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1. Introduction 
 

In recent years, the use of functionally graded (FG) 
sandwich structures in engineering fields such as civil 
engineering, aerospace, shipbuilding and machinery sectors 
has attracted intensive research interests due to their high 
strength-to-weight ratio. As a result, the mechanical 
response of FG sandwich structures is of considerable 
importance in both academic research and industrial fields 
(Sofiyev et al. 2012, Yaghoobi and Yaghoobi 2013, 
Swaminathan and Naveenkumar 2014, Kar and Panda 2015, 
Ahmed et al. 2019, Mehar and Panda 2018, Rezaiee-Pajand 
et al. 2018, Dash et al. 2018, Karami et al. 2019, Mehar et 
al. 2019 and 2020, Avcar 2019, Kirlangiç and Akbaş 2020).  
Since the shear deformation influences are considerably 

important in thick plates or plates manufactured of FGMs, 
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shear deformation theories such as first-order shear 

deformation theory (FSDT) and higher-order shear 

deformation theories (HSDTs) should be utilized to 

investigate the mechanical responses of FG plates. 

The FSDT generates reasonable results, but requires the 

use of a shear correction parameter (Civalek and Acar 2007, 

Mousavi and Tahani 2012, Malekzadeh and Monajjemzadeh 

2013, Avcar 2016, Shokravi 2017, Hamidi et al. 2018, 

Bensattalah et al. 2019, Mirjavadi et al. 2019a). Whereas, 

the HSDTs (Touratier 1991, Soldatos 1992, Reddy 2000, 

Karama et al. 2003, Pradyumna and Bandyopadhyay 2008, 

Talha and Singh 2010, Sobhy 2013, Panda and Katariya 

2015, Katariya and Panda 2016, Mehar et al. 2016 and 

2017, Kar and Panda 2017, Katariya et al. 2017, Katariya 

and Panda 2019ab and 2020, Mehar and Panda 2019, 

Katariya et al. 2018 and 2019, Abdulrazzaq et al. 2020) do 

not need a shear correction parameter, but their governing 

equations are more complex than those of the FSDT. 

Recently, new shear deformation theories involving only 

four unknowns have been developed (Ghugal and Sayyad 

2011, Nguyen 2014, Zhang et al. 2015, Sobhy 2016, Adim 

et al. 2016, Abdelmalek et al. 2017, Zouatnia et al. 2018), 
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but these theories lead to the resolution of a number of 

equations of motion more than of those used in classical 

plate theory (CPT) (Akgoz and Civalek 2011, Avcar and 

Mohammed 2018). Thus, needs exist for the development 

of HSDTs which are simple to use. 

In the present work, an efficient and simple formulation 

with shear deformation effect is developed for the buckling 

and vibrational analyses of exponentially graded sandwich 

plates resting on elastic foundations under various boundary 

conditions. The highlight of this new formulation is that, in 

addition to incorporating the shear deformation effect, the 

displacement components are expressed with only three 

unknowns as the classical plate theory (CPT), which is even 

less than the FSDT and do not requires shear correction 

parameter. The sandwich plate is considered to be supported 

by isotropic or orthotropic two-parameter elastic 

foundations. The equations of motion of exponentially 

graded sandwich plates resting on elastic foundation are 

obtained by utilizing the Hamilton’s principle. These 

equations of motion for the sandwich plate under various 

boundary conditions are then solved. As a result, critical 

buckling loads and natural frequencies are determined by 

solving eigenvalue problem. The performance of the present 

formulation is verified by comparing it with HSDT’s 

solutions available in literature. It can be concluded that the 

present method is as accurate as other HSDTs with higher 

number of unknowns and so deserves attention. 
 

 

2. Theoretical formulation 
 

Consider a sandwich plate with three layers as depicted 

in Fig. 1. Two FG face sheets are synthesized of a mixture 

of a metal and a ceramic, while the core is manufactured 

from an isotropic homogeneous material. The material 

properties �̅� of FG face sheets such as Young’s modulus E 

and the material density ρ, are supposed to vary 

continuously within the plate thickness by an exponential 

law distribution as (Sobhy 2013):  

, ,  
(1) 

where subscripts m and c refer to metal and ceramic, and 

the volume fraction V(n) of each layer is given by:  

,     

(2a) 

,    
(2b) 

,     

(2c) 

where /z z h , /i ih h h  (i=) and k is the inhomogeneity 

parameter which takes values greater than or equal to zero. 

