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1. Introduction 
 

A tunnel is an engineering body that exists under 

complex geological conditions. The complex geological 

environment present and various construction techniques 

used determine the complexity of the mechanical properties 

of the surrounding rock. The deformation of the rock 

surrounding a tunnel manifests due to the stress 

redistribution within the surrounding rock. By observing the 

deformation of the surrounding rock, we can not only 

determine the stability of the surrounding rock and 

supporting structure but also predict the future state of the 

surrounding rock. When the deformation of surrounding 

rock exceeds a certain threshold, it will destroy the initial 

support and may even cause the surrounding rock to 

collapse. Tunnel collapse will cause casualties and 

considerable economic losses. Therefore, predicting the 

stability of surrounding rock is of great significance to risk 

assessment. 

Duan et al. (2016) described the failure mechanism of a 

rock mass in true triaxial tests based on three-dimensional 

DEM simulations. Yagiz (2011) tested nine rock materials 

by thin section analysis to establish empirical equations for 

the longitudinal wave velocity and rock dynamic 
parameters to predict the rock characteristics. Senent et al. 

(2013) determined the critical collapse pressure of a rock  
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mass based on the Hoek-Brown nonlinear failure criterion. 

Huang et al. (2017) derived an analytical expression of the 

collapse surface from variational calculation in the 

framework of the upper bound theorem. Su et al. (2010) 

established the general expression for the limit state 

equation of the stability of the surrounding rock. In the 

abovementioned work, the failure mechanism of a rock 

mass was studied by means of experimental and numerical 

simulations, which laid a theoretical foundation for the 

study of the stability of the rock surrounding a tunnel. 

Pan et al. (2016) used kinematics and numerical 

simulations to study the effect of pore water pressure on 

tunnel face stability. The effects of weathering parameters 

and pore water on initial block collapse are described in 

two- and three-dimensional analyses by Qin and Chian. 

(2017). The results of Li et al. (2016) show that the 

sequential excavation method can promote face stability 

and reduce ground displacement during tunnel excavation. 

The condition of the unexcavated rock can be obtained 

through advanced detection methods. Jetschny et al. (2010) 

studied the influence of the propagation characteristics of 

tunnel surface waves in a rock mass by advanced seismic 

detection. Gong et al. (2010) proposed a combined 

migration velocity analysis and imaging method based on 

Kirchhoff integral migration and reverse time migration to 

predict the geological structure of a tunnel. The 

abovementioned achievements are mainly from studies that 

focused on a single factor to evaluate the status and stability 

of rock surrounding a tunnel. It is well known that the 

instability of rock surrounding a tunnel is the result of 

multiple factors. With the development of nonlinear 
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disciplines (Liu et al. 2017, Zhou et al. 2015, Cevik et al. 

2011), increasingly more scholars have evaluated the 

stability of surrounding rock by combining various 

influencing factors by using nonlinear theory. Xue and Xiao 

(2017) proposed the PSO-LSSVM model to predict the 

deformation of the surrounding rock during ground 

excavation. Ocak and Seker (2013) focused on surface 

settlement prediction using three different methods: 

artificial neural networks, support vector machines, and 

Gaussian processes. Rezaei et al. (2015) used two 

predictive methods, namely, a Mamdani fuzzy system and 

multivariable regression analysis, to predict the deformation 

modulus of surrounding rock. To control deformation 

during construction, the degree of influence of multiple 

factors on the tunnel deformation is analysed by data 

mining, and a deformation prediction model was established 

by Xue et al. (2018). Li et al. (2015) analysed the 

sensitivity of tunnel stability factors by using the grey 

correlation method and analysing quantitative data. Ma and 

Fu (2014) achieved a realistic stability analysis of a rock 

mass with a proposed probabilistic rock mass model. Tian et 

al. (2016) developed Bayesian approaches for probabilistic 

characterization of the inherent spatial variability of the 

effective friction angle of sand in a statistically homogenous 

sand layer. Wang et al. (2017a) established a Bayesian 

network collapse prediction model to assess the risk of 

tunnel collapse. Gong et al. (2008) presented a method to 

forecast the over-excavation of ground opening projects by 

using Bayes discriminant analysis theory. Yuan et al. (2016) 

established a tunnel collapse risk assessment model based 

on catastrophe theory through a quantitative analysis and 

multi-index criteria. Wang et al. (2017b) used normal cloud 

model theory to create a multi-index evaluation model for 

rockfall risk assessment. Alimoradi et al. (2008) used a 

trained artificial neural network to estimate the unknown 

nonlinear relationships from the results of tunnel seismic 

prediction and those obtained by rock mass rating 

classification. Shi et al. (2014) proposed an advanced 

optimized classification method to accurately predict the 

classification of the surrounding rock based on a fuzzy 

analytic hierarchy process and tunnel seismic prediction. 

The risk of mountain tunnel collapse was used by Zhang et 

al. (2015) as an example to illustrate a new assessment 

method based on case-based reasoning, advanced 

geological prediction, and rough set theory. 

