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1. Introduction 
 

The stability analysis of rock mass of underground 

engineering is of great significance in the development of 

mining engineering, petroleum engineering, civil 

engineering and hydraulic engineering. Many scholars have 

conducted numerous researches on rock stability by 

theoretical analysis (Shan and Lai, 2020), laboratory tests 

(Yin et al. 2017, Huang et al. 2020, Zhang et al. 2020a), 

numerical simulation (Wang et al. 2020a), similar model 

tests (Zhang et al. 2020b) and field tests (Tao et al. 2019, 

Wang et al. 2019, 2020b). The accurate evaluation of stress 

and deformation of rock mass around an excavation is one 

of the fundamental problems in underground engineering. It 

is of special importance for the stability evaluation and 

optimum structural design in tunnel engineering. Over the 

last few decades, numerous achievements have been made 

regarding the mechanical behavior of surrounding rock for 

circular openings by considering the elastic-perfectly plastic 

(EPP) model (Carranza-Torres and Fairhurst 1999), elastic-

brittle plastic (EBP) model (Zhang et al. 2012a,b) and 

elastic-strain softening (ESS) model (Fahimifar et al. 2015, 

Cui et al. 2017, Cui et al. 2019, Zou et al. 2019). 
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The above mechanical models of rock masses behavior 

(i.e., EPP, EBP, ESS) can be defined based on the post-peak 

responses of the stress-strain curves in the failure process of 

rock masses. Hoek and Brown (1997) suggested that the 

EPP, ESS, and EBP models were available for the poor-

quality, average-quality, and very high-quality rock masses, 

respectively. Furthermore, the EPP and EBP models refer to 

two extreme cases of the ESS model, and the ESS model 

can be considered as the most common case (Li et al. 

2015). In other words, the ESS model covers every type of 

rock masses. Because of this observation, the main focus of 

the present study is the issues associated with the ESS 

model. Assuming that the elastic strain of rock masses and 

dilatation angle of the softening region were constant, a 

stepwise procedure for estimating the mechanical response 

around the circular opening in the Hoek-Brown (H-B) ESS 

rock masses was presented by Brown et al. (1983). At a 

later point in time, some improved methods were developed 

to determine the ESS solutions of circular tunnels. For 

instance, using the integration techniques for ESS behavior 

in rock masses, Alonso et al. (2003) calculated the ground 

reaction curves of a circular opening. Lee and Pietruszczak 

(2008) presented a simple and practical stepwise program 

for the calculation of stresses and strains around the circular 

openings in ESS rock masses. Park et al. (2008) extended 

the procedure of Brown et al. (1983) for the cases of 

circular openings excavated in ESS rock masses by using 
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the variable dilation angle and elastic strain increments in 

the plastic zone. Moreover, based on the previous solutions 

for the ESS behavior of rock masses, several more accurate 

and simplified methods are also proposed (Cui et al. 2015). 
However, a limitation of the above works is that the 

evolutions of rock masses parameters around a circular 
opening with confining pressure are not considered. The 
majority of the laboratory results indicate that the 
mechanical and physical properties of the rock masses 
mainly depend on the stress state (Zhang et al. 2018), i.e., 
show the pressure-dependent effect. For tunnels in rock 
masses, the in-situ stress redistribution due to the 
excavation will result in that Young’s modulus and dilation 
angle are not constant (Yuan and Harrison 2004), but vary 
with the confining pressure within the plastic region. 
Considering the difference of Young’s modulus between the 
plastic region and the elastic region, Sharan (2008) derived 
a closed-form solution for a circular opening excavated in 
H-B EBP rock masses. This solution depends on the 
assumption that Young’s modulus within the plastic zone is 
smaller than that within the elastic region. For the rock 
masses around circular openings, Nawrocki and Dusseault 
(1995) presented two models to describe the nonlinear 
distribution of Young’s modulus within the plastic region, 
namely the pressure-dependent modulus (PDM) model and 
the radius-dependent modulus (RDM) model. Brown et al. 
(1989) presented the solutions of circular openings in 
sandstone by considering the PDM model. Zhang et al. 
(2012a) proposed a closed-form solution to calculate the 
stresses and displacements of a circular opening within the 
UST (unified strength theory) EBP rock masses adopting 
the RDM model. Unfortunately, the above Young’s modulus 
models are only adopted to the analysis of circular 
excavations in EBP rock masses, not for the ESS ones. 
Furthermore, regarding the dilatancy of rock masses, many 
existing analyses of the circular openings have always 
focused on the constant dilatancy rather than the variable 
one (Brown et al. 1983, Alonso et al. 2003, Park et al. 
2008). Zhao and Cai (2010a) pointed out that a constant 
dilation angle was an approximation that was physically 
incorrect. For the issues of underground excavations, the 
dilation angle shows a decrease with the increase in 
confining pressure from the opening boundary to the deeper 
ground. Failure to account for the pressure-dependent 
dilatancy will result in calculation errors of the stability of 
underground openings. Detournay (1986) suggested the 
importance of the variable dilatancy and derived a plastic 
shear strain-dependent dilatancy model. Considering the 
effect of the stress state and plastic shear strain, several 
dilatancy models were established (Alejano and Alonso 
2005, Zhao and Cai 2010a, b). Using the model of the 
nonconstant dilatancy proposed by Alejano and Alonso 
(2005) for the analysis of ground reaction curves of tunnels, 
Wang and Qian (2018) studied the stress and deformation of 
rock masses around circular openings. Although such 
variable dilatancy models have been considered to give 
insight into the elastic-plastic solutions of circular openings, 
it is unreasonable to neglect the influence of pressure-
dependent Young’s modulus in ESS rock masses. 

Therefore, the main purpose of this paper is to propose a 

solution for the elastic-plastic analysis of the circular tunnel 

in ESS rock masses with comprehensive consideration 

given to the pressure-dependent Young’s modulus and 

nonlinear dilatancy. Specifically, this study mainly includes 

four sections. The first section focuses on the problem 

definition by analyzing the ESS model corresponding to the 

H-B criterion, the pressure-dependent Young’s modulus, 

and the nonlinear dilatancy. The second section then 

illustrates the procedure for the solution of the circular 

tunnels within H-B ESS rock masses. In the third section, 

the proposed solution is validated by adopting the field 

measurement data, numerical simulation results, and a 

published closed-form solution. Finally, the effects of both 

Young’s modulus model parameters and dilatancy model 

parameters of ESS rock masses on the stress, plastic radius, 

and displacement are further investigated. The proposed 

solution and detailed research results could provide 

theoretical reference for the safety evaluation and optimal 

design of the tunnel support. 

