetry of the problem.  

 

 

3. Results 
 

Stability tables are given for the following six cases: (1) 

Fully drained slopes without TC (Table 1), (2) Fully 

saturated slopes without TC (Table 2), (3) Fully drained 

slopes with non-filled TC (Table 3), (4) Fully drained slopes 

with fully-filled TC (Table 4), (5) Fully saturated slopes 

with non-filled TC (Table 5) and (6) Fully saturated slopes 

with fully-filled TC (Table 6) both for R/r = 1 and 2. The 

stability factor, NF, or the stability number (m=1/NF) 

concept provides the basis for the development of stability 

charts or tables (e.g., Taylor 1948, Spencer 1967, Janbu 

1954, 1967, 1968, Cousins 1978, 1980, Pantelidis and 

Psaltou 2012). The stability factor NF is given as follows: 

 (19) 

The dimensionless parameter λcφ (introduced by Spencer 

1967) is given by the following ratio 

 (20) 

and it also groups terms related to the slope stability 

problem. The safety factor is finally calculated using the 

following equation:  

 
(21) 

where, Λ = NF/λcφ. Λ values are given in tabular form in 

Tables 1 to 6 for the six cases mentioned previously; the 

following λcφ values were considered: λcφ = 1, 2, 5, 10, 20 

and 50.  

For cases between a fully drained and a fully saturated 

slope, the ru concept can be used; Bishop and Morgenstern 

(1960) have shown that for a given slope, the relationship 

between F and ru does not differ appreciably from the 

straight line. Thus, between a fully drained (ru = 0) and a 

fully saturated slope (ru = γw/γ; see Pantelidis and Psaltou 

2012), linear interpolation can be applied. Eq. (12) in ru-

form is: 

 

(22) 

where, the ru ratio corresponding to the overall sliding mass 

is U/Wcosδ1. 

An important observation is that, if in each trial solution 

in finding the most critical slip surface, the tension crack is 

considered to be a priory fully-filled with water, the 

minimum F always correspond to Rcyl→∞. That is, the 

tension crack tends to be a vertical, planar surface passing 

through the points M and N (see Fig. 2). Obviously, this is 

not the point in practice. When a tension crack forms, it is 

not instantaneously filled with water, even if the slope is 

fully saturated; on the other hand, if a tension crack has not 

yet formed, any relevant hydrostatic force does not exist. As  

Table 1 Λ values for Case 1 (fully drained slopes without 

TC) 

R/r tanβ λcφ      

  1 2 5 10 20 50 

1 

1:2 12.162 7.727 4.851 3.773 3.304 2.644 

1:1.5 11.311 7.024 4.327 3.166 2.622 2.070 

1:1 10.413 6.211 3.622 2.478 1.976 1.475 

2:1 8.663 5.003 2.695 1.839 1.342 0.965 

4:1 7.397 4.237 2.242 1.497 1.058 0.718 

8:1 6.693 3.806 2.008 1.314 0.912 0.595 

2 

1:2 11.583 7.583 4.773 3.720 3.267 2.635 

1:1.5 10.790 6.721 4.239 3.116 2.593 1.997 

1:1 9.813 5.965 3.510 2.445 1.887 1.470 

2:1 8.327 4.837 2.637 1.815 1.328 0.969 

4:1 7.191 4.147 2.213 1.484 1.052 0.715 

8:1 6.578 3.762 1.985 1.313 0.911 0.594 

 

Table 2 Λ values for Case 2 (fully saturated slopes without 

TC) 

R/r tanβ λcφ      

  1 2 5 10 20 50 

1 

1:2 9.726 5.695 3.029 2.038 1.504 1.209 

1:1.5 9.292 5.255 2.618 1.666 1.166 0.829 

1:1 8.745 4.746 2.212 1.246 0.716 0.364 

2:1 7.512 3.866 1.567 0.643   

4:1 6.341 3.183 1.121    

2 

1:2 9.403 5.462 3.001 2.049 1.543 1.249 

1:1.5 8.735 5.021 2.579 1.721 1.211 0.857 

1:1 8.202 4.510 2.137 1.240 0.735 0.394 

2:1 7.192 3.703 1.527 0.634   

4:1 6.121 3.090 1.084    

 

