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1. Introduction 
 

There are many variables that influence the slope 

stability. Uncertainties concerning the exact values for these 

variables lead to great challenges in slope stability analysis. 

The variables in slope stability analysis including site 

boundaries (Liu et al. 2017, Wang et al. 2017), variable soil 

strengths (Griffiths et al. 2009, Li et al. 2016a, Zhang and 

Huang 2016, Li et al. 2017, Chenari and Fatahi 2019), 

permeability coefficients (Zhang et al. 2005, Cho 2014, 

Jamshidi Chenari and Behfar 2017), and the varied coupling 

of multiple parameters (Zhang et al. 2014). Generally, the 

probabilistic approach is effective for solving uncertainty 

problems (Juang et al. 2015), for example, the random field 

for spatial variability problem (Vanmarcke and Erik 1983, 

Griffiths and Fenton 2004, Low et al. 2007, Griffiths et al. 

2009, Qi and Li 2018, Zhu and Yang 2018). 

The uncertainties mentioned above are mainly due to 
a lack of knowledge about the initial slope conditions.  
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Different initial conditions may cause the slope to fail under 

different triggering factors, such as earthquake, rainfall, etc. 

Among the different types of landslides, rainfall-induced 

landslides commonly cause significant economic losses 

(Dai and Lee 2001, Dahal et al. 2008, Huang et al. 2015, 

Van Tien et al. 2018), and this type of landslide is 

recognized worldwide as a natural hazard (Zhang et al. 

2014). For example, 82.15% of the fatal landslides mainly 

occurred between April and September in China (statistical 

time spans from 1950 to 2016), which is consistent with the 

monthly precipitation (Lin and Wang 2018). Thus, reliable 

analysis and risk assessment for rainfall-induced slopes 

failure in varied spatial orientations are very important 

problems. 

However, these problems have not been well addressed. 

Much of the published research has not considered rainfall 

as a triggering factor on slopes composed of spatially 

variable soil. Examples include some research on slope 

reliability analysis (Low et al. 2007, Griffiths et al. 2009, 

Zhang et al. 2010, Juang et al. 2015, Jiang and Huang 

2016), system reliability analyses (Huang et al. 2010, Jiang 

et al. 2014, Jiang et al. 2017a, Li et al. 2017, Liu et al. 

2017), and risk assessments (Huang et al. 2013, Li and Chu 

2016, Zhang and Huang 2016, Liu et al. 2017, Qi and Li 

2018). In part, this lack of research on rainfall-induced 

slope failure in spatially variable soils is because 

incorporating the necessary rainfall time factors would 

increase computation times by several orders of magnitude. 

To solve this problem, this paper investigates the 
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reliability and risk of rainfall-induced slope failure in 

spatially variable soils. This is done for slopes where the 

slope reliability can be determined based on the factor of 

safety (FOS) and the slope risk can be assessed based on 

sliding mass, which is directly related to the damage 

consequences of the landslide. This relationship has been 

recognized by many researchers (Juang et al. 2015, Li et al. 

2016a, Liu et al. 2017) and verified after studying many 

landslide disasters (Staron and Lajeunesse 2009, Johnson et 

al. 2016, Xu et al. 2016, Yu et al. 2016). In addition, some 

preliminary studies have investigated the sliding mass-

based risk assessments for slopes (Huang et al. 2013, Li and 

Chu 2016, Zhang and Huang 2016, Liu et al. 2017, Qi and 

Li 2018). 

For some of the numerical methods used to investigate 

soil slopes with spatial variability problems, the 

computational tasks are very large. Especially for the limit 

equilibrium method (LEM), which requires a large number 

of potential sliding surfaces, and the Monte-Carlo method 

(Griffiths et al. 2009, Jiang et al. 2014, Jamshidi Chenari 

and Alaie 2015) that requires a large number of random 

samples (Li and Chu 2016). To improve the efficiency of 

the calculations and produce a more accurate probability 

density function distribution, this paper uses the probability 

density evolution method (PDEM) to investigate the slope 

reliability and risk assessment for spatially variable soils, 

which has provided a new framework for rainfall-induced 

slopes failure in spatially variable soil. 
 