It is noted that the core is independent of the value of k 

which is fully ceramic. 

 

Fig. 1 Geometry of the exponentially graded sandwich 

plate resting on elastic foundations 

 

 

2.1 Kinematics and constitutive equations 
 

The displacement field of the novel theory is given as 

follows: 

 

(3) 

where u0, v0, and w0 are three unknown displacement 

functions of middle surface of the plate and β is a parameter 

of the present displacement model.  

In this work the displacement field contains a shape 

functions expressed as: 

 
(4) 

The nonzero linear strains associated with the 

displacement field in Eq. (3) are 
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and 

,  (7) 

For the exponentially graded sandwich plates, the 

stress–strain relation- ships can be written as: 

 

(8) 

where (σx, σy, σz, τyz, τxz, τxy) and (εx, εy, εz, γyz, γxz, γxy) are the 

stress and strain components, respectively. The elastic 

constants Cij are defined as 

 ,  

 

(9) 

 

2.2 Equations of motion 
 

Hamilton’s principle is utilized herein to determine 

equations of motion. The principle can be stated in an 

analytical form as follows (Ebrahimi  and Barati 2017a,  

Eltaher et al. 2018, Hadji et al. 2019, Sahouane et al. 2019, 

Fenjan et al. 2019ab, Safa et al. 2019, Mirjavadi et al. 

2019b, Hamed et al. 2020, Eltaher and Mohamed 2020):  

 

(10) 

where δU is the variation of strain energy; δV is the 

variation of work induced by the external forces; and δK is 

the variation of kinetic energy.  

The variation of strain energy of the plate is calculated 

by 

 

(11) 

where A is the top surface and the stress resultants N, M, S 

and Q are defined by: 

,
 

and 

, 
 

(12) 

The variation of work done by the applied loads can be 

expressed as 

 
(13) 

where fe is the density of reaction force of foundation. For 

the Pasternak foundation model: 

 
(14) 

where KW is the modulus of subgrade reaction (elastic 

coefficient of the foundation) and KS1 and KS2 are the shear 

moduli of the subgrade (shear layer foundation stiffness). If 

foundation is homogeneous and isotropic, we will get KS1= 

KS2=KS. If the shear layer foundation stiffness is neglected, 

Pasternak foundation becomes a Winkler foundation with 

 

(15) 

The variation of kinetic energy is written as 

 

(16) 

where dot-superscript convention indicates the 

differentiation with respect to the time variable t; ρ(z) is the 

mass density; and (I0, I1, J1, I2, J2, K2) are mass inertias 

defined as  

 

(17) 

Using the expressions for δU, δV, and δK from Eqs. 

(11), (14), and (16) into Eq. (10) and integrating by parts, 

and collecting the coefficients of δu0, δv0 and δw0, the 

following equations of motion of the plate are obtained 
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Substituting Eq. (5) into Eq. (8) and the subsequent 

results into Eqs. (12), the following constitutive equations 

are found: 

 

(19a) 

 
(19b) 

where 

 

(20a) 

 
(20b) 

 

(20c) 

The equations of motion of the present three-unknown 

trigonometric shear deformation theory can be written in 

terms of displacements (u0, v0 and w0) by substituting Eq.(6) 

into Eqs. (19) and the subsequent results into Eq. (18) 
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3. Analytical solutions 
 

The analytical solution of Eq. (21) can be determined 

for sandwich plates under various boundary conditions by 

employing the following expansions of generalized 

displacements: 

 

(22) 

where i=√−1, (Umn, Vmn, Wmn) are coefficients, and ω=ωmn  

denotes the eigenfrequency associated with (m, n)th 

eigenmode. The functions Xm(x) and Yn(y) are suggested by 

Sobhy (2013) to satisfy various boundary conditions, and 

they are listed in Table 1 noting that λ=mπ/a and μ=nπ/b.  