At present, nonlinear evaluation methods have been 

widely used in tunnel engineering and have achieved good 

results. However, the abovementioned achievements do not 

include combining the nonlinear method with Bayesian 

probability to analyse tunnel collapse data and detect 

change points. In addition, unlike the previous tunnel 

collapse prediction models, the method presented in this 

paper predicts the deformation of the rock surrounding the 

excavation face by utilizing grey relational analysis and 

artificial neural networks. In addition, based on the 

deformation of the surrounding rock, a Bayesian method for 

detecting change points is used to obtain the locations of 

possible landslides and to guide on-site construction 

decisions. This study first describes the actual deformation 

of the studied tunnel, then analyses the influencing factors 

based on the actual engineering sample, and finally 

determines a deformation prediction of the location of the 

change in deformation. This work enhances the accuracy of 

tunnel collapse forecasting and provides a bridge between 

fundamental development and practical application. This 

research provided a reference and a guide for future 

research on the probability analysis of tunnel collapse. 

 

 

2. Methodology 
 

2.1 Grey system theory 
 

Grey relational analysis is a system analysis method that 

combines qualitative and quantitative approaches to 

distinguish the relationship between systems, as described 

by the grey relational degree obtained from the quantitative 

method (Yeh and Chen 2004, Zhang et al. 2018). In the 

process of system development, if the variation trend of two 

factors is consistent, that is, if the degree of synchronous 

change is high, the degree of correlation is considered to be 

high. In contrast, if the degree of synchronous change is 

low, the degree of correlation is low. The steps to evaluate 

the factors affecting the deformation of rock surrounding a 

tunnel by grey correlation are as follows: 

Step 1. The evaluation index system is determined. We 

use the factors influencing the deformation of the rock 

surrounding a tunnel as the original evaluation matrix and 

take the deformation of the rock surrounding a tunnel as the 

reference series. 

It is assumed that the evaluation problem contains m 

objects and n indicators. The original evaluation matrix is 

Eq. (1). 
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where xig represents the index value of the gth index of the 

ith object. 

According to the influencing factors of the surrounding 

rock deformation, the reference sequence of the surrounding 

rock deformation is set to  0 01 02 0, nX x x x . 

Step 2. The index data are normalized, and the data 

sequence after normalization is recorded as Eq. (2). 
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(2) 

where  0 01 02 0, nZ z z z  is the normalized reference 

sequence. 
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Step 3. For the standardized data sequence, we calculate 

the absolute difference between the index of the influencing 

factors of the surrounding rock deformation and the 

corresponding element of the sequence of the surrounding 

rock deformation, one by one, i.e., 

 0 0 1,2, , , 1,2, ,i ij jZ Z z z i m j n    
 

(3) 
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are determined. 

Step 5. Eq. (4) is used to calculate the incidence 

coefficient between the index of the influencing factors of 

the surrounding rock deformation and the corresponding 

element of the sequence of the surrounding rock 

deformation. 
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where η is the resolution coefficient and is between 0 and 

1. The lower the value of η is, the greater the difference 

between the resolution coefficients and the stronger the 

resolution ability. In general, η 0.5  is assumed. The 

correlation coefficient ij  is a positive number less than or 

equal to 1 and reflects the degree of correlation between the 

ith influence factor of the index sequence iX  of the 

surrounding rock deformation and the jth attribute of the 

deformation sequence 0X  of the surrounding rock. 

Step 6. The correlation degree is calculated. 

We calculate the average of the correlation coefficients 

between the influencing factors of the surrounding rock 

deformation and corresponding elements of the surrounding 

rock deformation sequence, following Eq. (5). 
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Step 7. According to the correlation degree of the 

influencing factors of the deformation of the rock 

surrounding a tunnel, we obtain comprehensive evaluation 

results. 
 

2.2 Artificial neural network model 
 

A back-propagation neural network (Fig. 1) is a 

feedback-type, fully connected multilayer neural network 

with strong associative memory and generalization ability 

(Funahashi 1989; Specht 1990). Here, 

      1 1 2 2, , , , , , ,d l

m m m mD x y x y x y x R y R    is given, 

where xm is the mth input value of the input layer of factors 

influencing the deformation of the surrounding rock. dR
indicates that the input rock deformation factors are 

described by d attributes. 𝑅𝑙  is an output one-dimensional 

real-valued vector of vault subsidence and horizontal 

convergence. The process of neural network training for the 

deformation of the surrounding rock is expressed as 

follows. 

Step 1. The loss function is determined. 

For the sample  ,k kx y , we assume that the output of 

the neural network is  1 2
ˆ ˆ ˆ ˆ, ,k k k

k ly y y y , i.e., 

 ˆ
k j jy f   

 
(6) 

where 𝜃𝑗 is the threshold of the jth neuron in the output 

layer. 

The mean squared error of the neural network in the 

sample is given by Eq. (7). 
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Step 2. The parameter adjustment strategy is defined. 

The neural network is based on a gradient descent strategy 

and adjusts the parameters in the negative gradient direction 

of the target. 
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Step 3. The gradient 
kE

v




 of the output layer threshold 

j  is calculated. 