 

2. Methodology 
 

2.1 Slope simulation with random fields 
 

Based on the framework of random fields (Vanmarcke 

and Erik 1983) for the inherent spatial variability of soil 

(Elkateb et al. 2003), the Karhunen-Loève (K-L) expansion 

was used to simulate a two-dimensional slope with 

anisotropic random fields. This method was applied to 

generate anisotropic random fields using Eqs. (1)-(3). The 

realization of the random field was approximated by 
ˆ (x, )H  (Cho 2009). The equations are: 

 

(1) 

 
(2) 

 

(3) 

where, Ω is the calculation domain, μ is the mean value of 

the random field, σ is the standard deviation, λ and φ are the 

eigenvalue and characteristic function of the autocorrelation 

function, respectively, x and x' are the coordinates of one 

dimensional, ρ is the autocorrelation function, 𝐻̂(𝑥, 𝜃) is 

the approximate random field of H(x, θ), N is the number of 

K-L terms (where N = 150 in this paper), c and ϕ are the 

cohesion and internal friction angle of soils, respectively. 

 

Fig. 1 Schematic representation showing slope models 

for (a) material regions; typical realizations of random 

field, (b) cohesion and (c) internal friction angle 

 

 

In the anisotropic random fields, an exponential 

autocorrelation function was used. Thus, the realized 

𝐻̂(𝑥, 𝜃) should be converted to the standard state by Eq. 

(4). Eq. (5) shows the exponential autocorrelation function 

in two-dimensional space (Cho 2009). 

 
(4) 

 

(5) 

where lh and lv are the autocorrelation distances in the 

horizontal and vertical directions, respectively, x and 𝑥′, y 

and 𝑦′ are the coordinates in the two-dimensional random 

field. Other parameters can be referred in Eqs. (1)-(3). 

To realize the random field for the soil slope, the slope 

regions need to be divided for the different materials. Fig. 

1(a) shows the material regions for the slope random field; 

there are total of 1,055 regions each rectangular region 

being 1 m by 1 m in size. Fig. 1(b) shows a typical 

realization for a common random field model (Cho 2009), 

where lh = 20 m, lv = 2 m, ρ(c, φ) = −0.5, mean c = 20 kPa, 

mean φ = 25°, coefficient of variation of cohesion (COVC) 

= 0.3, coefficient of variation of friction angle (COVF) = 

0.2. It can be seen by comparing Fig. 1(b) with Fig. 1(c) 

that the soil’s cohesion and internal friction angles are 

negatively correlated and that the random fields are well 

realized. 

 

2.2 Hydraulic characteristics 
 

For saturated soils, the hydraulic conductivity is 

constant but for unsaturated soils, the hydraulic 

conductivity depends on the degree of saturation or the 

matric suction. For this study, the Van Genuchten model 

(Van Genuchten 1980) was used to define the hydraulic 
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characteristics. Using this model, the hydraulic conductivity 

can be calculated from the matric suction and the 

volumetric water content using Eqs. (6) and (7) (Van 

Genuchten 1980): 

 

(6) 

 
(7) 

where, Θ is the normalized volumetric water content or 

effective water saturation, θ, θr and θs are the volumetric 

water content, residual water content, and saturated 

volumetric water content, respectively, k is the hydraulic 

conductivity of the unsaturated soil, ua is the pore air 

pressure, uw is the pore water pressure, ks is the saturated 

hydraulic conductivity, and α and n are fitting parameters 

for the model (Van Genuchten 1980). 

 

2.3 Probability density evolution method 
 

The PDEM is a highly efficient stochastic analysis 

method because it can quickly approximate an analytic 

solution for the probability density function (Li and Chen 

2008, 2009, Chen and Li 2009). The core of the method is 

the probability conservation principle, which means the 

total probability remains unchanged in a conservative 

system. For slope stability problems, by solving the slope 

stability balance equation on the basis of existing 

deterministic methods, any physical parameters (e.g. the 

displacement or safety factor) can be chosen as the random 

variable in the PDEM equation. The one-dimensional 

PDEM equation can be written as Eq. (8) (Chen and Li 

2009): 

 

(8) 

where H is composed of physical quantities and Θ is a 

random vector. The variable pHΘ is the joint probability 

density function, θ is the basic random variable, and t is the 

time for the physical process. 

In Eq. (8), if the physical quantity is FOS, it can be 

written as Eq. (9), a similar analysis of slope has been 

published by the authors (Huang and Xiong 2017, Huang et 

al. 2018, Hu and Huang 2019). Eq. (9) is written as: 

 
(9) 

where F is the FOS. 