Substituting expressions (22) into Eqs. (21) and 

multiplying each equation by the corresponding 

eigenfunction then integrating over the domain of solution, 

we can determine, after some mathematical manipulations, 

the following expressions: 
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The non-trivial solution is determined when the 

determinant of Eq. (23) equals zero. For the free vibration 

problem, we have 
0 0 0 0x y xyP P P   . While for the 

buckling analysis, we put 0 0xyP   ; 0
xP P  and 

0  yP P , 

i.e., 
0 0/  y xP P  . 

It is noted that the present solution depends on the 

choice of parameter β of the proposed theory. In this study, 

the adequate value is taken as a solution of the eigenvalue 

problem 0ijS  . 

 

 

4. Numerical results and discussions 
 

For checking the accuracy of the developed model, 

several comparisons and parametric studies are presented in 

the following. All presented results are in dimensionless 

form as  
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Table 1 The admissible functions Xm(x) and Yn(y)  

 
Boundary conditions The functions Xm and Yn 

At x=0,a  At y=0, b   Xm(x) Yn(y) 

SSSS   
  

  

CSSS   
  

  

CSCS   
  

  

CCSS   
  

  

CCCC   
  

  

FFCC   
  

  

()’ Denotes the derivative with respect to the corresponding coordinates 

''(0) (0) 0m mX X  ''(0) (0) 0n nY Y 
sin(  )x sin(  )y

''( ) ( ) 0m mX a X a  ''( ) ( ) 0n nY b Y b 

'(0) (0) 0m mX X  ''(0) (0) 0n nY Y 
 sin(  ) cos(  ) 1x x   sin(  )y

''( ) ( ) 0m mX a X a  ''( ) ( ) 0n nY b Y b 

'(0) (0) 0m mX X  '(0) (0) 0n nY Y 
 sin(  ) cos(  ) 1x x    sin(  ) cos(  ) 1x x  

''( ) ( ) 0m mX a X a  ''( ) ( ) 0n nY b Y b 

'(0) (0) 0m mX X  ''( ) ( ) 0n nY b Y b 
2sin (  )x sin(  )y

'( ) ( ) 0m mX a X a  ''( ) ( ) 0n nY b Y b 

'(0) (0) 0m mX X  ''(0) (0) 0n nY Y 
2sin (  )x 2sin (  )y

'( ) ( ) 0m mX a X a  '( ) ( ) 0n nY b Y b 

'' '''(0) (0) 0m mX X  '(0) (0) 0n nY Y 
2 2cos (  ) sin (  ) 1x x  

 
2sin (  )y

'' '''( ) ( ) 0m mX a X a  '( ) ( ) 0n nY b Y b 
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Table 2 Comparison of dimensionless frequency “ω*” of simply supported EGM sandwich square plates “k=1.5” resting 

on Pasternak’s elastic foundations 

Scheme Theory 
   

         

1-0-1 

Model 1 
(a) 

0.9655 1.0200 1.0356 1.4125 1.4633 1.4781 4.7808 4.8854 4.9135 

Model 2 
(a) 

0.9647 1.0198 1.0356 1.4121 1.4632 1.4781 4.7808 4.8854 4.9136 

Present 0.9656 1.0201 1.0357 1.4129 1.4633 1.4782 4.7956 4.8857 4.9136 

1-1-1 

Model 1 
(a) 

1.0811 1.1396 1.1563 1.4697 1.5248 1.5407 4.6537 4.7517 4.7789 

Model 2 
(a) 

1.0807 1.1395 1.1563 1.4695 1.5247 1.5407 4.6537 4.7517 4.7789 

Present 1.0812 1.1396 1.1563 1.4700 1.5248 1.5407 4.6629 4.7519 4.7789 

1-2-1 

Model 1 
(a) 

1.1872 1.2578 1.2781 1.5392 1.6045 1.6236 4.6099 4.7076 4.7357 

Model 2 
(a) 

1.1872 1.2578 1.2781 1.5392 1.6045 1.6236 4.6100 4.7076 4.7357 

Present 1.1873 1.2578 1.2781 1.5395 1.6045 1.6236 4.6180 4.7078 4.7357 

1-3-1 

Model 1 
(a) 