ˆ k

jy  has a direct impact on 
kE , and j  has a direct 

impact on ˆ k

jy . Therefore, we can obtain Eq. (9) by the 

chain rule. 
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(9) 

We can obtain Eq. (10) from Eq. (7). 
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(10) 

The activation function is a sigmoid function, and we 

can obtain Eq. (11) from Eq. (6). 
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(12) 

Eq. (12) is written as Eq. (13). 
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(13) 

Step 4. The ratio 
k

hj

E

w




 of the hidden layer to the output 

layer connection weight hjw  is calculated. ˆ k

jy  has a 

direct impact on kE , j  has a direct impact on ˆ k

jy , and 
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hjw  has a direct impact on j . Therefore, we can obtain 

Eq. (9) by the chain rule. 
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(14) 

where hjw  is the connection weight of the hth and jth 

neurons in the hidden layer, j  is the input of the jth 

neuron in the output layer, and hb  is the hth neuron output 

of the hidden layer. 
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We can obtain Eq. (15) from Eq. (13). 
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Step 5. The gradient 
k

h

E






 of the hidden layer threshold 

h  is calculated. 

hb  has a direct impact on kE , and h  has a direct impact 

on hb . Therefore, we can obtain Eq. (11) by the chain rule. 
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where h  is the hth neuron threshold of the hidden layer. 
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(18) 

We can obtain Eq. (19) from Eq. (17) and Eq. (18). 
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Step 6. The inductive conclusions are drawn. 

In the multilayer forward network, the threshold 

gradient  m

hg  of the hidden layer is expressed as the 

threshold gradient of the m-layer. The hidden-layer neuron 

output is expressed as the output of  m

hb  the m-layer 

neurons. The connection weight of the hidden layer and the 

output layer is expressed as the weight 
 1m

hjw


 of the m+1-

layer. The threshold gradient 
 1m

jg


 of the output layer is 

expressed as the threshold gradient of the m-layer. Then, 

Eq. (19) changes into Eq. (20). 
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The connection weight gradient 
k
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Fig. 1 Schematic diagram of a three-layer neural network 
 

 

layer and the output layer is expressed as the m-layer 

connection weight gradient 
k

hj

E

w




. jg  is expressed as the 

m-layer threshold gradient 
 m

jg . hb  is expressed as the 

m-1 layer output  1m

hb
 . Then, Eq. (15) changes into Eq. 

(21). 

     1m m m

hj j hp g b


 
 

(21) 

Combining Eq. (20) and Eq. (21), we can calculate the 

threshold gradient of the current layer of neurons and the 

gradient of the connection weight if we know the threshold 

gradient of the neurons in the previous layer. According to 

Eq. (13), we can calculate the threshold gradient of the 

neurons in the output layer, so the neural threshold and the 

gradient of the connection weight can also be calculated. 

This work can create the training network. 
 

2.3 Bayesian method for detecting change points 
 

Change points are determined by an instantaneous 
change in the statistical characteristic of a sequence or 
process. This change often reflects a qualitative change. The 
key point of the Bayesian method of point analysis is to 
treat the parameters in the model as random variables, 
introducing a probability distribution called the prior 
distribution. We use the prior distribution and the sample 
distribution to determine the posterior distribution of the 
variable point. In addition, we introduce a necessary 
inference based on the posterior distribution (Barry and 
Hartigan 1993, Perreault et al. 2000). 

According to the law of large numbers, we assume that 
the spatial sequence of observations concerning the 
deformation of rock surrounding a tunnel obeys a normal 
distribution. If the factors influencing the spatial sequence 
of the deformation of rock surrounding a tunnel abruptly 
change at a point, the statistical parameters that belong to 
observation Zi of the normal distribution will no longer be 
the same on both sides of the point. Before the change 
point, the distribution density function of observation Zi is 
Eq. (22). After the change point, the distribution density 
function of observation Zi is Eq. (23). 

  2

1 1~ , 1,2, ,iZ N i j   
 

(22) 

  2
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(23) 
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where 1  is the expected value of j before the change 

point, 2  is the expected value of j after the change point, 

2

1  is the variance in j before the change point, and 
2

2  is 

the variance in j after the change point. 

When determining whether the mean value of the spatial 

sequence of the deformation of the rock surrounding a 

tunnel changes, we assume a constant variance, i.e., 

2 2 2

1 2     (24) 

where the value of 2  can be estimated from the 

observations of the spatial sequence of surrounding rock 

deformation. In addition, we assume that 1  and 2  

obey the same normal distribution, i.e., 

 2

1 0 0,N  
 

(25) 

 2

2 0 0,N  
 

(26) 

According to the Bayesian theorem, we can deduce the 

posterior probability distribution from the distribution 

parameters 1  and 2  after obtaining the spatial 

sequence of the deformation of the rock surrounding a 

tunnel,  1, j

iZ Z Z  . 

The posterior distribution of 1  derived from the 

observation information jZ  is Eq. (27). 
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The posterior distribution of 
2 derived from the 

observation information 1jZ   is Eq. (28). 
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The posterior distribution density function for the 

change point is deduced in two steps: 

Step 1. The joint distribution function of the observed 

data is Eq. (29) when 1  and 2  are known. 
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(29) 

Step 2. According to the Bayesian principle, the 
posterior distribution density function for deducing the 
position of the change point is Eq. (30). 
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(30) 

 

2.4 The seismic prospecting method 
 

Seismic prospecting is an advanced technology for 

predicting the geological condition ahead of the tunnel 

excavation face and is an artificial seismic exploration 

method that uses seismic reflection waves. When a seismic 

incident wave meets stratigraphic interfaces and structural 

surfaces, especially fault fracture zones, karst caves, 

underground rivers and other undesirable geological 

interfaces, reflected waves that can be received by a 

receiver and output by a digital recorder will be produce. 