In contrast to the previous solutions, the proposed 

solution has the following innovations. The generalized 

Hoek-Brown yield criterion and the strain-softening model 

are considered for the rock mass. The influence of pressure-

dependent Young’s modulus on both stress and 

displacement is considered. The nonlinear dilatancy is 

considered by introducing the dilatancy angle related to 

confining pressure. The proposed solution can be applied to 

the practical projects. 
 
 

2. Basic theory and problem definition 
 

2.1 Mechanical model of a circular tunnel 
 

The following basic assumptions are to be adopted in 

this analysis of the proposed solution: 

(1) The cross-section of the tunnel is circular; 

(2) The initial stress state of the tunnel is hydrostatic and 

constant with depth; and the stress distribution around the 

tunnel is axisymmetric; 

(3) The rock is homogeneous, continuous, isotropic, and 

initially elastic; and it shows strain-softening behavior. The 

impact of the excavation disturbance is not considered; 

(4) Plane strain conditions are assumed in the plane 

perpendicular to the tunnel axis; the circumferential and 

radial stress represent the major and the minor principal 

stress, respectively. 

Based on the above assumptions, the mechanical model 

of a circular tunnel is illustrated in Fig. 1. p0 represents the 

initial in-situ stress that exists before the tunnel. pi is the 

internal support pressure, which uniformly distributes at the 

tunnel’s surface. R0 is the excavation radius of the circular 

tunnel. Under in-situ stress, the rock masses around a tunnel 

are composed of the plastic residual region and the plastic 

softening region. Rs and Rp are the radii of the residual 

region and the softening region, respectively. The 

circumferential and radial stresses of the elastic-plastic 

interface are represented by σθp and σrp, respectively. 

Moreover, the circumferential and radial stresses of the 

softening-residual interface are represented by σθs and σrs, 

respectively. 
 

2.2 Generalized H-B elastic-strain softening model 
 

The generalized Hoek-Brown (H-B) criterion is an  
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Fig. 1 Mechanical model of a circular tunnel 
 

 

empirical criterion, and it can provide an estimation of rock 

mass strength. As a nonlinear criterion, it has been 

extensively applied in rock mass engineering, which is 

given as (Hoek et al. 2002): 

 1 3 ci 3 ci= +
a

bm s     
 

(1) 

where σ1 and σ3 represent the major and minor principal 

stresses under triaxial compression conditions, respectively; 

σci indicates the unconfined compressive strength for the 

intact rock; mb, s, and a are the rock mass material constants 

that describe the strength characteristics of H-B rock 

masses. The empirical expressions of the constants mb, s, 

and a in Eq. (1) are as follows: 

 i exp ( 100) (28 14 )bm m GSI D  
 

(2) 

 exp ( 100) (9 3 )s GSI D  
 

(3) 

 =1 2+(1 6) exp( 15) exp( 20 3)a GSI  
 

(4) 

where mi is a constant of the intact rock that depends on the 

quality and type of a rock mass; D represents the 

disturbance factor of rock masses; GSI represents the 

geological strength index, which could be obtained 

according to the outcrops and structures of the rock masses. 

Concerning the strain-softening behavior of 

geomaterials, the extensively used plastic shear strain γp is 

applied as the plastic softening index (Alejano and Alonso 

2005). The development of the post-peak yield surface and 

strength parameters is governed by γp, and is given as: 

p p p= r  
 

(5) 

where 
p

  and 
p

r  denote the circumferential and radial 

plastic strain, respectively. 

According to the plasticity theory, the deformation of 

geomaterials can be explained by the plastic potential g and 

the yield criterion f (Kaliszky 1989). For the strain-

softening behavior of rock masses, g and f are both 

governed by the stress tensor σij and the plastic softening 

index γp. Thus, the yield criterion f for ESS rock masses can 

be written as: 

p( , ) 0ijf   
 

(6) 

Using Eqs. (1) and (6), the H-B criterion for rock 

masses of the plastic softening region is then given by: 

 
p( )

p p p

ci ci( , , ) ( ) ( )

0

a

r r b rf m s


             

  

(7) 

where σθ and σr represent the circumferential stress and 

radial stress, respectively; p( )bm  , p( )s   and p( )a   

represent the strength parameters of H-B ESS rock masses 

depending on γp. Generally, the evolution rule of the 

strength parameters is obtained by analyzing the results 

with the laboratory tests. For simplicity, a piecewise linear 

function is used to describe the relationship between γp and 

the strength parameters in this study, which can be defined 

in the following form: 

p p r p p p p

p

r p p

( )( ),      (0 )
( )=

, ( )

      
 

  

 



    


                 
 

(8) 

where ω denotes a certain strength parameter of the H-B 

criterion, i.e., mb, s and a; ωr and ωp stand for the residual 

and peak values of the mb, s and a, respectively; and γp* is 

the critical value of the plastic softening index from 

softening to the residual stage of the surrounding rock. In 

the softening state, ω is set to reduce linearly with the 

increasing γp; while the ω remains invariable in the residual 

region. For the EPP behavior of rock masses, γp is 

considered to be a significantly large number (such as 100). 

Concerning the EBP behavior of rock masses, γp is 0. 

 

2.3 Model of pressure-dependent Young’s modulus 
 

Numerous experimental investigations identify that 

Young’s modulus is a significant parameter controlling the 

mechanical behavior of rock masses (Shi et al. 2018, Chen 

et al. 2019, Ren et al. 2019, Ren et al. 2020, Feng et al. 

2020a, b). Hence, the Young’s modulus model is of vital 

importance for successful evaluation of the stresses and 

strains around a tunnel. The Young’s modulus of rock 

masses manifests a significant confining pressure effect, 

and it shows a nonlinear increase as the confining pressure 

increases. The decrease of Young’s modulus is closely 

related to the gradual failure of the rock masses, which can 

explain the large deformation of surrounding rock observed 

from the tunnel’s surface (Zhang et al. 2012a). Based on 

laboratory tests, some researchers (Kulhawy 1975, You 

2003) concluded that an exponential equation could 

characterize the relationship between the confining pressure 

and Young’s modulus. Furthermore, the conclusions by 

Brown et al. (1989) suggest that the evolution of Young’s 

modulus could be considered as a nonlinear function of 

confining pressure, and the equation is expressed in the 

following form: 

0( ) ( )exp( )r rE E E E       
 

(9) 

where E0 denotes the Young’s modulus value when the 

ip
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confining pressure is 0; E∞ denotes the maximum Young’s 

modulus at the critical stress state; α is a fitting constant that 

governs the non-linearity properties and varies for various 

rock masses. 