1.2663 1.3479 1.3716 1.5954 1.6703 1.6924 4.5910 4.6901 4.7192 

Model 2 
(a) 

1.2666 1.3480 1.3716 1.5956 1.6704 1.6924 4.5911 4.6901 4.7192 

Present 1.2665 1.3479 1.3716 1.5957 1.6703 1.6924 4.5987 4.6902 4.7192 

(a)Given from Ait Amar Meziane et al. (2014) 

Table 3 Comparison of dimensionless frequency  “ω*” of (1-1-1) EGM sandwich plates with various boundary 

conditions (b/a=2, K0=J0=10)  

B.C Theory 
k=0 k=0.5 k=3.5 

a/h=5 a/h=10 a/h=20 a/h=5 a/h=10 a/h=20 a/h=5 a/h=10 a/h=20 

FFCC 

Model 1 
(a) 

2.4747 2.8519 2.9944 2.1360 2.3371 2.4055 1.8894 1.9923 2.0248 

Model 2 
(a) 

2.4736 2.8516 2.9943 2.1352 2.3368 2.4054 1.8880 1.9918 2.0247 

Present 2.4229 2.7793 2.9660 2.0792 2.2983 2.3926 1.8507 1.9742 2.0194 

CCCC 

Model 1 
(a) 

2.3473 2.6053 2.6953 2.0305 2.1658 2.2093 1.8189 1.8906 1.9124 

Model 2 
(a) 

2.3467 2.6052 2.6952 2.0301 2.1657 2.2093 1.8182 1.8904 1.9123 

Present 2.3448 2.6035 2.6947 2.0285 2.1649 2.2091 1.8178 1.8902 1.9123 

CSCS 

Model 1 
(a) 

2.3349 2.5270 2.5906 2.0360 2.1399 2.1722 1.8539 1.9148 1.9328 

Model 2 
(a) 

2.3345 2.5269 2.5906 2.0358 2.1398 2.1721 1.8535 1.9146 1.9328 

Present 2.3123 2.5164 2.5875 2.0227 2.1351 2.1708 1.8474 1.9128 1.9323 

CCSS 

Model 1 
(a) 

2.2746 2.5175 2.6015 1.9691 2.0959 2.1364 1.7665 1.8334 1.8536 

Model 2 
(a) 

2.2740 2.5173 2.6014 1.9687 2.0957 2.1363 1.7658 1.8331 1.8535 

Present 2.2644 2.5133 2.6003 1.9636 2.0940 2.1358 1.7640 1.8326 1.8534 

CSSS 

Model 1 
(a) 

2.2207 2.3931 2.4496 1.9408 2.0334 2.0619 1.7729 1.8270 1.8429 

Model 2 
(a) 

2.2204 2.3930 2.4495 1.9406 2.0334 2.0619 1.7725 1.8269 1.8429 

Present 2.1906 2.3803 2.4458 1.9245 2.0278 2.0604 1.7653 1.8247 1.8423 

SSSS 

Model 1 
(a) 

1.5388 1.5947 1.6113 1.3990 1.4310 1.4401 1.3376 1.3594 1.3655 

Model 2 
(a) 

1.5387 1.5948 1.6113 1.3990 1.4310 1.4401 1.3375 1.3594 1.3655 

Present 1.5438 1.5963 1.6117 1.4010 1.4316 1.4403 1.3384 1.3597 1.3655 

(a)Given from Ait Amar Meziane et al. (2014) 

0 0 0K J  0 0100, 0K J  0 0100, 100K J 

/ 5a h  / 10a h  / 20a h  / 5a h  / 10a h  / 20a h  / 5a h  / 10a h  / 20a h 
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Fig. 3 Dimensionless frequency “ω*” versus the ratio 

“a/h” of the (2-1-2) E-FG sandwich square plates resting 

on Winkler’s elastic foundation with various boundary 

conditions(K0=100, k=2) 

 

 

the layers thicknesses ratio defined as 

• 1-0-1 the plate is made of two layers of equal thickness 

without a core. 