The spreading velocity, delay time, waveform, intensity, 

and direction of the reflected wave are related to the nature 

and appearance of the relevant interface, which is 

represented by different types of data and used to predict 

the presence of adverse geologic bodies in front of the face 

(Li et al. 2017). 

 

 

3. Project overview 
 
The Longtan tunnel is one of the important control 

projects along the Hurongxi highway between Yichang and 
Enshi. The length of the left tunnel is 8694 m, while the 
length of the right tunnel is 8620 m. In addition, the 
maximum burial depth of the Longtan tunnel is 530 m. As 
shown in Fig. 2, the tunnel is located in an area with an 
eroded valley landscape, a geomorphology that has extreme 
topographical conditions. The Longtan tunnel is known by 
experts as a “Geological Museum” and “Geological 
Disaster Encyclopedia”. 

The rocks in the study area mainly represent two types 
of lithology. One is weakly weathered sandy shale and 
argillaceous sandstone, which is distributed along 
ZK65+516~ZK70+420 in the left tunnel and 
YK65+520~YK70+880 in the right tunnel. The other is 
weakly weathered limestone and dolomite, which is 
distributed along ZK70+420~ZK74+200 in the left tunnel 
and YK70+880~YK74+200 in the right tunnel. There are 
two faults in the tunnel area: F1 and F2. The strike of F1 is 
NW, and its inclination direction is to the NE. The strike of 
F2 is NW, and its inclination direction is to E. Some karst 
has developed in the area of the Longtan tunnel. 

 

 

 

Fig. 2 Schematic diagram of the Longtan tunnel (Xue et 

al. 2008) 
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4. Analysis of factors affecting tunnel deformation 
 

4.1 The influence factors of tunnel deformation 
 

The influence factors of the deformation of the rock 

surrounding a tunnel are numerous and complex. It is 

difficult to analyse each factor when assessing the 

deformation of the rock surrounding a tunnel. Therefore, we 

choose several of the major influential factors. In this paper, 

according to the actual deformation of the surrounding rock 

in the Longtan tunnel and other tunnel engineering cases, 

we selected eight important factors as indicators for 

evaluating the deformation characteristics of rock 

surrounding a tunnel, as shown in Table 1: longitudinal 

wave velocity, density, Poisson’s ratio, tunnel burial depth, 

groundwater development, surrounding rock support type, 

support close time and construction management level. 

(1) Longitudinal wave velocity (A1) 

The strength and integrity of the surrounding rock have 

a great influence on its stability. In the detection of seismic 

waves, the longitudinal wave velocity is a direct 

 

 

Table 1 Influencing factors of the deformation of rock 

surrounding a tunnel 

Serial 

number 
Influencing factors 

Serial 

number 
Influencing factors 

A1 
Longitudinal wave velocity 

(m/s) 
A5 Groundwater development 

A2 Density (kg/ m3) A6 
Surrounding rock support 

type 

A3 Poisson’s ratio A7 Support close time (d) 

A4 Burial depth of tunnel (m) A8 
Construction management 

level 

 

Table 2 Grade division of groundwater 

Grade 
division 

Specific description 
Parameter 

value 

I 

The groundwater is very well developed and 

causes a major problem. The results of the 
interpretation show that the reflection energy of 

the S wave is stronger than that of the P wave, 

the S wave manifests as reflective stripe 
bandwidth with good extensibility, and the Vp/Vs 

increases considerably. 

0-0.2 

II 

The groundwater is developed, and it presents a 

moderate water pressure. The results of the 
interpretation show that the S wave reflection 

energy is clearly stronger than the P wave, and 

the Vp/Vs suddenly increases. 

0.2-0.5 

III 

The groundwater is quite developed, and there is 

a small amount of fissure water. The results of 

the interpretation show that the S wave 
reflection energy is stronger than the P wave 

reflection energy. 

0.5-0.8 

IV 

Groundwater is not developed, and the rock is 

dry. There is no water-bearing feature in the 
interpretation results. 

0.8-1.0 

 

Table 3 Quantization table of support type 

Support type Parameter value Support type Parameter value 

S2-a 1 S3 4 

S2-1 2 S4 5 

S2-2 3 S5 6 

response to the strength and integrity of the surrounding 

rock. This index value can be determined using seismic 

wave detection. 

(2) Density (A2) 

Rock excavation is an unloading process. Excavation 

unloading will cause the original cracks to open or new 

fractures to form, resulting in a change in the density of the 

rock mass. Excavation unloading will affect the stability of 

the surrounding rock, and its index value can be determined 

using seismic wave detection. 

(3) Poisson’s ratio (A3) 

Poisson’s ratio is the absolute value of the ratio of the 

transverse strain to the longitudinal strain caused by an 

evenly distributed longitudinal stress. Poisson’s ratio is also 

an important physical quantity that can characterize the 

deformation properties of a rock mass, and its index value 

can be determined using seismic wave detection. 

(4) Tunnel burial depth (A4) 

A tunnel will lose its natural arch shape as the burial 

depth of the tunnel decreases. The influence of excavation 

will spread to the surface, impeding the formation of natural 

arches, and the surrounding rock will lose its ability to self-

stabilize. In general, the stability of the surrounding rock 

will worsen as the burial depth of the tunnel becomes 

shallower. This index value can be obtained from 

previously gathered survey data. 