For the rock masses around a circular tunnel, the E0 in 

Eq. (9) denotes the Young’s modulus on the tunnel’s 

surface, and E∞ denotes the Young’s modulus at the elastic-

plastic interface. In this study, the model proposed by 

Brown et al. (1989) is employed to calculate the stresses 

and displacements around the tunnels. According to whether 

Young’s modulus varies with the confining pressure, two 

models are used in this paper, namely the constant Young’s 

modulus model (referred to as CYM from hereon) and the 

pressure-dependent Young’s modulus model (referred to as 

PYM from hereon). 

 

2.4 Nonlinear dilatancy model 
 

Experimental observations and engineering practices 

indicate that the rock dilatancy is directly linked to the 

failure process of a rock mass. In the elastic-plastic analysis 

of surrounding rock, dilatancy angle is widely used to 

measure the dilatancy capacity of rock masses. Therefore, 

the dilatancy angle is of considerable importance for 

calculating the stresses and displacements of tunnels. 

Essentially, an appropriate dilatancy model should be 

determined to better reflect the evolution of the rock failure 

mechanism, and to study the potential dilatancy process of 

the rock masses around a tunnel. Early studies of 

geotechnical engineering suggested that the dilation angle ψ 

was restricted to be equal to the friction angle φ in the 

associated flow rule. Subsequently, more recent studies 

noted that most geomaterials followed the non-associative 

flow rule, in which the ψ and the φ are unequal (Walton et 

al. 2019). Based on the engineering practices, Hoek and 

Brown (1997) suggested that the constant dilation angle ψ 

of ψ = 0, ψ = φP / 8 and ψ = φP / 4 for the poor-quality, 

average-quality and very high-quality rock masses, 

respectively. According to the experimental studies, 

however, some researchers asserted that the dilatancy was 

strongly influenced by the confining pressure (Yuan and 

Harrison 2004), and the dilation angle gradually decreased 

with the increase of confining pressure. Furthermore, some 

researchers presented various dilatancy models to integrate 

the effect of dilatancy on rock engineering (Alejano and 

Alonso 2005, Zhao and Cai 2010b). 

For the H-B ESS rock masses, Alejano and Alonso 

(2005) pointed out that the peak value of the friction factor 
pK  could be estimated by the envelope slope of the 

corresponding H-B criterion under a defined confining 

pressure, as follows: 

 
p 1

p p p p p

1 3 3 ci=1+
a

b bK a m m s    


   
 

(10) 

p p p(1 sin ) (1 sin )K    
 

(11) 

where φp is the peak value of friction angle. 

Combining Eqs. (10) and (11), the value φp is obtained, 

which is given by: 

 

 

p

p

1
p p p p

3 cip

1
p p p p

3 ci

arcsin

2+

a

b b

a

b b

a m m s

a m m s

 


 









 

(12) 

Besides, an empirical equation for the peak value of 

dilatancy angle ψp considering φp and confining pressure σ3  

was derived by Alejano and Alonso (2005), which has the 

following form: 

p
p ci

ci 3

lg
1 lg 0.1




 


 
 

(13) 

For circular tunnels, Detournay (1986) established the 

expression to describe the dilatancy factor, as flows: 

 p p p1 ( 1)exp        
 

(14) 

where   is the dilatancy factor; 
p

  is the peak value 

of the dilatancy factor, and it can be obtained by 
p p p=(1+sin ) (1 sin )  

. 

By combining Eqs. (12), (13) and (14), the dilatancy 

factor   in H-B ESS rock masses can be obtained: 

 

 

 

p

p

p p p p

1
p p p p

3 ci

1
p p p p

3 cip ci

ci 3

1 (2sin ) (1 sin ) exp

arcsin

2+
lg

1 lg 0.1

a

b b

a

b b

a m m s

a m m s

    

 

  


 







      


 



    

(15) 

Eq. (15) presents the nonlinear dilatancy model (referred 

to as NDM from hereon) of H-B ESS rock masses around 

tunnels in the plastic region. This equation illustrates that 

the dilatancy factor   strongly depends on the confining 

pressure σ3, the critical value of the plastic softening index 

γp*, and the plastic softening index γp. In the present study, 

the NDM and the CDM (constant dilatancy model) are 

used. The NDM is determined using Eq. (15), while the 

CDM is determined by ψ = φP / 4 and ψ = φP / 8. 
 

 

3. Methodology and solutions 
 

3.1 Stresses and displacements of the elastic region 
 

In the elastic region (r ⩾ Rp), the radial stress σr
e, the 

circumferential stress σθ
e, and the displacement eu  can be 

calculated based on the elastic solution (Park et al. 2008, 

Cui et al. 2015, Wang et al. 2018), which can be expressed 

in the following form: 

  

  

 

2
e

0 0 p p

2
e

0 0 p p

2

pe

0 p

e

+

1+

r r

r

r

p p R r

p p R r

Rv
u p

E r



 

 




  



  



  
  

(16) 
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in which Ee donates the Young’s modulus of rock masses of 

the elastic region, and Ee is equal to E∞; ν is the Poisson’s 

ratio of rock masses. 

By solving Eq. (16) at the external boundary of the 

plastic region, we derive the following equation: 

p p 0 p2( )r rp    
 

(17) 

Substituting Eq. (17) into Eq. (1), the equation for σrp at 

the external boundary of the plastic region is obtained as 

follows: 

 
p

p p

ci p ci 0 p2( )=0
a

b r rm s p     
 

(18) 

When the constant a in Eq. (18) is equal to 0.5, Eq. (18) 

has an exact analytical solution; when a is not equal to 0.5, 

this equation can be solved using the Newton–Raphson 

approach (Cui et al. 2015). 

 

3.2 Stresses and displacements solution of the plastic 
region 
 

For the EPP and EBP behaviors, the closed-form 

solutions of circular tunnels can be obtained. When coming 

up against an issue of the tunnel with ESS behavior, the 

development of a closed-form solution could generally 

become intractable since the material parameters vary with 

the γp. Thus, a finite difference approach to solve this issue 

was firstly presented by Brown et al. (1983). As a numerical 

method, it has been extensively invoked to achieve 

requirements in the ESS problem. In this study, based on the 

approach presented by Wang and Qian (2018), the improved 

solution is derived for the circular tunnel in ESS rock 

masses. The schematic illustration of a circular tunnel is 

presented in Fig. 2. It illustrates that the potential plastic 

region around the tunnel is divided into n concentric annuli. 