• 1-1-1 the plate has the same thicknesses of the layers 

(core and faces sheets) 

• 1-2-1 the plate has the thickness of the core is twice 

the thickness of face sheets. 

• 1-3-1 the plate has the thickness of the core is thrice 

the thickness of face sheets. 

 

4.1 Free vibration of the FG sandwich plate 
 

In this first part, several numerical results of the free 

vibrational analysis of the FG-sandwich plate with and 

without elastic foundation computed by the current three 

unknowns shear deformation theory are presented in the 

form of explicit tables and graphs. 

 To verify the accuracy of the current model, the 

obtained results of the free vibrational analysis of the 

simply supported E-FG sandwich plate resting on elastic 

foundations are compared with the models existing in the 

literature (Ait Amar Meziane et al. 2014). From the results 

of the fundamental frequency of the E-FG sandwich plate 

are given in the Table 2, it can be seen that the present 

model is in good agreement with the two models developed  

 

 
Fig. 4 Dimensionless frequency  “ω*”  versus the 

aspect ratio “b/a” of simply-supported and clamped     

E-FG sandwich  plate (1-2-1) for different values of  

foundation stiffness’s “K0” and “J0”  (a/h=10, k=2) 

 

 

by Ait Amar Meziane et al. (2014). We can note from the 

results that the thick E-FG sandwich plate give the smaller 

value of the fundamental frequencies. Also, it is clear that 

the configuration 1-3-1 give the biggest values of the 

fundamental frequency. 

The Table 3 shows the comparison of the fundamental 

frequency “ω*” of the (1-1-1) rectangular E-FG sandwich 

plate on the Winkler-Pasternak elastic foundation 

“J1=J2=10” versus the material index “k” and geometry 

ratio “a/h” with various boundary conditions (FFCC, 

CCCC, CSCS, CCSS, CSSS and SSSS). From the 

comparison made in the Table 3, it is clear that the current 

results obtained using the present three unknowns shear 

deformation theory are in good agreement those computed 

by Ait Amar Meziane et al. (2014) with four variable 

refined shear deformation model.  

From the table, we can see that the increasing in the 

values of the material index “k” lead to decrease the 

fundamental frequencies “ω*” for different boundary 

conditions. 

It can be also concluded that the FG sandwich plate with 

two free edges and two opposite clamped edges (FFCC) 

give the biggest values of the frequency “ω*” 

The variation of the non-dimensional fundamental  
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Fig. 2 Dimensionless frequency  “ω*” versus the ratio “a/h” for various values of the inhomogeneity parameter “k” and 

various types of simply- supported EGM sandwich square plates resting on elastic foundations “K0=J0=100” 
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frequencies “ω*” of simply supported E-FG sandwich plate 

on elastic foundations versus geometry ratio “a/h” and 

index “k” are plotted in the Fig. 2. The aspect ratio is taken  

 

 
 

“a/b=1”. From the graphs it can be seen that the non-

dimensional fundamental frequencies “ω*” is in direct 

correlation relation with the both the index “k” and “a/h”  

Table 4  Comparison of critical buckling load “𝑁” of simply supported EGM sandwich square plates “k=0.5”  resting 

on Pasternak’s elastic foundations “ξ=1” 