(5) Groundwater development (A5) 

Groundwater is an important factor affecting the 

stability of the surrounding rock. The role of water is 

mainly manifested in the corrosion of the rocks and the 

erosion of the filling material. Groundwater will soften the 

rocks and reduce their strength. This index value can be 

determined using seismic wave detection. Groundwater 

development deduced from seismic waves is a qualitative 

indicator, but we can quantify it by using Table 2. 

(6) Surrounding rock support type (A6) 

When the tunnel is excavated, the stress of the rock 

mass is released, causing deformation and collapse. 

Therefore, effective control of the surrounding rock is the 

key to ensuring the initial stability of the surrounding rock. 

The radial stress provided by the initial support greatly 

improves the stress state of the rock around the tunnel. The 

data of the excavated section can be obtained based on the 

site engineering data, and the data of the unexcavated 

section can be obtained based on the design data. The 

quantitative standards are shown in Table 3. 

(7) Support close time (A7) 

Close time is the time required to excavate from the 

surface to the initial support sealing ring. An early support 

close time has an important effect on the stability of a 

tunnel because the plastic zone quickly develops after 

unloading of the surrounding rock. The surrounding rock 

pressure and deformation will increase greatly once loose 

damage occurs, threatening the stability of the rock 

surrounding a tunnel. These indicators can be obtained 

according to field engineering data. 

(8) Construction management level (A8) 

Engineering disturbance directly causes collapse, and 

factors such as improper excavation methods are directly 

related to tunnel collapse. The construction factors are 
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Table 4 Grade division of construction management level 

Grade 

division 
Specific description 

Parameter 

value 

I 
Construction experience and technical ability 

are extremely insufficient. 
0-0.2 

II 
Construction experience and technical ability 

are poor. 
0.2-0.4 

III 
Construction experience and technical ability 

are fair. 
0.4-0.6 

IV 
Construction experience and technical ability 

are good. 
0.6-0.8 

V 
Construction experience and technical ability 

are superior. 
0.8-1.0 

 

Table 5 Evaluation samples of factors affecting the 

surrounding rock deformation 

 
A1 

(m/s) 

A2 

(kg/m3) 
A3 

A4 

(m) 
A5 A6 

A7 

(d) 
A8 

B1 

(mm) 

B2 

(mm) 

1 2892 2.16 0.25 413 0.9 3 16 0.7 -19.6 -7.6 

2 1996 2.19 0.21 260 0.7 1 17 0.7 -42.4 -25.2 

3 2876 2.15 0.21 381 0.8 2 16 0.7 -19.5 -9.8 

4 2291 2.53 0.2 312 0.6 2 17 0.9 -31.8 -17.3 

5 2330 2.12 0.24 299 0.6 2 18 0.9 -32.1 -16.7 

6 2954 2.21 0.19 372 0.9 3 17 0.7 -18.2 -8.9 

7 1778 2.43 0.2 291 0.6 3 15 0.9 -45.9 -26.1 

8 1510 2.39 0.23 266 0.7 2 16 0.7 -38.7 -22.3 

9 2976 2.15 0.26 391 0.8 2 18 0.9 -23.2 -13.5 

10 2943 2.15 0.24 354 0.8 3 16 0.9 -23.9 -14.2 

11 2422 2.16 0.2 269 0.9 3 16 0.7 -31.2 -15.9 

12 2959 2.19 0.28 336 0.9 2 15 0.9 -28.6 -12.1 

13 2115 2.31 0.25 336 0.7 2 16 0.9 -33.7 -25.3 

14 2276 2.24 0.24 376 0.9 3 16 0.7 -22.1 -8.9 

15 2643 2.01 0.19 411 0.8 3 15 0.9 -23.9 -16.6 

16 2933 2.43 0.19 392 0.9 2 14 0.9 -25.2 -16.1 

17 2969 2.24 0.24 361 0.8 2 13 0.7 -20.9 -10.8 

18 2976 2.19 0.29 402 0.9 2 15 0.7 -18.5 -11.4 

19 2931 2.23 0.24 360 0.9 2 15 0.7 -19.2 -10.7 

20 2902 2.19 0.17 291 0.8 3 14 0.9 -28.5 -18.2 

21 2989 2.27 0.24 302 0.7 3 14 0.9 -30.9 -21.6 

22 2973 2.35 0.22 394 0.9 3 15 0.7 -22.4 -10.4 

23 2945 2.12 0.23 286 0.6 3 15 0.9 -39.5 -21.5 

24 3105 2.18 0.25 310 0.9 4 13 0.9 -21.1 -10.6 

25 3367 2.25 0.23 382 0.8 4 15 0.7 -20.6 -12.1 

 
 

constrained by the quality of the construction unit of the 

project. To simplify the analysis, the technology and 

management levels of the construction unit are categorized 

according to Table 4. 

 

4.2 Evaluation index of tunnel deformation 
 

(1) Vault subsidence (B1) 

This index reflects the vertical settlement of a tunnel. 

Due to the engineering nature of a rock mass, vertical 

settlement is usually caused by underfoot sinking, and it 

Table 6 Analysis results of the attribute correlation 

 A1 A2 A3 A4 A5 A6 A7 A8 

B1 0.040 0.024 0.025 0.037 0.031 0.040 0.022 0.033 

B2 0.034 0.030 0.031 0.046 0.042 0.034 0.028 0.045 

 

 

mainly occurs before the initial support closure. Vault 

subsidence is an important basis for determining the 

stability of a tunnel during construction. 