Table 3 Λ values for Case 3 (fully drained slopes with non-

filled TC) 

R/r tanβ λcφ      

  1 2 5 10 20 50 

1 

1:2 11.997 7.716 4.821 3.662 3.097 2.581 

1:1.5 10.917 6.829 4.150 3.121 2.516 2.063 

1:1 9.765 6.021 3.453 2.405 1.925 1.474 

2:1 7.527 4.555 2.488 1.738 1.293 0.947 

4:1 5.876 3.553 1.951 1.350 0.983 0.687 

8:1 4.878 2.920 1.629 1.117 0.804 0.552 

2 

1:2 11.352 7.384 4.655 3.614 3.065 2.581 

1:1.5 10.377 6.576 4.040 3.091 2.507 1.995 

1:1 9.160 5.619 3.278 2.387 1.860 1.468 

2:1 7.210 4.352 2.437 1.714 1.281 0.943 

4:1 5.794 3.452 1.934 1.340 0.979 0.685 

8:1 4.867 2.914 1.621 1.116 0.803 0.551 
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Table 4 Λ values for Case 4 (fully drained slopes with fully-

filled TC) 

R/r tanβ λcφ      

  1 2 5 10 20 50 

1 

1:2 11.850 7.585 4.816 3.650 3.062 2.539 

1:1.5 10.749 6.763 4.059 3.090 2.508 2.025 

1:1 9.471 5.688 3.401 2.387 1.859 1.471 

2:1 6.821 4.087 2.339 1.664 1.247 0.933 

4:1 4.578 2.804 1.672 1.204 0.910 0.656 

8:1 3.355 2.163 1.229 0.879 0.676 0.503 

2 

1:2 11.225 7.316 4.630 3.604 3.002 2.539 

1:1.5 10.189 6.487 3.967 3.085 2.500 1.863 

1:1 8.876 5.472 3.268 2.362 1.850 1.464 

2:1 6.594 4.018 2.285 1.643 1.243 0.931 

4:1 4.827 2.930 1.716 1.208 0.914 0.658 

8:1 3.384 2.174 1.268 0.891 0.681 0.506 

 

Table 5 Λ values for Case 5 (fully saturated slopes with 

non-filled TC) 

R/r tanβ λcφ      

  1 2 5 10 20 50 

1 

1:2 9.470 5.565 2.984 2.018 1.502 1.157 

1:1.5 9.006 5.064 2.555 1.641 1.164 0.786 

1:1 8.161 4.446 2.171 1.215 0.705 0.362 

2:1 6.374 3.331 1.372 0.564   

4:1 4.890 2.481 0.821    

2 

1:2 8.979 5.329 2.959 2.035 1.534 1.183 

1:1.5 8.355 4.800 2.512 1.706 1.190 0.808 

1:1 7.645 4.204 2.037 1.201 0.733 0.379 

2:1 6.099 3.202 1.337 0.587   

4:1 4.742 2.405 0.803    

 

Table 6 Λ values for Case 6 (fully saturated slopes with 

fully-filled TC) 

R/r tanβ λcφ      

  1 2 5 10 20 50 

1 

1:2 9.358 5.508 2.968 2.013 1.500 1.156 

1:1.5 8.870 4.994 2.535 1.635 1.162 0.786 

1:1 7.923 4.332 2.037 1.151 0.714 0.362 

2:1 5.791 3.095 1.312 0.559   

4:1 4.045 2.125 0.783    

2 

1:2 8.814 5.274 2.942 2.030 1.533 1.183 

1:1.5 8.165 4.733 2.494 1.698 1.188 0.808 

1:1 7.384 4.100 2.017 1.193 0.726 0.378 

2:1 5.737 2.918 1.274 0.577   

4:1 4.038 2.116 0.764    

 