To solve Eq. (9), the representative discretized points in 

the two-dimensional basic random variable space Θ should 

be selected firstly (the points for soil cohesive and internal 

friction angle in a random field) and the initial probability 

of each sample should be assigned. For this paper, these 

values were obtained using the sphere packings method, 

which is a smart way to determine the representative points 

and useful for the PDEM (Chen and Li 2009). Fig. 2 shows 

the point selection method in two-dimensional standard 

normal space. In Fig. 2(a) the red circle denotes X1
2 + X2

2  

 
(a) (b) 

Fig. 2 Illustration showing representative points 

determined by the sphere packings method; (a) the 

distribution of random numbers in 2-D normal space and 

(b) the corresponding assigned probabilities 

 

 
Fig. 3 Graphs comparing FOS distributions (a) PDF and 

(b) CDF determined by MCS and PDEM for a slope with 

spatially varied soil. FOS = factor of safety, PDF = 

probability density function, CDF = cumulative 

probability function. See the text for the slope’s physical 

and mechanical parameters 

 

 

≤3.52. Using this method, the coordinates of the selected 

points are random variables. The points were selected from 

center to the edge and the assigned probabilities gradually 

decrease, as shown in Fig. 2(b). Each point occupies the 

same area in standard normal space and the occupied areas 

were calculated according to hexagonal equivalence, thus 

the hexagonal outline in Fig. 2(a). For this paper, 469 points 

in two-dimensional standard normal space were selected. 

This number of points is adequate to provide the required 

accuracy and guarantees that there are a sufficient number 

of failure cases for the PDEM. 
 

 

3. Verification of PDEM for spatially variable soil 
analysis 
 

Generally, the calculations required for Monte-Carlo 

simulation (MCS) of random field problem are extremely 

time-consuming. For example, to solve for a slope with 

spatially variable soils, 23,000 realizations by Li et al. 

(2016b) and 50,000 realizations by Cho (2009) were  
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required. However, using PDEM, only several hundred 

samples are necessary and the results are very similar to 

MCS results (Li and Chen 2009). 

To illustrate the efficiency and accuracy of PDEM, Fig. 

3 shows a comparison of FOS distributions in a slope with 

spatially variable soil as determined by MCS and PDEM. 

Fig. 3 shows 10,000 realizations by MCS and 469 

realizations by PDEM based on random fields. The case 

used in the figure is a common slope (Cho 2009) with the 

parameters slope height = 10 m, slope angle = 45°, lh = 20 

m, lv = 2 m, ρ(c, φ) = −0.5, mean c = 20 kPa, mean φ = 25°, 

COVC = 0.3, COVF = 0.2, and γ = 17.8 kN/m3. It can be 

seen that the FOS distributions are nearly identical. The 

relative CDF errors are 0.4% (FOS = 1.5) and 1.78% (FOS 

= 2.0). 
 

 

4. Slope model parameter settings 
 

4.1 Slope geometry and soil spatial variability 
 

Jiang and Huang (2016) summarized the published 

researches on random field problems and found that the 

slope most commonly modeled by these investigations was 

10 m high with a slope angle of 45 degrees. Therefore, a 

soil slope with a height of 10 m high and 1 m wide (2D 

slope for the sliding mass calculations) was used in this 

paper. The calculation boundary width is three times the 

height of the slope and the bottom thickness is equal to the 

slope height. The slope’s physical and mechanical 

parameters are the same as those specified for the 

verification case described above. A similar model was used 

to carry out slope testing by Huang and Xiong (2017). 

There are three methods that can be used to solve for  

 

 

 

slope stability when the slope incorporates spatially variable 

soil. They are the random finite element method (RFFM), 

the random finite difference method (RFDM), and the 

random limit equilibrium method (RLEM). Many scholars 

have used (Cho 2009, Huang et al. 2013 Jiang et al. 2017b, 

Qi and Li 2018) or proposed improvements on RLEM 

(Zhang and Huang 2016, Javankhoshdel et al. 2018, Izadi et 

al. 2020, Mafi et al. 2020) in their researches. In addition, 

the obtained FOSs by RLEM and RFEM were found to be 

very similar (Griffiths and Lane 1999, Cala and Flisiak 

2001, Griffiths and Fenton 2004, Ozbay and Cabalar 2015). 