σθ(i) and σr(i) denote the circumferential and radial stresses at 

the internal boundary of the ith annulus, respectively. σθ(i-1) 

and σr(i-1) represent the circumferential and radial stresses at 

the external boundary of the ith annulus, respectively. The 

subscript (i) denotes that the corresponding variable 

changes with the development of σr(i) in the ith annulus. 

Furthermore, at the external boundary of the plastic region, 

the r(0) is equal to Rp; at the tunnel’s surface, r(n) is equal to 

R0. 

In this study, the radial stress difference Δσr between the 

external and internal boundaries of the ith annulus is fixed, 

which is given as follows: 

   ( ) (0) i p=r r n r rn p n      
 

(19) 

where σr(0) and σr(n) represent the radial stresses of the 

elastic-plastic interface and the tunnel’s surface, 

respectively. 

Then, according to the Δσr obtained by Eq. (19), the 

radial stress and circumferential stress at the ith annulus can 

be calculated by: 

  ( 1)

( ) ( 1)

( ) ( ) ci ( 1) ( ) ci ( 1)

=

=
i

r i r i r

a

i r i b i r i im s

  

    




 

  


    

(20) 

 

Fig. 2 The schematic diagram for layers in the plastic region 
 

 

where ( 1)b im  , ( 1)is  , and ( 1)ia   are the strength parameters 

of the external boundary of the ith annulus, which can be 

calculated using Eq. (8). At the elastic-plastic interface (i = 

0), 
p

(0) =0 , 
p

(0) =b bm m , 
p

(0) =s s , 
p

(0) =a a . 

The stresses of the elastic-plastic interface (i = 0) is 

deduced as (Brown et al. 1983): 

(0) p

(0) 0 p2

r r

rp

 

 

      
   

        

(21) 

where σr(0) and σθ(0) are the radial and circumferential 

stresses at the elastic-plastic interface (i = 0). 

The circumferential stress difference Δσθ(i) between the 

external and internal boundaries of the ith annulus is 

expressed in the following form: 

( ) ( ) ( 1)=i i i      
 

(22) 

For the ith annulus, in this study, the Young’s modulus 

( )iE  is given as: 

( ) ( ) ( 1)=( ) 2i i iE E E 
 

(23) 

where E(i) and E(i−1) represent the Young’s moduli at the 

internal boundary and external boundary of the ith annulus, 

respectively, which can be given as follows: 

   

   
( ) 0 ( )

( 1) 0 ( 1)

exp

exp

i r i

i r i

E E E E

E E E E

 

 

 

   

     


       

(24) 

Based on the generalized Hooke’s law, the increments of 

elastic strain in the plane strain conditions are provided by: 

e
( )( )

e
( ) ( )( )

11

1

r ir i

i ii

v vv

v vE 





         
                 

(25) 

where 
e

( )r i  and 
e

( )i  denote the radial and 

circumferential elastic strain increments of the ith annulus, 

respectively; v denotes the Poisson’s ratio. 

According to the results by Brown et al. (1983), the 

ip

(0) pr R

( 1)r i 

( 1)i 

( )ir

( ) 0nr R

( 1)ir 

( )r i
( )i

0p

0p

0p0p
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strains of the elastic-plastic interface (i = 0) are written as 

follows: 

(0) p 0

(0) 0 pe

1+r r

r

pv

pE

 

 

      
   

        

(26) 

In the plane strain conditions, the strain increments 

include the plastic and elastic strain increments. Then, the 

following equation is derived: 

e p
( ) ( 1) ( ) ( )

e p
( ) ( 1) ( ) ( )

r i r i r i r i

i i i i   

   

   





              
         

                 

(27) 

where 
p

( )r i  and 
p

( )i  denote the radial plastic strain 

increment and circumferential plastic strain increment, 

respectively. 

Based on the non-associated flow rule, the relationship 

between the plastic strain increments and the dilatancy 

factor can be expressed as: 

p p

( ) ( ) ( )=r i i i     
 

(28) 

where ( )i  represents the dilatancy factor at r(i) of the 

plastic region, which can be calculated from Eq. (15). 

Substituting Eq. (28) into Eq. (27), the following 

equation can be obtained: 

( ) ( )

( ) ( ) ( )

( )

e e

( ) ( ) ( ) ( 1) ( ) ( 1) ( )

p p e

( ) ( 1) ( ) ( 1)

e
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+ + +

+ +
r i i

r i i r i

i

r i i i r i i i i

i r i i i

i







    

  



        

      

 

 

 

    

       


 

(29) 

Setting 

( ) ( )

e e

( 1) ( 1) ( ) ( 1) ( )+ +
r i ii r i i i iB

               according to 

Wang and Qian (2018), ( )r i  and ( )i  can be solved in 

the following form: 

 
( ) ( 1) ( ) ( )

( ) ( 1) ( ) ( )

=

=

r i i i i

i i r i i

B

B

 

 

  

  





  


   

(30) 

In the plane strain conditions, the stress equilibrium 

equation irrespective of body forces can be written as 

follows (Timoshenko and Goodier 1982) 

0rr

r r

  
 

  
(31) 

For the ith annulus, Eq. (31) can be approximated in the 

following form: 

 p
( ) ( 1)( ) ( 1)

( ) ( 1) ( ) ( 1)

2 ,
0

r i ir i r i

i i i i

H

r r r r

   

 


 

 
 

(32) 

in which  p
( ) ( 1),r i iH     (referred to as H from hereon) is 

the function of H-B criterion parameters, 

   
( 1)p

( ) ( )( 1) ci ( 1) ci ( 1), =
ia

r i r ii b i iH m s    


  
 and  ( ) ( ) ( 1)= + 2r i r i r i     

Then, the relationship between the r(i) and r(i-1) (referred 

to as t(i) from hereon) is deduced as: 

( )

( )

( 1)

2
=

2

i r
i

i r

r H
t

r H





 


 
 

(33) 

The compatibility equation for strains is written as 

follows: 

0r

r r

    
 

  

(34) 

For the ith annulus, Eq. (34) can be approximated in an 

incremental form: 

( ) ( 1) ( ) ( 1) ( ) ( 1)

( ) ( 1) ( ) ( 1)

0
i i i i r i r i

i i i ir r r r
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 

   
 

 
 

(35) 

Based on Eq. (35), the relationship between the r(i) and 

r(i−1) can also be written as: 

( ) ( 1) ( ) ( 1)

( )

( 1) ( ) ( ) ( 1)

2
= =

2

i i r i r i
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i i r i r i
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 

 

 
 

(36) 

By combining Eqs. (30)-(36), the radial strain and 

circumferential strain at r(i) can be derived in the following 

form: 

( ) ( 1) ( ) ( 1) ( ) ( 1)

( )

( ) ( ) ( )

( 1) ( 1) ( 1) ( )

( )

( ) ( ) ( )
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   
    

(37) 

where t(i) is the ratio of r(i) and r(i−1) that can be calculated 

using Eq. (33). 