Scheme Theory 
K0=J0=0 K0=100, J0=0 K0=100, J0=100 

a/h=5 a/h=10 a/h=20 a/h=5 a/h=10 a/h=20 a/h=5 a/h=10 a/h=20 

1-0-1 

Model 1 (a) 2.5618 2.8127 2.8834 4.3247 4.5756 4.6463 39.1232 39.3741 39.4449 

Model 2 (a) 2.5592 2.8120 2.8833 4.3221 4.5749 4.6462 39.1206 39.3734 39.4447 

Present 2.5618 2.8127 2.8835 4.3247 4.5757 4.6464 39.1233 39.3742 39.4449 

1-1-1 

Model 1 (a) 3.1030 3.4156 3.5040 4.8659 5.1785 5.2669 39.6644 39.9770 40.0655 

Model 2 (a) 3.1015 3.4152 3.5039 4.8644 5.1781 5.2668 39.6629 39.9766 40.0654 

Present 3.1030 3.4156 3.5040 4.8659 5.1785 5.2670 39.6645 39.9771 40.0655 

1-2-1 

Model 1 (a) 3.5165 3.9026 4.0129 5.2795 5.6655 5.7758 40.0780 40.4640 40.5744 

Model 2 (a) 3.5166 3.9027 4.0130 5.2795 5.6656 5.7759 40.0780 40.4641 40.5744 

Present 3.5166 3.9026 4.0129 5.2795 5.6655 5.7759 40.0780 40.4641 40.5744 

1-3-1 

Model 1 (a) 3.8243 4.2743 4.4030 5.5872 6.0364 6.1659 40.3857 40.8349 40.9644 

Model 2 (a) 3.8253 4.2738 4.4031 5.5882 6.0368 6.1660 40.3868 40.8353 40.9646 

Present 3.8243 4.2735 4.4030 5.5872 6.0364 6.1659 40.3858 40.8349 40.9645 

(a) Given from Ait Amar Meziane et al. (2014) 

Table 5  Comparison of critical buckling load “𝑁” of (1-1-1) EGM sandwich plates with various boundary conditions 

(b/a=2, K0=J0=10) 

B.C Theory 
k=0 k=0.5 k=3.5 

a/h=5 a/h=10 a/h=20 a/h=5 a/h=10 a/h=20 a/h=5 a/h=10 a/h=20 

FFCC 

Model 1 
(a) 

15.7316 20.6940 22.6679 10.9709 12.9380 13.6121 7.8557 8.5665 8.7850 

Model 2 
(a) 

15.7165 20.6896 22.6667 10.9609 12.9346 13.6112 7.8423 8.5621 8.7838 

Present 15.2671 19.6685 22.2406 10.4701 12.5168 13.4665 7.5660 8.4128 8.7379 

CCCC 

Model 1 
(a) 

13.0716 15.8553 16.8365 9.1520 10.1974 10.5257 6.7161 7.0785 7.1835 

Model 2 
(a) 

13.0640 15.8532 16.8360 9.1467 10.1958 10.5252 6.7091 7.0764 7.1829 

Present 13.0641 15.8351 16.8293 9.1407 10.1897 10.5233 6.7099 7.0759 7.1827 

CSCS 

Model 1 
(a) 

10.9052 12.4673 12.9712 7.7552 8.3183 8.4846 5.8764 6.0659 6.1185 

Model 2 
(a) 

10.9012 12.4662 12.9709 7.7523 8.3175 8.4843 5.8726 6.0648 6.1182 

Present 10.7534 12.3673 12.9397 7.6747 8.2825 8.4742 5.8427 6.0539 6.1152 

CCSS 

Model 1 
(a) 

12.9080 15.5750 16.5080 9.0485 10.0467 10.3584 6.6581 7.0033 7.1028 

Model 2 
(a) 

12.9010 15.5729 16.5074 9.0435 10.0451 10.3580 6.6514 7.0013 7.1023 

Present 12.8160 15.5259 16.4928 9.0059 10.0293 10.3535 6.6412 6.9975 7.1013 

CSSS 

Model 1 
(a) 

10.6425 12.0761 12.5336 7.5981 8.1123 8.2630 5.7919 5.9643 6.0120 

Model 2 
(a) 

10.6389 12.0752 12.5334 7.5955 8.1116 8.2628 5.7885 5.9633 6.0117 

Present 10.4029 11.9501 12.4954 7.4871 8.0681 8.2505 5.7483 5.9497 6.0080 

SSSS 

Model 1 
(a) 

7.5261 7.9091 8.0175 5.7942 5.9239 5.9590 4.8267 4.8685 4.8795 

Model 2 
(a) 

7.5253 7.9089 8.0175 5.7936 5.9238 5.9590 4.8259 4.8684 4.8795 

Present 7.5804 7.9249 8.0217 5.8129 5.9291 5.9604 4.8328 4.8702 4.8799 

(a)Given from Ait Amar Meziane et al. (2014) 
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ratio and this is the same for the 1-1-1 and 2-1-2 FG plate. It 

can be confirmed again that the results are in good 

agreement with those given in the literature (Ait Amar 

Meziane et al. 2014).  