 

known, tension crack develops as part of the initial phase of 

failure, where stress redistribution takes place in slope; 

slope failure may follow or not. At a later phase, if failure 

has not occurred, the tension crack can be (fully or 

partially) filled with water (either surface water, rainwater 

falling directly in the TC or water drained from the soil 

mass), deteriorating the stability condition of slope. Given 

that tension crack develops in cohesive soils having very 

low to extremely low permeability, these thoughts can be 

considered rational. Thus, in this paper, when the 

hydrostatic force due to water in tension crack is 

considered, the analysis is based on the idea that, first the 

tension crack develops and later this is filled with water; the 

most unfavourable case of fully-filled tension crack is 

examined.  

 

 

4. Discussion  
 

4.1 The role of the third dimension on the stability of 
soil slopes 
 

Before discussing on the role of the third dimension on 

the stability of slopes, it is important to be reminded that, 

water, either in the slope mass (forming free water table) or 

in the tension crack (exerting hydrostatic pressure), could 

potentially trigger the failure of a slope. Moreover, it is 

mentioned that, although the presence of tension crack 

lowers the safety factor of slope, the tension crack alone is 

not a triggering factor for failure.  

Comparing, now, the Λ values given in Tables 1 to 6 for 

the six cases numbered in the previous section, the 

following major observations can be made. 

When there is no water in the slope or in the tension 

crack, the Λ values for R/r = 1 are always greater than the 

respective ones for R/r = 2 (see Tables 1 and 3). Actually, 

the F - R/r relationship follows a reciprocal function of the 

form 

 
(23) 

where, FR/r→∞ is the minimum safety factor value 

(asymptotic value corresponding to R/r→∞) and α is a 

coefficient (natural positive number). Also, there is a 

minimum allowable R/r value, (R/r)min; when R/r tends to 

this value, F becomes asymptotically infinite.  

The same behaviour is also observed for fully saturated 

slopes with strong slope gradient and small λcφ value. 

However, for fully saturated slopes with small slope 

gradient and great λcφ value, the R/r = 2 case was found to 

be less conservative compared to the R/r = 1 case (see 

Tables 2, 5 and 6). This characteristic behaviour is 

illustrated in Fig. 4. The presence of tension crack, filled or 

not with water, does not cause any qualitative difference. 

Finally, for drained slopes but with fully-filled tension 

crack, the R/r = 2 case was found to be more conservative 

as compared to the R/r = 1 case for great slope gradients 

(see Table 4). However, for gentle slope gradients, the 

opposite stands. 

Apparently, for any intermediate case between a fully 

drained and a fully saturated slope, either the R/r = 1 or the 

R/r = 2 case is unfavorable depending on the height of the  

 
min

R r

a
F F

R r R r
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Fig. 4 λcφ versus Λ example chart for fully saturated slope 

with tanβ = 1:2 and no water in TC; curves referring to 

R/r = 1 and 2 
 

 

water table in the slope and the stability level of the latter 

(deviation from its limit equilibrium). An analogous 

conclusion can be drawn for partially filled tension cracks. 

This characteristic behaviour, where, a wider failure 

surface may be more favourable than a respective narrower 

for the same slope, is further discussed later.  

 

4.2 The end-effect of landslides  
 

Morimasa and Miura (2008) studied analytically the 

end-effect of landslides in purely cohesive slopes 

considering spheroid failure surfaces. They provided NF – 

wsld/H charts for completely drained slopes with inclination 

angle ranging from 15o to 90o (wsld is the half width of the 

landslide). In all their cases, the stability factor NF is 

reduced exponentially following a reciprocal function form 

(recall Eq. (23)).  