(2) Horizontal convergence (B2) 

This index reflects the horizontal deformation of the 

tunnel cross section. This deformation is usually caused by 

the deformation of the arch frame, and its value will affect 

the overall shape and stress distribution of the arch, which 

has an important influence on the engineering quality and 

construction safety. Horizontal deformation will cause 

longitudinal cracking of the initial support and may even 

lead to tunnel collapse if the horizontal convergence is too 

large. 

 

4.3 Reduction factor 
 
The effects of different indexes on the deformation of 

the Longtan tunnel vary. Some of these factors may be 

selected for redundancy. We determine the main factors that 

affect the deformation and construct the optimal property 

set, which can reasonably predict the deformation of the 

Longtan tunnel. As shown in Table 5, numerous monitoring 

data of excavated sections are selected, and a model 

evaluation sample is constructed. Then, we use grey 

relational grade evaluation theory to calculate the 

correlation degree of the surrounding rock deformation to 

different deformation factors. 
According to Eq. (3), the correlation degree of vault 

subsidence is calculated for each deformation factor after 

establishing the evaluation sample of factors affecting the 

surrounding rock deformation. Similarly, this work is also 

completed for horizontal convergence. 
As shown in Table 6, the influence of each index on 

vault subsidence and horizontal convergence are analysed, 

and the correlation degree between these factors is 

compared. We find that the main influencing factors were 

A1, A4, A5, A6 and A8. Among these five factors, some 

reflect the geological aspects of the Longtan tunnel, while 

others are construction-related factors. These indicators are 

also the main controlling factors of the deformation of the 

Longtan tunnel. 
 

 

5. Prediction of the deformation of the rock 
surrounding a tunnel 
 

5.1 Constructing neural network learning samples 
 

The sample of a neural network must be representative 

and uniform; therefore, a learning sample set was 
constructed, as shown in Table 7. There are five neurons in 

the input layer: longitudinal wave velocity, tunnel burial 

depth, groundwater development, surrounding rock support 

type and construction management level. The output layer 
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Table 7 Neural network learning samples of surrounding 

rock deformation 

 

Input  Output 

A1 

(m/s) 

A4 

(m) 
A5 A6 A8  

B1 

(mm) 

B2 

(mm) 

1 2892 413 0.9 3 0.7  -19.6 -7.6 

2 1996 260 0.7 1 0.7  -42.4 -25.2 

3 2876 381 0.8 2 0.7  -19.5 -9.8 

4 2291 312 0.6 2 0.9  -31.8 -17.3 

5 2330 299 0.6 2 0.9  -32.1 -16.7 

6 2954 372 0.9 3 0.7  -18.2 -8.9 

7 1778 291 0.6 3 0.9  -45.9 -26.1 

8 1510 266 0.7 2 0.7  -38.7 -22.3 

9 2976 391 0.8 2 0.9  -23.2 -13.5 

10 2943 354 0.8 3 0.9  -23.9 -14.2 

11 2422 269 0.9 3 0.7  -31.2 -15.9 

12 2959 336 0.9 2 0.9  -28.6 -12.1 

13 2115 336 0.7 2 0.9  -33.7 -25.3 

14 2276 376 0.9 3 0.7  -22.1 -8.9 

15 2643 411 0.8 3 0.9  -23.9 -16.6 

16 2933 392 0.9 2 0.9  -25.2 -16.1 

17 2969 361 0.8 2 0.7  -20.9 -10.8 

18 2976 402 0.9 2 0.7  -18.5 -11.4 

19 2931 360 0.9 2 0.7  -19.2 -10.7 

20 2902 291 0.8 3 0.9  -28.5 -18.2 

21 2989 302 0.7 3 0.9  -30.9 -21.6 

22 2973 394 0.9 3 0.7  -22.4 -10.4 

23 2945 286 0.6 3 0.9  -39.5 -21.5 

24 3105 310 0.9 4 0.9  -21.1 -10.6 

25 3367 382 0.8 4 0.7  -20.6 -12.1 

 

Table 8 Optimal neural network model information 

Number of 

input neurons 

Number of 

output 

neurons 

Number of 

hidden layers 

Number of 

neurons in the 

hidden layer 

Target 

error 
Epochs 

Learning 

accuracy 

5 2 1 11 0.05 10000 0.01 

 

 

utilized two neurons: vault subsidence and horizontal 

convergence. 

 

5.2 Neural network input model 
 

After obtaining the sample set, the raw input and output 

data were converted into valid numeric data. The input 

vector X was obtained from the longitudinal wave velocity, 

tunnel burial depth, groundwater development, surrounding 

rock support type and construction management level. The 

output vector Y was obtained from the vault subsidence and 

horizontal convergence. As shown in Table 8, an implicit 

layer was created. After repeated debugging, the 
convergence of the network improved when the number of 

nodes in the hidden layer was 11 and the learning accuracy 

was 0.01; this information can be used for inversion 

 
(a) Training error curve 

 
(b) Correlation coefficient of model 

Fig. 3 Neural network learning 

 

Table 9 Input parameters of the neural network model 

Survey mark 
A1 

(m/s) 

A4 

(m) 
A5 A6 A8 

ZK72+200 2921 320 0.4 4 0.9 

ZK72+190 2920 320 0.3 4 0.7 

ZK72+180 2921 320 0.3 4 0.9 

ZK72+170 2921 324 0.4 4 0.7 

ZK72+160 3003 324 0.8 4 0.9 

ZK72+150 3003 326 0.8 4 0.7 

ZK72+140 3003 324 0.8 4 0.9 

ZK72+130 3003 324 0.8 4 0.7 

ZK72+120 3025 320 0.8 4 0.9 

ZK72+110 3087 320 0.8 4 0.7 

 
 

calculation. Additionally, each sample is input into the 
network for learning, and the mean squared error of the 
output stabilized after 10000 iterations. The MATLAB 
training error curve is shown in Fig. 3(a), and the 
correlation coefficient of the optimal neural network model 
is shown in Fig. 3(b). 
 