Fig. 3 plot the non-dimensional frequency “ω*” of 2-1-2 

FG-sandwich plate on elastic foundations with “K0=100, 

k=2” versus the type of boundary conditions and geometry 

ratio “a/h”. The obtained results are compared with those 

given by Ait Amar Meziane et al. (2014). A good agreement 

is confirmed between current results and those computed by 

Ait Amar Meziane et al. (2014). From the plotted curves it 

can be noted that the boundary condition has an important 

role on the non-dimensional frequency “ω*” it is clear from 

the graphs that the biggest values of the non-dimensional 

frequency “ω*” are obtained for FFCC FG-sandwich plate. 

It is confirmed again that the non-dimensional frequency 

“ω*” increase with increasing in the values of the “a/h”. 

Fig. 4 gives the variation of the frequencies “ω*” versus 

the aspect ratio b/a, boundary conditions and foundations 

parameters “K0, J0” of the 1-2-1 E-FG sandwich plate with 

“a/h=10, k=2”. From the plotted graphs, we can see clearly 

that the FG-plate with four clamped edges gives the bigger 

values of the frequencies “ω*” than simply supported FG-

plate. It can be observed also that the smaller values of the 

frequency “ω*” are obtained of the plate with foundations 

parameters (K0, J0=100). Also an inverse relation is 

observed between the aspect ratio and frequency “ω*”. 

 

4.2 Stability of the FG sandwich plate 
 

The second part is reserved to numerical results of the 

buckling analysis of the E-FG sandwich plate with and 

without elastic foundation with various boundary 

conditions. 

Table 4 present a comparison of the critical buckling 

load “𝑁” of simply supported E-FG sandwich square plates 

“k=0.5” reposed on Winkler-Pasternak elastic foundations. 

From the computed results, it can be seen that the current 

model is in good agreement with those obtained by Ait 

Amar Meziane et al. (2014) for various type of simply 

supported FG-sandwich plate (1-0-1, 1-1-1, 1-2-1 and 1-3-

1). It can be observed from the results that the presence of 

the Winkler-Pasternak elastic foundations lead to an 

increase of the critical buckling load of the FG-sandwich  

 

 
Fig. 6 Critical buckling load “𝑁” versus the ratio “a/h”of 

the (2-1-2) EGM sandwich  square plates resting on 

Winkler’s elastic foundation with various boundary 

conditions (K0=100, k=2, ξ=1)  
 

 

plate. From the comparison of the various types of the FG-

sandwich plate, it is clear that the 1-3-1 FG-plate gives the 

higher values of the critical buckling load.  

Table 5 shows the comparison of the critical buckling 

load “𝑁” of the (1-1-1) rectangular E-FG sandwich plate on 

the elastic foundation “K0=J0=10” as function the 

parameters “k” and “a/h” with different boundary 

conditions (FFCC, CCCC, CSCS, CCSS, CSSS and  

SSSS). From the table, it is can be confirmed again that the 

present model with only three unknown give almost the 

same results of the critical buckling load “𝑁” of FG-

sandwich plate as those computed by Ait Amar Meziane et 

al. (2014) with RPT model. From the results, we can 

observe that the critical buckling load “𝑁” is in inverse 

relation with the material index “k” for various boundary 

conditions. It can be also concluded that the smaller values 

of the critical buckling load “𝑁” are given by a simply-

supported FG-sandwich plate. 

The critical buckling load “𝑁” versus the ratio “a/h”  

and inhomogeneity parameter “k” of simply- supported E-

FG sandwich plates seated on elastic foundations with  

(K0=J0=10, ξ=1, a=b) is illustrated in Fig. 5. From the 

plotted curves, it can be noted that the current results are 

almost the same with those given by Ait Amar Meziane et 

al. (2014). It can also be observed that the increasing in the   

ratio “a/h” leads to an increase in the critical buckling  
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Fig. 5 Critical buckling load “𝑁” versus the ratio “a/h” for various values of the inhomogeneity parameter “k” and various 

types of simply- supported EGM sandwich square plates resting on elastic foundations(K0=J0=10, ξ=1, a=b) 
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Fig. 7 Critical buckling load “𝑁” versus the aspect ratio 