By rearranging Eq. (27), the plastic strain increments 
p

( )r i  and 
p

( )i  of the plastic region are defined as: 

p e
( ) ( 1)( ) ( )

p e
( ) ( 1)( ) ( )

r i r ir i r i

i ii i  

  

  





              
         

               

(38) 

According to Eq. (5), the plastic softening index γp of 

the ith annulus can be calculated as follows: 

 p p p p p p

( ) ( 1) ( ) ( 1) ( ) ( )= + = +i i i i i r i         
 

(39) 

where 
p

( )i  and 
p

( )r i  can be calculated by combining 

Eqs. (25), (37) and (38). 

As described in section 2.2, γ(i)
p is in a state of change as 

σr develops from σrp to pi in the plastic region. Hence, there 

is a position at fth annulus (i = f) where γ(f)
p approaches γp*. 

This position represents the transition from the softening 

region to the residual region. Thus, the radial stress σr(f) is 

equal to σrs at this position. 

The relation between the circumferential and radial 

strains with the displacement can be expressed as 

(Timoshenko and Goodier 1982): 

= r

u u

r r
 





,

 
(40) 
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where εθ and εr are the circumferential and radial strains, 

respectively. 

By combining Eqs. (1) and (31), the stress equilibrium 

equation of rock masses in the plastic residual region is 

derived as: 

 
r

r r

ci ci
=0

a

b rr
m s

r r

   


  

(41) 

From Eq. (41), the radius of the residual region Rs is 

then obtained by the boundary conditions (
0

ir r R
p


  and 

s
sr rr R

 


 ), giving: 

   
 

r r1 1
r r r r
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+ +
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a a

b r b

b

m s m p s
R R
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  
  


 
 
    

(42) 

Eq. (42) shows the relation between Rs and σrs. 

However, the value of Rp (r(i) at the elastic-plastic interface) 

is unknown. Therefore, multiplying Eq. (33), the 

relationship among R0 and Rp for H-B ESS rock masses can 

be rewritten as follows: 

( ) 0

0
(0) p

2
=

2

i n
n r

i
r

r R H

r R H









 
 

 
 

(43) 

The Rp can be calculated by Eq. (43). Therefore, the 

scope of the ith annulus r(i) can be deduced as: 

( ) p
0

2
=

2

i
r

i
i

r

H
r R

H


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 
 

 
 

(44) 

Combining Eqs. (37), (40) and (44), the radial 

displacement u at ith annulus is deduced as: 

( ) ( ) ( ) ( ) p
0

2
=

2

i
r

i i i i
i

r

H
u r R

H
 


 



 
   

 
 

(45) 

Lee and Pietruszczak (2008) have analyzed the circular 

tunnel using another method. Although the proposed 

solution is similar to the work by Lee and Pietruszczak 

(2008), the procedure is totally different in the following 

aspects. Firstly, in Lee and Pietruszczak (2008), the 

influence of pressure-dependent Young’s modulus and 

nonlinear dilatancy is not considered; secondly, the values 

of Rs and σrs are not solved in Lee and Pietruszczak (2008). 

In engineering applications, Rs and σrs are important 

parameters. 

In the work of Lee and Pietruszczak (2008), it is pointed 

that the evolution of stress and displacement for n = 500 

show good agreements with the exact solution. In addition, 

Wang et al. (2018) stated that as n increases from 500 to 

2000, the values of Rp slightly increase, but its increase rate 

become small. Furthermore, after n reaches to 1500, the 

values Rp increase less and gradually converge. Therefore, 

in the present paper, n = 5000 is selected to ensure the 

sufficient accuracy. The flow chart for the proposed solution 

of the circular tunnel within H-B ESS rock masses is 

presented in Fig. 3. The corresponding procedure is 

presented in the following steps: 

(1) Calculate σrp based on Eq. (18) and the radial stress 

increment Δσr using Eq. (19). 

(2) Calculate the radial stress σr(i) and circumferential 

stress σθ(i) based on Eq. (20). 

(3) Calculate the Young’s modulus ( )iE  using Eq. (23) 

and the dilatancy factor ( )i  by integrating σr(i) into Eq. 

(15). 

(4) Calculate 
e

( )r i  and 
e

( )i by integrating Δσr(i), 

Δσθ (i) into Eq. (25). Solve t(i) using Eq. (36). 

(5) Calculate the strain components εr(i) and εθ(i) by 

integrating the values of t(i), βψ(i) into Eq. (37). 

(6) Calculate γ(i)
p  using Eq. (39), and judge whether or 

not 
p p

( ) =i  
. If yes, stop the calculation iteration and σr(i) is 

equal to σrs at this position; the Rs can be solved using Eq. 

(42). Otherwise, set i = i + 1 and repeat steps (1)-(6). 

(7) Calculate the softening region radius Rp and the 

radial displacement u using Eq. (43) and Eq. (45). 
 

 

 

Fig. 3 Flow chart of the calculation procedure 

Input the rock masses parameters E , 0E , ci , v , p

bm , r

bm , ps , rs , pa , ra , p  ; 

the tunnel parameters R0, p0; the model constant α 

Calculate ( )iE by Eq. (23) Calculate ( )i by Eq. (15) 

Start

Calculate the pr by Eq. (18), divide the plastic region into n annuli 

Calculate ( )r i and ( )i of the ith annulus by Eq. (20) 

Calculate e

( )r i and e

( )i of the ith annulus by Eq. (25) 

Calculate ( )it , ( )r i and ( )i of the ith annulus by Eq. (33) 

and Eq. (37), respectively 

Calculate
p

( )r i and
p

( )i of the ith annulus by Eq. (38) 

Calculate p

( )i of the ith annulus by Eq. 

(39), and judge weather p p

( ) =i    

Calculate
pR for H-B ESS 

rock masses by Eq. (43) 

End

Yes

No

Calculate u for  H-B ESS 

rock masses by Eq. (45) 

i+1
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4. Example verifications 
 

The proposed solution is validated by comparing with 

the field measurement results from a practical project 

named Yudushan tunnel and numerical results using the 3D 

finite-difference program FLAC3D. In addition, the 

proposed solution is compared and verified with a closed-

form solution derived from the M-C criterion. 