5.3 Prediction of surrounding rock deformation 
 

The neural network model established above was used 

with the valid input parameters presented in Table 9. As 

shown in Table 10, the vault subsidence and horizontal 

convergence were obtained for the Longtan tunnel from 

ZK72+200 to ZK72+110. 
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6. Engineering field evaluation 

 
6.1 Advanced forecast 
 

In the previous engineering geological exploration work 

of the Longtan tunnel, the geological engineering was 

complex at ZK72+200~ZK72+110; here, tunnel collapse is 

more likely. Therefore, we applied the seismic prospecting 

method to detect the surrounding rocks at ZK72+204. The 

results of the seismic wave detection and interpretation are 

shown in Figs. 4 and 5. 

According to the detection results (Figs. 4 and 5) at 

ZK72+200~ ZK72+160, as the seismic shear wave 

decreases, the longitudinal wave increases slightly, the 

VP/VS ratio increases, Poisson’s ratio suddenly increases,  

 

 

 

 

and the density and Young’s modulus decrease; therefore, 

there is a greater possibility of rock collapse in front of 

ZK72+204 due to the poor properties of the rock mass and 

the presence of fluids. 

 

6.2 Detecting change points of surrounding rock 
deformation 
 

Given various external forces, the tunnel structure will 

produce certain changes. These changes can usually be 

expressed by the amount of deformation. The most direct 

manifestation of tunnel collapse is indicated by the change 

points of the surrounding rock deformation. The posterior 

probability distribution of the potential collapse position in  

Table 10 Prediction table of vault subsidence and horizontal convergence 

 ZK72+200 ZK72+190 ZK72+180 ZK72+170 ZK72+160 ZK72+150 ZK72+140 ZK72+130 ZK72+120 ZK72+110 

Vault 

Subsidence (mm) 
-46.66 -39.11 -41.25 -42.04 -37.45 -38.87 -35.45 -39.12 -33.66 -39.20 

Horizontal 
convergence 

(mm) 

-28.09 -20.44 -21.94 -23.51 -22.46 -24.16 -22.46 -24.27 -22.54 -24.33 

  
(a) P waves (b) SH waves 

Fig. 4 Depth migration diagram (Xue et al. 2008) 

 

Fig. 5 Diagram of the physical properties (Xue et al. 2008) 
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Fig. 6 Histogram of posterior probability distribution for 

change point location 

 

 

Fig. 7 A photograph of the tunnel collapse 

 

 

the Longtan tunnel is obtained by using the Bayesian 

method for detecting change points based on the results of 

the seismic prospecting method and the prediction of the 

surrounding rock deformation. According to the probability 

distribution, we can precisely locate the future collapse 

position to guide the informatization of engineering 

construction. 

We applied the Bayesian method for detecting change 

points to study the trend of the prediction data of vault 

subsidence and horizontal convergence along 

ZK72+200~ZK72+110 in the Longtan tunnel. The change 

points in each section were calculated by Eq. (14) and Eq. 

(15), as shown in Table 11. The location with the largest 

posterior probability is regarded as the location of the most 

likely change point. 

Fig. 6 shows that the predicted values of vault  

 

 

subsidence and horizontal convergence denote an area with 

a higher probability of change point presence. At 

ZK72+170, the posterior probability of a change point in 

vault subsidence is 0.329, and the posterior probability of a 

change point in horizontal convergence is 0.299. At 

ZK72+160, the posterior probability of a change point in 

vault subsidence is 0.188, and the posterior probability of a 

change point in horizontal convergence is 0.275. At 

ZK72+150, the posterior probability of a change point in 

vault subsidence is 0.283, and the posterior probability of a 

change point in horizontal convergence is 0.281. Combined 

with the above results and site-specific conditions, it can be 

inferred that collapse is more likely to occur when the 

surface is excavated to ZK72+170~ZK72+150. However, at 

the time of construction, attention should be paid to the 

deformation of the surrounding rock, and an emergency 

plan should be made to ensure the safety of construction 

personnel. 

 

6.3 Site-specific conditions 
 

The surface collapsed (Fig. 7) when the tunnel was 

excavated to ZK72+167. In the collapsed section, the silty 

earth fillings were flow-shaped, as in a debris flow. The 

debris blocked the flow of water, allowing the water to 

penetrate the vault and side arch of the initial support. This 

process led to a substantial increase in the water content of 

the surrounding rock at the vault and side arch and reduced 

the cohesion in the surrounding rock. Therefore, the initial 

pressure greatly increased, resulting in the deformation, 

cracking, and collapse of the support system. 