Moreover, some optimization methods based on RLEM, 

such as surface altering optimization has been demonstrated 

to show a good accuracy and speed (Mafi et al. 2020). 

Thus, the RLEM was used for this investigation. 

For RLEM, the number of potential slip surfaces is very 

important. Too few slip surfaces will not allow the method 

to represent all the potential variability in the sliding mass, 

but too many surfaces will make the calculations 

excessively complex and time-consuming. Previous 

researchers have used more than 5,000 potential sliding 

surfaces. For example Jiang et al. (2017b) used 5,551 slip 

surfaces, Zhang and Huang (2016) used 9,200–15,000 slip 

surfaces, and 16,400 surfaces were used in the calculations 

presented by Li et al. (2016b). For this paper, a total of 

5,887 potential slip surfaces were generated in area 

encompassing 1.5 times the slope height. The final results 

show that this number of surfaces is reasonable because all 

the critical slip surfaces are in this area. 

Table 1 shows the parameters for the random field based 

on Cho (2009, 2014), where the mean soil cohesion and 

internal friction angle is based on Rahardjo et al. (2007) and 

the soil’s properties are similar to the silt described by Lee 

et al. (2009) and Yang et al. (2018). It should be pointed out  

Table 1 Parameter settings for the spatially varied soil random fields 

Parameters Value 

γd (kN/m3) 17 

lh (m) 20 

lv (m) 2 

ρ (c, φ) -0.5 

mean c (kPa) 8 

mean φ (°) 25 

COVC 0.15 

COVF 0.1 

 

Fig. 4 Diagram showing the initial settings for the rainfall infiltration numerical model 

 

Initial groundwater table 
Cross section for porewater pressure profile 

Inflow 

Total pressure head =5m 
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Table 2 Parameters used to construct the soil water 

characteristic curve shown in Fig. 5 

Parameters Value 

θs 0.40 

θr 0.04 

α (kPa -1) 0.1 

n 2 

ks (m/s) 5×10-6 

 

Table 3 Rainfall intensities, durations, and analysis times 

used in the numerical simulations 

Case Intensity (mm/h) Duration (h) Total analysis time (h) 

Case 1 10 24 72 

Case 2 80 24 72 

Case 3 80 3 72 

 

 

that all the slope samples should be stable (to ensure the 

slope samples have the engineering meanings) before the 

rainfall begins (initial FOS > 1), which means that the 

setting of coefficient of variation for the soils is not very 

high. 

 

4.2 Rainfall and hydraulic parameter settings 
 

Fig. 4 shows the configuration and hydraulic boundary 

conditions for the rainfall infiltration model. The initial 

water table depth is five meters below the elevation of the 

foot of the slope and the phreatic seepage boundary was set 

at the right side of the model (with a constant total pressure 

head). The groundwater flow analyses require an initial 

condition, and the initial maximum negative pressure was 

set of 50 kPa based on Rahardjo et al. (2007). 

Fig. 5 shows the soil water characteristic curve (SWCC) 

for the soil in the slope. The curve is based on the Van 

Genuchten model (Van Genuchten 1980) and the soil is 

similar to silt (Lee et al. 2009, Rahardjo et al. 2007, Yang et 

al. 2018). The values for the parameters used to construct 

Fig. 5 are listed in Table 2. 

A large amount of field data and numerous research 

projects have shown that one of the most important factors 

involved in causing rainfall-induced landslides are rainfall 

duration and intensity (Guzzetti et al. 2008, Galanti et al.  

 

 

2018, Segoni et al. 2018). Generally, rainfall intensity is 10-

80 mm/h and the rainfall duration can range from a few 

minutes to several days. Example intensities reported in the 

literature include 10.8 mm/h (Cho 2014), 7.2-43.2 mm/h 

(Zhang et al. 2014), 14.5 mm/h (Yang et al. 2018), and 

extreme major rainfall of 9.12-89 mm/h (Lee et al. 2009). 

Table 3 lists three sets of rainfall intensity and duration data 

used to define three rainfall cases that were analyzed using 

the Seep/W groundwater flow analysis software from GEO-

SLOPE (GEO-SLOPE International Ltd. 2018). The rainfall 

data used were similar to data used by the researchers 

mentioned above and the rainfall parameters recommended 

by the Seep/W documentation. Similar cases can be found 

on the Geoslope website (GEO-SLOPE International Ltd. 