 

4.1 A comparison with the practical project 
 

Yanchong expressway is a crucial project of a traffic 

guarantee system for the 2022 Beijing Winter Olympics, 

which has a total length of 114.4 kilometers. As an essential 

part of Yanchong expressway, the Yudushan tunnel with a 

bidirectional four lanes is located in Yanqing District, 

Beijing, China. The right line of the tunnel is from 

YK16+349 to YK 21+015, and the left line is from 

ZK16+363.3 to ZK20+955. The rock masses of the tunnel 

are dominated by dolomites, conglomerate, gneiss, and 

sandstone. Fig. 4 illustrates the engineering geological 

profile of the Yudushan tunnel from the Mileage of 

YK16+960 to YK18+360. The tunnel is excavated using the 

New Austrian Tunneling Method (NATM), and the tunnel in 

the study area is designed with a curved wall arch cross-

section. The displacement, internal support pressure, and 

stress were measured on-site at several sections during the 

excavation process. 

In this paper, the measuring data of the section 

YK17+550 are studied in detail. The test arrangements of 

the typical section are shown in Fig. 5. The section 

YK17+550 is located at an overburden depth of about 375 

m. From the geological tests, the in-situ stress p0 is 8.5 

MPa. Based on the on-site geological survey and 

experimental test analysis, the physical and mechanical 

parameters of rock masses are as follows: R0= 6.05 m, 

E∞=11.4 GPa, E0=5.2 GPa, σci=46 MPa, v=0.26, α=0.043, 

mb
p=3.0616, mb

4=0.6091, sp=0.0048, sr=0.0000895, 

ap=0.505, ar=0.522, γp*=0.0085. 

The formulations of the proposed solution are 
implemented using the fish code in every calculation step. 

For the Flac3D simulations, only a quarter of the geometry 

needs to be modeled due to the symmetry of the analyses 

problem (Jiang et al. 2020). The boundary is located at 30  

 

 

Fig. 5 Typical section details and the test arrangements of 

the Yudushan tunnel 

 

 

Fig. 6 Comparison of the proposed solution with the field 

measurement and FLAC3D 
 

 

radii away from the center of the tunnel. The numerical 

model is composed of 8500 zones, as a plane strain model, 

the analysis plane is perpendicular to the axis of the tunnel. 

The normal velocities of grid points along the vertical, 

horizontal, bottom, front and back boundary planes are 

fixed at zero. The basic parameters of rock are the same as 

above. The proposed solution results are compared with the 

field measuring results and the numerical results, as 

illustrated in Fig. 6. 

The results show that the proposed solution is consistent 

with the results of filed measurement and FLAC3D. As the 

support pressure decreases, the displacement gradually  
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(a) 

 
(b) 

Fig. 7 Comparison results of the two solutions 

 

 

increases. Meanwhile, the displacement reaches the 

maximum as the support pressure ultimately released. When 

the support pressure is completely discharged, the 

convergences of the tunnel’s surface obtained by the 

proposed solution and FLAC3D are 40.96 mm and 45.07 

mm, respectively. For defined support pressures, when the 

convergences calculated by the proposed solution are 15.46 

mm 20.14 mm, the field measuring and numerical results 

are 13.94mm, 23.87mm, and 15.73 mm, 20.49 mm, 

respectively. The difference may be induced by that the 

proposed solution is based on numerous fundamental 

assumptions. Moreover, the field measurement is limited 

bythe geological conditions of the construction site and the 

measurement error, which is different from the real data. 

 

4.2 A comparison with the closed-form solution 
 

The comparison between the proposed solution and the 

solution derived by Zhang et al. (2012a) was carried out. As 

the EBP model is adopted in Zhang et al.’s analysis, the 

proposed solution using γp*=0 is adopted in this section. 

Moreover, as the H-B criterion is used in this paper without 

considering the intermediate principal stress, the solution 

using b = 0 by Zhang et al. is adopted (The solution using b 

= 0 of the unified strength theory degenerates to that of the 

M-C criterion). Furthermore, the influence of the nonlinear 

dilatancy is not considered in Zhang et al.’s analysis; thus, 

the CDM of ψ = 0 is used in this section. The other 

parameters are as follows: R0 = 2.5 m, p0 = 150 MPa, v = 

0.2, E∞ = 42 GPa, E0 = 10 GPa, α = 0.05, σci=150 MPa, 

mb
p=10.2, mb

p=1.27, sp=0.062, sr=0.0002, ap=0.5, ar=0.51, 

γp*=0, cp=14.1 MPa, cr=6.4 MPa, φp=45.8°, φr=28.3°. 

Fig. 7 shows the comparative results of the proposed 

solution and Zhang et al.’s solution. As illustrated in Fig. 7, 

the results obtained by the proposed solution are reasonably 

consistent with those calculated by the M-C criterion. It 

should be noted that there are certain differences in the 

values of convergence displacement for the defined support 

pressure between the two solutions in Fig. 7(a). When the 

support pressure is at a low level, the corresponding 

displacement calculated by Zhang et al.’s is larger. These 

differences are mainly due to the fact that the two solutions 

are derived from the H-B criterion and M-C criterion, 

respectively. Some researchers indicated that when the 

confining pressure around the rock is sufficiently small, the 

maximum allowable shear stress of rock with the H-B 

criterion is greater than that with the M-C criterion (Agar et 

al. 1987, Santarelli 1987). Furthermore, the stress obtained 

by the H-B criterion is more accurate (Hoek et al. 2002). 

Therefore, in the condition of low-level support pressure, 

the plastic region of the excavation with the H-B criterion is 

smaller than that with the M-C criterion. This means that a 

smaller displacement is obtained with the H-B criterion. 

Therefore, the results obtained in this paper are consistent 

with Zhang et al.’s results. Based on these reasons, the 

solution proposed in this study is reasonable and correct. 

 

 

5. Parameter analysis 
 

Some parametric analyses are conducted to study the 

far-reaching effect of the CYM, PYM, CDM, and NDM on 

the mechanical response of a circular tunnel. The 

parameters needed in this section are adopted as: tunnel 

radius R0 = 5 m, in-situ stress p0 = 20 MPa, uniaxial 

compressive strength σci=80MPa, Poisson’s ratio v=0.25, E∞ 

= 9 GPa, E0 = 5 GPa, PYM constant α = 0.05, mi = 12. 

According to Sharan (2008), the peak disturbance factor Dp 

and the residual disturbance factor Dr are regarded as 0 and 

0.5, respectively, to characterize the excavation disturbance. 

Furthermore, the peak value of the geological strength 

index is regarded as GSIp = 50. The residual value of 

geological strength index GSIr is calculated using the model 

presented by Alejano et al. (2012), which can be expressed 

as  

 r p17.25exp 0.0107GSI GSI
 

(46) 

By solving Eqs. (2)~(4) and Eq. (46), the parameters of 

rock materials are obtained, as shown in Table 1. In the 

CDM, two kinds of dilatation angle (
p 4   and 

p 8  ) are used. 