In their 3D analysis, Chen and Chameau (1983), 

Michalowski and Drescher (2009) and Michalowski (2010), 

studied the stability of slopes with a plane insert (extruded 

to the third dimension) in the central portion of the failure 

mechanism. The latter assures that the combined 

mechanism tends (asymptotically) to a plane strain 

mechanism when no constraints are placed on the 

mechanism width; the geometry of this insert is identical to 

the geometry of the plane mechanism considered by Chen 

et al. (1969). Michalowski (2010) additionally observed 

that a footing of finite dimensions in plan-view on the crest 

of a 3D slope restrains the width of failure from becoming 

infinite. However, a surcharge on the crest of slope is a 

local triggering factor, and therefore, a local failure is, 

logically, expected. Contrary to this, the authors have 

shown through Tables 1-6 and Fig. 4 that, depending on the 

case, a narrower slope failure may by more critical, even if 

pore pressures are uniformly distributed along the third 

dimension. 

The above, non-usual, behaviour led to a more thorough 

investigation of the end-effect of landslide. First, it is 

mentioned that, the double asymptotic behaviour (F taking 

its minimum value for infinite failure width and F 

becoming infinite for a given failure width value; recall Eq. 

(23)) is, generally, confirmed by the authors. In this respect, 

two example curves are given in Fig. 5, with and without 

the so-called “plane insert”; the total width of the  

 

Fig. 5 R/r versus F example chart for fully drained 

slopes, with and without plane insert 

 

 

Fig. 6 R/r versus F example chart for fully saturated 

slope (no plane insert) 
 

 

cylindrical part added at the central portion of the failure 

mass was equal to one slope height. The slope had the 

following soil, geometric and groundwater regime 

properties: c’ = 20 kPa, φ’ = 30o, γ = 20 kN/m3, tanβ = 2, H 

= 9 m and ru = 0 (fully drained slope). It is interesting that 

the plane insert does not affect the minimum allowable 

landslide width (see Fig. 5). It is more interesting, however, 

that, as shown in the proposed tables, the R/r = 1 case may 

give smaller safety factor value than the R/r = 2 case for the 

same slope. In this respect, a F - R/r example curve is given 

in Fig. 6 for a fully saturated slope having c’ = 14 kPa, φ’ = 

35o, γ = 20 kN/m3, tanβ = 2/3 and H = 10 m. The curve in 

question also presents two asymptotic branches, however, 

the right branch approaches an asymptotic F value 

(F≈1.153) from below, after reaching first a minimum value 

(F≈1.148). Indeed, the minimum F value corresponds to a 

nearly spherical failure surface (R/r = 0.95). This clearly 

indicates that, when the z-coordinate (it refers to the third 

axis defining the 3D geometry) of the centre of rotation in a 

three-dimensional slope stability analysis is fixed and the 

slope has uniform properties along its length (similar to 

plane strain conditions), the minimum safety factor does not 

always correspond to a failure mechanism of infinite width; 

instead a spherical or nearly spherical failure may occur. 

Apparently, in practice, local changes in slope geometry or 

material properties affects not only the safety factor of slope 

but also the location of the z-coordinate of the centre of 

rotation.  

It is additionally noted that, the safety factor value 

against circular failure (analysis in two dimensions) of the 
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above-mentioned slope using Bishop’s (1955) limit 

equilibrium method with Rocscience’s SLIDE, was found 

equal to 1.102. This value is by only 4% lower compared to 

the minimum F value given in Fig. 6 (F = 1.148 for R/r = 

0.95). Regarding the depth of tension crack, the analysis 

with (2D) Bishop’s method of slices gave 1.2 m, whilst, the 

maximum depth (on the plane of symmetry) using the 

present analytical procedure was 1.83 m. 