 

 
7. Discussion 
 

The success of a neural network depends on the 

diversity of the training samples. When the training samples 

are diversified, the training accuracy is higher. In this paper, 

the deformation of the rock surrounding the Longtan tunnel 

is predicted by a neural network. The learning sample is the 

monitoring data of the previously excavated tunnel section, 

and the result is the total deformation under normal 

excavation. However, there are no actual monitoring data to 

describe the total deformation amount due to the collapse 

that occurred during tunnel excavation. In the future, via 

sharing resources, substantial data processing, and 

multidisciplinary cooperation, more comprehensive and 

reliable data on the deformation of the surrounding rock 

during tunnel collapse can be used, and the deformation 

prediction model can be redeveloped. This work provides a 

new method of practical and convenient batch processing 

with which researchers can address this problem. 

The tunnel collapse evaluation model in this study 

Table 11 Posterior probability of change point occurrence 

 ZK72+200 ZK72+190 ZK72+180 ZK72+170 ZK72+160 ZK72+150 ZK72+140 ZK72+130 ZK72+120 ZK72+110 

Vault 

subsidence 
0.029 0.029 0.029 0.329 0.188 0.283 0.029 0.029 0.029 0.029 

Horizontal 

convergence 
0.021 0.021 0.021 0.299 0.275 0.281 0.021 0.021 0.021 0.021 
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exhibited high reliability in Longtan tunnel. However, 

tunnel collapse evaluation is a complex and comprehensive 

system. If the risk of tunnel collapse requires a higher 

comprehensive and accurate evaluation result, the relevant 

research must be improved. Initially, many factors exert 

certain impact on the deformation of the rock surrounding a 

tunnel, and the deformation mechanism is complex. It is 

necessary to analyze the deformation factors of different 

types of tunnels to offer a more effective reference for 

future research. For example, factor numbers related to 

collapsibility can be increased in loess tunnel. Then, it is 

crucial to identify and analyze the influencing factors of 

tunnel collapse. If multiple methods can be combined, the 

tunnel collapse risk comprehensive evaluation system will 

be more accurate and perfect. Moreover, the quantification 

of longitudinal wave velocity and groundwater development 

condition in this study was based on the detection accuracy 

of the seismic prospecting method. Only by improving the 

accuracy of this seismic prospecting method and data 

interpretation can the accuracy of the method be improved. 
 
 

8. Conclusions 
 

In this paper, we used the grey system theory to analyse 

8 factors that affect the deformation of rock surrounding a 

tunnel. The results show that the 5 main influencing factors 

are longitudinal wave velocity, tunnel burial depth, 

groundwater development, surrounding rock support type 

and construction management level. Among these five 

factors, some reflect the geological aspects of the Longtan 

tunnel, while others are construction-related factors. These 

indicators are also the main controlling factors of the 

deformation of the Longtan tunnel. 

We used tunnel monitoring data from the excavated 

section of the Longtan tunnel to establish a neural network 

model consisting of five input neurons, one hidden layer, 11 

hidden layer neurons, and two output neurons. Furthermore, 

we used seismic prospecting data and preliminary survey 

data to predict the total amount of deformation of the rock 

surrounding a tunnel collapse. 

The posterior probability distribution of the potential 

collapse position in the Longtan tunnel is obtained by using 

the Bayesian method for detecting change points based on 

the results of the seismic prospecting method and the 

prediction of the surrounding rock deformation. At 

ZK72+170, the posterior probability of a change point in 

vault subsidence is 0.329, and the posterior probability of a 

change point in horizontal convergence is 0.299. At 

ZK72+160, the posterior probability of a change point in 

vault subsidence is 0.188, and the posterior probability of a 

change point in horizontal convergence is 0.275. At 

ZK72+150, the posterior probability of a change point in 

vault subsidence is 0.283, and the posterior probability of a 

change point in horizontal convergence is 0.281. 

Considering the above-mentioned results and site-specific 

conditions, it can be inferred that collapse is most likely to 

occur when the surface is excavated to 

ZK72+170~ZK72+150; during construction, surface 

collapse suddenly occurred when the tunnel was excavated 

to this predicted distance. This research provides a 

reference and a guide for future research on the probability 

analysis of tunnel collapse. 
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List of abbreviation and symbols 
 
X Evaluation index sequence 

Z Reference sequence 

Z0 Normalized reference sequence 

η Resolution coefficient 

P The average of correlation coefficients sequence 

Ek The mean squared error of the neural network 

𝜃j Threshold of the jth neuron in the output layer 

whj Connection weight of the hth and jth neurons 

βj The input of the jth neuron in the output layer 

bh The hth neuron output of the hidden layer 

γh The hth neuron threshold of the hidden layer 

gh
(m) The threshold gradient of the m-layer 

bh
(m) The hidden-layer neuron output of the m-layer 

Zi Distribution density function of observation 
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μ1 The expected value of j before the change point 

μ2 The expected value of j after the change point 

σ1
2 The variance in j before the change point 

σ2
2 The variance in j after the change point 

A1 Longitudinal wave velocity 

A2 Density 

A3 Poisson’s ratio 

A4 Burial depth of tunnel 

A5 Groundwater development 

A6 Surrounding rock support type 

A7 Support close time 

A8 Construction management level 

B1 Vault subsidence 

B2 Horizontal convergence 
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