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Abstract.

In this study a new innovative three unknowns trigonometric shear deformation theory is proposed for the buckling

and vibration responses of exponentially graded sandwich plates resting on elastic mediums under various boundary conditions.
The key feature of this theoretical formulation is that, in addition to considering shear deformation effect, it has only three
unknowns in the displacement field as in the case of the classical plate theory (CPT), contrary to five as in the first shear
deformation theory (FSDT) and higher-order shear deformation theory (HSDT). Material characteristics of the sandwich plate
faces are considered to vary within the thickness direction via an exponential law distribution as a function of the volume
fractions of the constituents. Equations of motion are obtained by employing Hamilton’s principle. Numerical results for
buckling and free vibration analysis of exponentially graded sandwich plates under various boundary conditions are obtained
and discussed. Verification studies confirmed that the present three -unknown shear deformation theory is comparable with
higher-order shear deformation theories which contain a greater number of unknowns.

Keywords: functionally graded materials; sandwich plates; a 3-unknown theory; various boundary conditions; elastic;

foundations; free vibration; buckling loads

1. Introduction

In recent years, the use of functionally graded (FG)
sandwich structures in engineering fields such as civil
engineering, acrospace, shipbuilding and machinery sectors
has attracted intensive research interests due to their high
strength-to-weight ratio. As a result, the mechanical
response of FG sandwich structures is of considerable
importance in both academic research and industrial fields
(Sofiyev et al. 2012, Yaghoobi and Yaghoobi 2013,
Swaminathan and Naveenkumar 2014, Kar and Panda 2015,
Ahmed ef al. 2019, Mehar and Panda 2018, Rezaiee-Pajand
et al. 2018, Dash et al. 2018, Karami et al. 2019, Mehar et
al. 2019 and 2020, Avcar 2019, Kirlangi¢ and Akbas 2020).
Since the shear deformation influences are considerably
important in thick plates or plates manufactured of FGMs,
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shear deformation theories such as first-order shear
deformation theory (FSDT) and higher-order shear
deformation theories (HSDTs) should be utilized to
investigate the mechanical responses of FG plates.

The FSDT generates reasonable results, but requires the
use of a shear correction parameter (Civalek and Acar 2007,
Mousavi and Tahani 2012, Malekzadeh and Monajjemzadeh
2013, Avcar 2016, Shokravi 2017, Hamidi et al. 2018,
Bensattalah ef al. 2019, Mirjavadi ef al. 2019a). Whereas,
the HSDTs (Touratier 1991, Soldatos 1992, Reddy 2000,
Karama et al. 2003, Pradyumna and Bandyopadhyay 2008,
Talha and Singh 2010, Sobhy 2013, Panda and Katariya
2015, Katariya and Panda 2016, Mehar et al. 2016 and
2017, Kar and Panda 2017, Katariya et al. 2017, Katariya
and Panda 2019ab and 2020, Mehar and Panda 2019,
Katariya et al. 2018 and 2019, Abdulrazzaq et al. 2020) do
not need a shear correction parameter, but their governing
equations are more complex than those of the FSDT.

Recently, new shear deformation theories involving only
four unknowns have been developed (Ghugal and Sayyad
2011, Nguyen 2014, Zhang et al. 2015, Sobhy 2016, Adim
et al. 2016, Abdelmalek et al. 2017, Zouatnia et al. 2018),
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but these theories lead to the resolution of a number of
equations of motion more than of those used in classical
plate theory (CPT) (Akgoz and Civalek 2011, Avcar and
Mohammed 2018). Thus, needs exist for the development
of HSDTs which are simple to use.

In the present work, an efficient and simple formulation
with shear deformation effect is developed for the buckling
and vibrational analyses of exponentially graded sandwich
plates resting on elastic foundations under various boundary
conditions. The highlight of this new formulation is that, in
addition to incorporating the shear deformation effect, the
displacement components are expressed with only three
unknowns as the classical plate theory (CPT), which is even
less than the FSDT and do not requires shear correction
parameter. The sandwich plate is considered to be supported
by isotropic or orthotropic two-parameter elastic
foundations. The equations of motion of exponentially
graded sandwich plates resting on elastic foundation are
obtained by utilizing the Hamilton’s principle. These
equations of motion for the sandwich plate under various
boundary conditions are then solved. As a result, critical
buckling loads and natural frequencies are determined by
solving eigenvalue problem. The performance of the present
formulation is verified by comparing it with HSDT’s
solutions available in literature. It can be concluded that the
present method is as accurate as other HSDTs with higher
number of unknowns and so deserves attention.