2018). The specific cases analyzed are: Case 1, intensity = 

10 mm/h, duration = 24 h (long-term low-intensity rainfall); 

Case 2, intensity = 80 mm/h, duration = 24 h (long-term 

high-intensity rainfall); Case 3, intensity = 80 mm/h, 

duration = 3 h (short-term high-intensity rainfall). The 

analysis time for each of the three cases was 72 h (Table 3). 

 

 

5. Reliability analysis and risk assessment 
 

5.1 Reliability analysis 
 

For slope reliability analysis, the first field that must be 

calculated is the rainfall infiltration and seepage. Fig. 6 

shows the pore water pressure–height profiles for the three 

different rainfall cases in the slope shown in Fig, 4; the 

profiles are based on the SWCC curve in Fig 5. The initial 

maximum negative pressure in the soil for these profiles is 

50 kPa, thus when the rain starts to fall, the pore water 

pressure in the soil near the surface gradually rises from 

−50 kPa. 

As can be seen for Case 1 shown in Fig. 6(a), (low 

rainfall intensity for 24 h), seepage does not saturate the soil 

on the upper part of the slope until the rainfall ends. The 

groundwater level (model height = 5 m) does not increase 

and the water from the rainfall only influences the soil to a 

depth of about 5 m. However, for Case 2 shown in Fig. 

6(b), the high rainfall intensity for 24 h causes the surface 

soil to be rapidly saturated and the groundwater level rises 

significantly. The maximum rainfall influence depth for this 

intense rainfall is about 9 m. For Case 3 in Fig. 6(c),  

  

Fig. 5 Graphs showing the hydraulic characteristics of the model soil. (a) Soil-water characteristic curve and (b) Hydraulic 

conductivity curve. Note: This figure is based on the model proposed by Van Genuchten (1980) 
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Fig. 6 Pore water pressure-height profiles for the three rainfall cases. (a) Case 1, (b) Case 2 and (c) Case 3. The rainfall 

intensity and duration for each case are listed in Table 3 

 

μ±3σ 

μ±3σ 

μ±3σ 

 

Fig. 7 Mean FOS vs. time curves for the three rainfall cases with FOS ± three standard deviations shown by the dashed 

lines. (a) Case 1, (b) Case 2 and (c) Case 3. The red lines are the slopes of the FOS curves with no random factor 

 

 

Fig. 8 Graphs showing probability density functions and cumulative probability functions vs. FOS for the three rainfall 

cases at different times. Case 1 - (a) and (b), Case 2 - (c) and (d) and Case 3 - (e) and (f) 
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Fig. 9 Graph showing the reliability changes during 

rainfall for the three cases. The reliabilities for Case 1 

and Case 3 are indicated on the left axis, the reliability 

for Case 2 on the right axis 

 

 

although the total amount of water in the rainfall is the same 

as the rainfall in Case 1, the infiltration curve is quite 

different, and the maximum rainfall influence depth is about 

5 m. 

Rainfall infiltration leads to changes in the soil’s shear 

strength, and the safety factor should be calculated by the 

unsaturated shear strength (Vanapalli et al. 1996). Eq. (10) 

is the shear strength equation suggested for unsaturated 

soils by Vanapalli et al. (1996): 

 
(10) 

where τ is the shear strength, c’ is the effective cohesion, σn 

is the total normal stress, ua is the pore air pressure, uw is 

the pore water pressure, ϕ’ is the effective friction angle, 

and Θ is the normalized volumetric water content from Eq. 

(6). 

For the model slope, the slope’s FOS was calculated 

using the modified shear strength with the initial cohesion 

and internal friction angle parameters taken from the 

random field model described in the section of random 

fields. Then FOS values for each time period were 

calculated. Fig. 7 shows the mean FOS versus time curves 

and the curves for FOS plus and minus three times the 

standard deviation for the three rainfall cases. The red lines 

in Fig. 7 mark the slope of the FOS curves with no random 

factor and it is clear that the red lines are almost coincide 

with the mean FOS curves. This means the FOS curve 

slopes with no random factor are equivalent to the mean 

FOS curves that include the spatially variable soils. 