 

 

Table 1 Parameters of rock materials 

Parameters mb s a v 

Peak value 2.0121 0.0039 0.5057 0.25 

Residual 

value 
0.4171 0.00008 0.5232 0.25 
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(a) Case A1 

 
(b) Case A2 

Fig. 8 Influences of various models on ground reaction 

curves 

 

 

5.1 Analysis of ground reaction curve 
 

The convergence-confinement method is a standard and 

extensively used approach for support structure design in 

tunnel engineering. This method includes three different 

curves, i.e., the ground reaction curve (GRC), the 

longitudinal displacement profile (LDP), and the support 

characteristic curve (SCC) (Carranza-Torres and Fairhurst 

2000). The GRC is developed with the application of 

flexible supports and the development of the New Austrian 

Tunneling Method. It applies the elastoplastic theory and 

rock mechanics to underground engineering to analyze the 

interaction process of surrounding rock and support. 

Moreover, it is a practical curve for the tunnel structure 

analysis combining theoretical basis, measured data, and 

engineering experience. In the convergence-confinement 

method, it can relate the internal pressure to the 

displacement of the tunnel’s surface. In this paper, the GRC 

is selected to analyze the influences of Young’s modulus 

and dilatancy on the mechanical response of a circular 

tunnel. Two examples that cases A1 and A2 are selected 

corresponding to the conditions of PYM and NDM 

described in section 2. For the results, case A1 is assigned 

two kinds of dilatancy models, which are NDM and CDM 

(ψ = φP / 4 and ψ = φP / 8), respectively. Meanwhile, case A2 

is assigned two kinds of Young’s modulus models, which 

are PYM and CYM (E = 5 GPa and E = 9 GPa), 

respectively. 

Fig. 8(a) and 8(b) show the evolutions of GRCs under 

various Young’s modulus models and dilatancy models for 

H-B ESS rock masses. Obviously, similar developments of 

GRCs for multiple conditions can be observed. In the case 

of A1, the highest u0 is obtained with the NDM at a defined 

support pressure. Furthermore, the lowest u0 is achieved 

with the CDM (ψ = φP / 8) for a defined support pressure. 

The displacement u0 may be underestimated when using a 

CDM, and the smaller the dilatation angle, the more 

significant the underestimation. 

In the case of A2, employing the two CYM of E = 5 GPa 

and E = 9 GPa results in the highest and the lowest u0 for a 

defined support pressure, respectively. When the PYM is 

used, the resulting GRC is at an intermediate level. When 

the support pressure is at low levels, the displacement u0 in 

the CYM conditions may be seriously overestimated or 

underestimated, which makes the engineering design 

relatively dangerous. For high levels of support pressure, 

the use of the CYM and PYM results in almost the same 

displacement u0. The higher the support pressure, the 

smaller the plastic region and deformation of rock masses. 

Therefore, the effects of Young’s modulus and dilatancy on 

the stresses and deformations of rock masses are weakened. 

 

5.2 Analysis of plastic region range 
 

To illustrate the influences of Young’s modulus and 

dilatancy on the plastic region range, the CYM, PYM, 

CDM, and NDM are used to calculate the plastic region 

radius Rp and the plastic residual region radius Rs. Fig. 9 

shows the evolutions of Rp and Rs concerning various 

models. 

As the results plotted in Fig. 9 show, the extent of the Rp 

and Rs are clearly affected by the dilatancy and Young’s 

modulus models. For a defined Young’s modulus model, an 

increasing dilatation angle ψ in the CDM conditions 

increases the Rp and Rs, and the largest Rp and Rs can be 

obtained in the NDM condition. In the CYM condition, 

with an increase of Young’s modulus (referred to as E from 

hereon), Rp and Rs decrease. Taking the case of ψ = φP / 8 as 

an example, when E increases from 5 GPa to 7 GPa, Rp and 

Rs decrease from 10.992 m, 10.064 m to 10.266 m, 8.548 m, 

with decreasing rates of 6.60% and 15.06%, and the 

decreasing rates of 6.23% and 13.54% correspond to the E 

increasing from 7 GPa to 9 GPa. Furthermore, for the case 

of ψ = φP / 4, Rp and Rs decrease from 11.147 m and 10.422 

m to 10.471 m and 8.967 m when E increases from 5 GPa 

to 7 GPa, with decreasing rates of 6.06% and 13.96%, and 

the decreasing rates of 5.67% and 12.48% correspond to the 

E increasing from 7 GPa to 9 GPa. In the NDM condition, 

when the E increases from 5 GPa to 7 GPa, Rp and Rs 

decrease from 11.276 m and 10.674 m to 10.686 m and 

9.377 m, with decreasing rates of 5.23% and 12.15%, and 

the decreasing rates of 4.61% and 10.16% correspond to the 

E increasing from 7 GPa to 9 GPa. It implies that when the 

Young’s modulus model is CYM, the change of Rs is much 

more apparent than that of Rp with the increase of E. In 

other words, Young’s modulus only influences the Rp 

slightly in the CYM conditions. In the CDM conditions, the 

Young’s modulus model has a greater influence on Rp and 

Rs for a smaller dilatation angle ψ. Meanwhile, when the  
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Fig. 9 Comparison of the Rp and Rs with different models 

 

 

Fig. 10 Displacements of surrounding rock masses versus 

radius 

 

Table 2 Statistics of the cases for multiple models 

Models 
Cases 

B1 B2 B3 B4 B5 B6 B7 B8 B9 

E PYM PYM PYM 5 GPa 5 GPa 5 GPa 9 GPa 9 GPa 9 GPa 

ψ NDM φp / 4 φp / 8 NDM φp / 4 φp / 8 NDM φp / 4 φp / 8 

 

 

dilatancy model is NDM, Young’s modulus model has the 

least influence on Rp and Rs. 

 

5.3 Analysis of plastic region displacement 
 

This section chooses nine kinds of cases according to 

the various datasets to incorporate the overall influence of 

Young’s modulus and dilatancy. Table 2 lists the statistical 

parameters varied in this section. Fig. 10 plots the evolution 

of the radial displacements u for various cases according to 

the input parameters listed in Table 2. 