“b/a” of simply-supported and clamped E-FG sandwich 

plate (1-1-1) for different values of  foundation 

stiffness’s “K0” and “J0” (a/h=10, k=2, ξ=1)  

 

 

Fig. 8 Critical buckling load  “𝑁” versus the ratio “a/h” 

of simply-supported and clamped  E-FG sandwich  

square plate (1-2-1) for different values of “ξ” (K0=J0=10, 

k=2) 

 

 

load “𝑁”. But this last decreases when the inhomogeneity 

parameter “k” increases.  

Fig. 6 illustrates the variation of critical buckling load 

“ 𝑁 ” of the 2-1-2 FG-sandwich plate seated elastic 

foundation with (K0=100, k=2) for various boundary 

conditions (FFCC, CCCC, CSCS, CCSS, CSSS and SSSS). 

The FG sandwich plate is supposed under biaxial 

compressive loads “ξ=1”.  

The present results of the critical buckling load “𝑁”  

are in good agreement with those given by Ait Amar 

Meziane et al. (2014). From the graphs it can be observed 

that smaller values of the critical buckling load “𝑁” are 

obtained for SSSS FG-sandwich plate. 

Fig. 7 presents the variation of the critical buckling load 

“𝑁” of  the clamped and simply supported 1-1-1 E-FG 

sandwich plate with (a/h=10, k=2) as foundations 

parameters “K0, J0”. From the obtained graphs, it can be 

noted that the biggest values of the critical buckling load 

“𝑁” are obtained for parameters “K0=100, J0=120” and this 

is confirmed for both SSSS and CCCC boundary 

conditions. 

The variations of the critical buckling load “𝑁” of the 1-

2-1 FG-sandwich plate on elastic foundation versus loads 

ratio “ξ”are illustrated in the Fig. 8. From the plotted 

curves, it can be noted that the smaller values of the critical 

buckling load “𝑁” are obtained for simply supported E-FG 

with biaxial compressive load “ξ=1”. But the larger values 

are obtained for clamped FG-sandwich plate under uniaxial 

compressive load along x-axis. 

 

 

5. Conclusions 
 

A simplified innovative trigonometric higher orders 

shear deformation with only three unknowns variable was 

developed for free vibrational and mechanical stability 

analysis of E-FG sandwich plate with various boundary 

conditions. The equations of motion are obtained from the 

Hamilton’s principle. The accuracy and efficiency of the 

developed model has been checked for the stability and 

dynamic analysis of FG-sandwich plate. Several parametric 

studies has been examined and discussed to show the 

various parameters influencing the fundamental frequency 

and critical buckling load of the plate.  

Finally it can be concluded that, the present theory can 

improve the numerical computational cost due to their 

reduced degrees of freedom and it can be used to study 

other structures made of different types of materials 

(Sedighi and Shirazi 2013, Avcar 2014 Sedighi et al. 2015, 

Panjehpour et al. 2018, Othman and Fekry 2018, Dihaj et 

al. 2018, Belmahi, et al. 2018, YaylacI et al. 2019, Al-

Maliki et al. 2020, López-Chavarría et al. 2019, Nikkhoo et 

al. 2019, Kossakowski and Uzarska 2019, Zouatnia and 

Hadji 2019, Bakhshi and Taheri-Behrooz 2019, Belmahi et 

al. 2019, Fládr et al. 2019, Hamad et al. 2019, Mohamed et 

al. 2019, Jothi Saravanan et al. 2019, Khater et al. 2020, 

Singh and Kumari 2020, Rezaiee-Pajand and Karimipour 

2020, Ghadimi 2020, Shokrieh and Kondori 2020,  

Ghannadpour and Mehrparvar 2020, Lee et al. 2020, Yüksel 

and Akbaş 2019, Karami and Janghorban 2019, Selmi 2019, 

Al-Basyouni et al. 2020, Safarpour et al. 2020, Kunche et 

al. 2019, Eltaher et al. 2020, Motezaker et al. 2020, 

Ghabussi et al. 2020, Timesli 2020). 
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