 

 

To illustrate the effects of rainfall on the slope stability 

more clearly, Fig. 8 shows the probability density functions 

and the safety factors for the three rainfall cases at different 

times. The initial safety factor presents a normal 

distribution; the shapes of the curves result from the spatial 

variations in the soil’s mechanical parameters. For low-

intensity rainfall and short-term high-intensity rainfall, 

Cases 1 and 3, the PDF of the FOS moves to the left in 

Figs. 8(a) and 8(e), but the curves do not move very far (the 

change in PDF is not large). Note that the PDF’s become 

stable after the rainfall ceases. However, for the long-term 

high-intensity rainfall, Case 2, the decrease in PDF is 

considerable (Fig. 8(c)). After 24 h, a significant proportion 

of the slope cases show slope failure. However, note that 

after the rainfall has ended at 24 h, the PDF of FOS moves 

back to the right (as shown by the t = 48 h and t = 72 h 

curves) which means that slope stability has been 

recovered. 

Slope reliability can be calculated from Pr = 1−pf, where 

Pr is reliability and pf is failure probability. For stochastic 

analysis, the value of CDF when FOS = 1 in Fig. 8 can be 

taken as the failure probability. The slope reliabilities during 

the rainfall were calculated and are shown in Fig. 9. Fig. 9 

uses two Y-axes because the change in pf for Cases 1 and 3 

are very small. However, the rainfall causes a significant 

change in slope reliability for Cases 2. During this rainfall, 

the reliability decreases rapidly after the rain has been 

falling for twelve hours, but after the rainfall, the reliability 

gradually recovers. Fig. 6 can be used to explain the 

differences in Fig. 9; a local saturation zone was generated 

around the slope surface during the rainfall (case 2), which 

will change into unsaturated seepage after rainfall. 

However, the slope surface never saturated during the 

rainfall for case 1 and case 3 (Fig. 6). Thus, no recovery 

phenomenon occurred. 
In conclusion, when the spatial variations in the soil are 

considered, the reliability of slopes will be reduced 
significantly when the slope is subjected to long-term high-
intensity rainfall. This is completely different from the 
results of deterministic analysis when the spatial variations 
in the soil are not considered (in Fig 7(b), the minimum 
FOS >1 for the long-term high-intensity rainfall). This 
difference arises because the initial safety factors for some 
portions of the slope are low when the spatial variations in 
the soil composition are taken into account; the rainfall can 
easily trigger a landslide in those parts of the slope. 
Therefore, considering the spatial variations in the soil 
when it rains is a more reasonable approach 
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for the slope design engineering. 

 

5.2 Risk assessment 
 

Slope reliability and risk assessment are different but 

coupled. The distribution of safety factor for potential slip 

surfaces can be used for reliability analysis, and the sliding 

mass itself is a major part of the risk assessment. Risk 

assessments are generally related to the hazard, which refer 

to the likelihood of possible negative effects on 
infrastructure, structures, people and their belongings 
(Fenton and Griffiths 2008). The overall risk can be 
calculated using Eq. (11) if the consequences of the 
landslide are considered to be directly related to the sliding  

 

 

 

 

mass (Huang et al. 2013). A simplified form of Eq. (11) can 

be written as: 

 
(11) 

where R is the risk, pf is failure probability and C represents 

the consequences of the slope failure. 

As mentioned previously, there are many methods for 

assessing the risk of soil slope failure. For this study, the 

method based on sliding masses was used. This method 

correlates the failure modes with the consequences and the 

total risk is taken to be the sum of all the individual failure 

risks. Using this approach, Eq. (11) should be rewritten as 

Eq. (12) (Huang et al. 2013): 

fR p C 

  
(a) No random factors (b) Considering the random factors 

Fig. 10 Graphs showing the potential changes in sliding volumes during the three rainfall events with (a) no random factors 

and (b) considering the random factors. Note that none of the cases illustrated resulted in slope failure 

 

Fig. 11 Schematic representation showing slip surfaces in a landslides triggered by long-term high-intensity rainfall 

 

Fig. 12 Graphs showing the (a) PDF and (b) CDF vs. the sliding mass (for risk assessment) for high rainfall intensity 

induced landslide based on the slope failure cases 

 

Initial potential 

critical slip surface 
sliding mass 

Slip surfaces of failure cases that 

triggered by rainfall 
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(12) 

In engineering, the slope failure risk can be correlated 

with economic losses, and the Ci in Eq. (12) can be 

calculated from Eq. (13) (Liu et al. 2017): 

. 

(13) 

 (14) 

where, up is the unit price of economic losses, i is the 

computed failure cases, Vi is the sliding mass of failure 

samples, g(X) is the performance function of slope, 

“FOS(all)” means all the potential sliding surfaces. 