As observed from Fig. 10, the radial displacement u 

gradually decreases with the increasing radius r for all 

cases. Additionally, u is significantly influenced by the 

consideration of the Young’s modulus and dilatancy 

models. It is interesting to see that this influence is much 

more pronounced at the position close to the tunnel’s 

surface. Meanwhile, it can be concluded that for a defined 

dilatancy model, in general, u in the case of PYM (i.e., 

cases B1, B2, and B3) are between the those of CYM (i.e., 

cases B4, B5, B6, B7, B8, and B9). Furthermore, it is worth 

noted that the minimum displacement is obtained in case 

B9. Generally, for a defined Young’s modulus model, the 

radial displacements in the case of NDM is reasonably 

larger than those in the case of CDM. For instance, the 

displacement of the tunnel’s face increases by 20.46% as 

the condition varies from case B3 to case B1. Similarly, 

when the situations change from cases B6, B9 to cases B4, 

B7, the displacements of tunnel’s surface increases by 

15.43%, 43.88%, respectively. Therefore, neglecting the 

NDM will lead to the underestimation of tunnel radial 

displacement, which is also consistent with the analysis 

results in section 5.1. In view of this, we recommend to use 

the NDM as the dilatancy model for future elastic-plastic 

analysis and the design of tunnels. Moreover, Fig. 10 also 

suggests that for the same Young’s modulus model, the 

displacements obtained by the CDM are very similar to 

those obtained by the NDM at the position near the elastic-

plastic interface. It implies that the dilatancy model exerts a 

more significant effect on the zone near the tunnel’s surface 

than that near the elastic-plastic interface. 

 

5.4 Analysis of tunnel’s surface displacement 
 

In this section, three cases of Young’s modulus 

conditions are defined for each dilatancy model, as listed in 

Table 3. Case C1 does not consider the discrepancy of the E 

value between the elastic and plastic regions. Namely, case 

C1 assumes a CYM model, in which the value of E is set 

from 5 GPa to 9 GPa at an interval of 0.5 GPa. Case C2 is a 

PYM model given by Eq. (9), in which the value of E0 is 5 

GPa, and the value of E∞ is set from 5 GPa to 9 GPa at an 

interval of 0.5 GPa. Case C3 is also a PYM model; however, 

the value of E∞ is 5 GPa, and the value of E0 is set from 5 

GPa to 9 GPa at an interval of 0.5 GPa. Meanwhile, the 

other parameters are all the same with the standard case. 

Then, the results of the tunnel’s surface displacement u0 

obtained from case C1, case C2, and case C3 are compared in 

Fig 11. 

It can be found that the highest value of u0 is obtained in 

the case of C2 for a defined dilatancy model. Meanwhile, 

case C3 generates the lowest value of u0 in comparison to 

other cases. Thus, both cases C2 and C3 do consider the 

variability of the E value with radial stress in the plastic 

region and stand for two extreme estimations. The results of 

case C1 are between those of case C2 and case C3. On the  
 

 

Table 3 Distribution of Young’s modulus conditions with 

the same dilatancy 

Young’s modulus condition 
E / GPa E∞ / GPa E0 / GPa 

Cases Properties 

Case C1 constant 5~9 — — 

Case C2 variable — 5~9 5 

Case C3 variable — 9 5~9 
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Fig. 11 Displacements of tunnel’s surface with various 

modes 

 

 

Fig. 12 The relation between the tunnel’s surface 

displacement and PYM model constants 
 

 

other hand, with the increase of the values of E, E∞, and E0 

in rock masses, values of the tunnel’s surface displacement 

u0 all decrease. In particular, a sharp decrease of u0 with the 

increasing E for case C1 can be observed. The results show 

that the difference between E∞ and E0 is a key factor 

affecting the error between the CYM and PYM conditions. 

As such, a suitable choice of Young’s modulus model has a 

significant effect on the tunnel design. 
 

5.5 Influence of the PYM constant 
 

To further study the influence of the PYM on the 

deformation of a circular tunnel, the evolution of the 

tunnel’s surface displacement u0 with the constant α is 

presented in Fig. 12, for three different dilatancy conditions. 

As can be seen from Fig. 12, the curves are very similar for 

all cases, namely, with the increasing α, u0 decreases 

monotonically. It implies that the constant α on u0 exhibits 

no evident dependence on the dilatancy model. 

When the constant α is kept in a low-value range, the 

curves change considerably; namely, the u0 changes 

significantly with α. When the α is in a high-value range, 

the curves change tends to be gentle, and the u0 is basically 

not affected by the constant α. In the NDM condition, the u0 

decreases by 48.72% as the α increases from 0.001 to 1. 

Furthermore, using the two CDM (ψ = φP / 4, ψ = φP / 8) 

will cause the u0 to be decreased by 58.31% and 58.16%, 

respectively, as the constant α increases from 0.001 to 1. 

Therefore, in the CDM, the constant α has a more 

significant effect on u0; in the NDM, the u0 is relatively less 

influenced by the α. Generally, for a defined constant α, the 

value of u0 corresponding to NDM is the largest; the value 

of u0 corresponding to CDM is relatively lower, and the 

smaller the dilation angle, the smaller the u0. Furthermore, it 

can be seen that using the CDM condition will 

underestimate the deformation of the surrounding rock. 

Therefore, in practical engineering, reasonable use of 

Young’s modulus, dilatancy is essential for the correct 

estimation of tunnel stability. 
 

 

6. Conclusions 
 

This paper has proposed a solution for the elastic-plastic 
analysis on the circular tunnel within H-B ESS rock masses 
considering nonlinear dilatancy and pressure-dependent 
Young’s modulus. The main conclusions are summarized as 
follows: 

• The highest tunnel deformation is obtained using the 

NDM for a defined support pressure. At low support 

pressure, the CYM will result in a misestimation of tunnel 

deformation. Meanwhile, the use of the CYM and PYM 

results in almost the same displacements at high support 

pressure. 

• For a defined dilatancy model, the larger the value of 

E in the CYM, the smaller the Rp and Rs. For a defined 

Young’s modulus model, the Rp and Rs in the CDM increase 

as the dilatancy angle ψ increases; the Rp and Rs in the 

NDM are the largest. In the NDM, Rp and Rs are least 

influenced by Young’s modulus model. 

• For a defined dilatancy model, the tunnel deformation 

corresponding to the PYM is between those obtained in the 

CYM. For a defined Young’s modulus model, the tunnel 

deformation in the NDM is the largest. For a defined 

dilatancy model, the rise of E∞ or E0 in the PYM can both 

cause the tunnel’s surface displacement u0 to decrease. 

• In the PYM, the u0 decreases as the constant α 

increases. When α is in a low-value range, u0 decreases 

rapidly; when α is in a high-value range, u0 decreases 

slowly. In the NDM, u0 is least influenced by α, and using 

the CDM will underestimate the tunnel deformation. 
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