 

4.3 The effect of tension crack on the safety factor of 
slopes 

 

The presence of tension crack in slopes indicates that, in 

a certain zone the tensile stresses exceed the tensile strength 

of the medium. The tension crack affects the stability of 

slope mainly because it reduces the area of the slip surface 

(thus, reducing the resistance to failure) and because the 

water pressure acting on the crack face constitutes an 

additional driving force contributing to failure (Baker, 

1981). Baker (1981) found that the (maximum) decrease in 

the stability factor (NF) due to the presence of non-filled 

tension crack is of the order of 20%. He also found that, the 

maximum depth of the tension crack is 25% of the slope 

height; the latter corresponds to vertical slopes. 

Based on the slope cases considered herein (i.e., λcφ 

ranging from 1 to 10 and tanβ ranging from 1:2 to 8:1), the 

maximum relative difference in Λ, i.e., (Λmax - Λmin)/Λmax, 

due to the presence of tension crack was found to be of the 

order of 27% for non-filled cracks and 50% for fully-filled 

cracks; numbers referring to fully drained slopes. For fully 

saturated slopes, the maximum relative difference in Λ is of 

the order of 25% and 35% for non-filled and fully-filled 

tension cracks respectively. [Defining the relative difference 

with respect to the minimum Λ value, i.e., (Λmax - 

Λmin)/Λmin, the above-mentioned relative difference values 

are much higher].  

 

4.4 The effect of water level in tension crack on the 
stability of soil slopes 

 

The effect of water level in tension crack on the stability 

of soil slopes is shown schematically in the example chart 

of Fig. 7. This Λ versus ‘percentage of tension crack height 

(at z = 0 m) filled with water’ chart refers to the case of a 

fully drained slope with λcφ = 1 and 8V:1H gradient. From  

 

 

 

Fig. 7 Example chart showing the effect of water height 

in tension crack on slope stability 

the figure in question it is inferred that, the driving force 

due to water in tension crack has negligible effect on the 

stability of slopes when the tension crack is filled with 

water up to about the one third of its maximum depth 

(measured from the lowest point); the effect becomes more 

significant as the water level rises in the tension crack. 

Wang et al. (2019) draw a similar conclusion based on limit 

analysis. In addition, comparing Table 3 with Table 4 or 

Table 5 with Table 6 it is concluded that, the effect of water 

in tension crack on the stability is negligible in gentle slopes 

(regardless of the λcφ ratio) and significant in steeper slopes 

with small λcφ values.  

 

 

5. Conclusions 
 

In this paper, the effect of the third dimension and 

tension crack (TC) on the stability of soil slopes is 

investigated. The analysis is based on the 3D closed-form 

solution for homogenous, cohesive-frictional slopes 

proposed by Pantelidis and Griffiths (2013a). Pantelidis and 

Griffiths’ (2013a) method has been extended herein as to 

consider purely rotational slides along spheroid surfaces as 

well as the development of tension crack in the slope. 

Stability tables are given for fully drained and fully 

saturated slopes without TC, with non-filled TC as well as 

with fully-filled TC. 

Among the main findings is that, the width of failure is 

related to the triggering factor for failure, in this respect, 

water acting as pore pressures and/or as hydrostatic force in 

the TC. More specifically, it was found that, when a slope is 

near its limit equilibrium and under the influence of a 

triggering factor, the failure mechanism is restricted to a 

certain width, even if the triggering factor (e.g., pore-water 

pressures) is uniformly distributed along the third 

dimension. Indeed, a spherical or nearly spherical failure 

surface is more probable to occur than an oblate or prolate 

failure surface. This contrasts with the current knowledge 

that, the minimum safety factor of a slope in a 3D analysis 

corresponds always to infinite failure width. 

Moreover, it was found that, the effect of tension crack 

is much greater when the stability of slopes is studied in 

three dimensions. Indeed, the safety factor derived from a 

3D analysis considering the effect of tension crack is 

comparable to the respective one derived from a 2D 

analysis. Finally, it is mentioned that the effect of 

hydrostatic force due to water in tension crack on the 

stability of slopes is negligible when the height of water in 

tension crack does not exceed about the one third of its 

(maximum) depth but becomes significant as water rises in 

it. 
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