In Eq. (13), the consequence is proportional to the 

sliding mass and the variable up is unit price of the 

economic loss. However, the actual losses may differ by 

two orders of magnitude (Klose et al. 2015, Yin et al. 2016, 

Liu et al. 2017). Thus for this study, the slope risk 

assessment does not consider the economics but only 

analyzes the sliding mass uncertainty, which is feasible and 

reasonable (Li et al. 2016a, Zhang and Huang 2016). 

A simplified illustration of the potential sliding mass 

volumes with no random factor is shown in Fig. 10(a). It 

can be seen in Fig. 10(a) that the potential sliding masses in 

Case 1 and Case 3 (the low-intensity rainfall and short-term 

high-intensity rainfall cases) do not decrease when the 

random factors are not considered. However, the long-term 

high-intensity rainfall, Case 2, leads to a significant 

reduction of the potential sliding mass. Although the slope 

does not fail in Case 2 (FOS > 1 in Fig. 7), the critical slip 

surface does gradually move towards the shallow surface, 

and the potential sliding mass also decreases. This may be 

because the soil near the slope’s surface becomes saturated. 

Fig. 10(b) shows the mean curves for the potential sliding 

masses for the three rainfall cases when the variability in 

the slope parameters are considered. It can be seen that the 

critical sliding surface changes very little during the low-

intensity rainfall and short-term high-intensity rainfall 

events. However, during the long-term high-intensity 

rainfall, the slope failure mechanism is moving towards 

shallow sliding. As pointed out in the discussion 

accompanying Fig. 8, the slope in Case 2 returns to its 

original state about two days after the rainfall ends. It 

should be pointed out that the Fig. 10(b) only shows the 

results that not failure for Case 2, and the failure samples 

under long-term high-intensity rainfall were illustrated and 

analyzed in Figs. 11 and 12. 

Since low-intensity rainfall and short-term high-

intensity rainfall did not cause slope failure when 

considering the variability of soil, Fig. 11 shows only the 

slip surfaces of landslides that triggered by long-term high-

intensity rainfall. Clearly, the rainfall-induced slope failure 

mechanism was shallow sliding. The probability 

distribution for the sliding mass for the failure samples is 

shown in Fig. 12. For Fig. 12, the sliding masses were 

obtained based on the location of the slip surfaces at the 

time of slope failure. As can be seen from Fig. 12, the range 

of sliding masses is about 10-35 m3 with a mean value of 

about 23 m3. This mean is approximately half of the initial 

potential sliding mass. 

Although the sliding masses obtained in Fig. 12 is not 

large, the analysis framework proposed in this paper shows 

its engineering application meanings, which including the 

variability of unstable volume, the distribution pattern 

caused by rainfall, the position of sliding surfaces, etc. 

Moreover, the risk assessment coupled failure probability 

and the sliding consequence analysis seem more reasonable 

than reliability analysis, thus it is suggested that the volume 

of the sliding mass be used for slope risk assessment. In 

addition, under long-term high-intensity rainfall, it has been 

shown that the sliding mass presents a normal distribution 

when the spatial variability of the soil is considered. 

 

 

6. Conclusions 
 

This study investigated the slope risk for slopes in 

spatially variable soils under rainfall. Several conclusions 

can be drawn. 

• For slopes incorporated spatial variability problem, the 

probability density evolution method has a higher 

computational efficiency than Monte-Carlo simulations. 

This observation provides a new algorithm for investigating 

slope random field problems. 

• For slope random field problems, slope reliability 

changes during rainfall. For low-intensity rainfall and short-

term high-intensity rainfall, the decrease of reliability is 

small but for long-term high-intensity rainfall, the reliability 

decreases considerably. The reliability decreases because 

some of the initial slope safety factors are low when the 

spatially variable soils are considered and rainfall can easily 

trigger a landslide for this part of the slope samples. 

• The risk assessment coupled failure probability and the 

sliding consequence analysis seem more reasonable than 

slope reliability analysis. Thus, the sliding mass-based risk 

assessment for slopes with spatially variable soils is 

recommended. During long-term high-intensity rainfall, the 

sliding mass presents a normal distribution when the spatial 

variability of the soil is considered, and the sliding mass is 

much smaller than the initial potential sliding mass, 

showing a shallow surface sliding mechanism. 
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