2. Theoretical formulation

Consider a sandwich plate with three layers as depicted
in Fig. 1. Two FG face sheets are synthesized of a mixture
of a metal and a ceramic, while the core is manufactured
from an isotropic homogeneous material. The material
properties P of FG face sheets such as Young’s modulus E
and the material density p, are supposed to vary
continuously within the plate thickness by an exponential
law distribution as (Sobhy 2013):

5(n>(z):l3mexp<ﬁv(”)) ﬂ:m(g—:]J (n=1,23) (1)

b}

where subscripts m and ¢ refer to metal and ceramic, and
the volume fraction V™ of each layer is given by:
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wherez=z/h, hi =h /h (i=) and k is the inhomogeneity
parameter which takes values greater than or equal to zero.
It is noted that the core is independent of the value of &
which is fully ceramic.

y
T
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Fig. 1 Geometry of the exponentially graded sandwich
plate resting on elastic foundations

2.1 Kinematics and constitutive equations

The displacement field of the novel theory is given as
follows:

w,
o3
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U0 Y 2,8) = Up (x, v, )~ 220 g (2)
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w(X, y,z,t) = wo(x, y,t)

where wuo, vo, and wy are three unknown displacement
functions of middle surface of the plate and f is a parameter
of the present displacement model.

In this work the displacement field contains a shape
functions expressed as:

)= DsinZ2
T
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The nonzero linear strains associated with the

displacement field in Eq. (3) are
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and

o*w,  8%w,
=1F(z) Viw,=—2 0
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For the exponentially graded sandwich plates, the
stress—strain relation- ships can be written as:

o™ e, ¢, 0 0 01"[%
oy Cbhb Cp 0 0 0 |&
Ty =0 0 Cu 0 0 Yy2 ®)
- 0 0 0 Cg 0] |y,
- 0 0 0 0 Gyl |p

where (oy, 0y, 02, Tz, Taz, Ty) ad (Ex, &y, &2, V)2, Pxz, Viy) are the
stress and strain components, respectively. The elastic
constants Cj; are defined as
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2.2 Equations of motion

Hamilton’s principle is utilized herein to determine
equations of motion. The principle can be stated in an
analytical form as follows (Ebrahimi and Barati 2017a,
Eltaher er al. 2018, Hadji et al. 2019, Sahouane et al. 2019,
Fenjan et al. 2019ab, Safa et al. 2019, Mirjavadi et al.
2019b, Hamed et al. 2020, Eltaher and Mohamed 2020):

.
ozj(5U+5V—5 K)dt (10
0

where oU is the variation of strain energy; oV is the
variation of work induced by the external forces; and JK is
the variation of kinetic energy.

The variation of strain energy of the plate is calculated
by

SU :I[Jxﬁ &y +O'y§ &y +rxy5 Txy +ryZ§ vz +7,,0 yxz] dv
v

=[N &0+ Ny8 &+ Ny 75, + M S ko + M,k + My Sk (1)
A

+B(S,8 M +5,8 1y +5y8 1y +Q8 1% +Qu8 ;/QZ)] dA=0

where 4 is the top surface and the stress resultants N, M, S
and Q are defined by:
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The variation of work done by the applied loads can be
expressed as

5V ==[(P=1)5 (w,+w,)dA (13)

where f. is the density of reaction force of foundation. For
the Pasternak foundation model:

o*w o*w
fe = Kyw— Kmﬁ— Kszﬁ

where Ky is the modulus of subgrade reaction (elastic
coefficient of the foundation) and K and K, are the shear
moduli of the subgrade (shear layer foundation stiffness). If
foundation is homogeneous and isotropic, we will get Kg=
Ks=Ks. If the shear layer foundation stiffness is neglected,
Pasternak foundation becomes a Winkler foundation with

2
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The variation of kinetic energy is written as

(14)
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where  dot-superscript ~ convention  indicates  the
differentiation with respect to the time variable #; p(z) is the
mass density; and (lo, [1, Ji, L, J>, K») are mass inertias
defined as

3 M
(o113 15.95.K5) = > j (Lz.1.2%21,82)p()dz  (17)

n=1 (1

Using the expressions for 6U, 6V, and 6K from Egs.
(11), (14), and (16) into Eq. (10) and integrating by parts,
and collecting the coefficients of Juo, dvo and Jwy, the
following equations of motion of the plate are obtained
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Substituting Eq. (5) into Eq. (8) and the subsequent
results into Egs. (12), the following constitutive equations
are found:
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The equations of motion of the present three-unknown
trigonometric shear deformation theory can be written in
terms of displacements (uo, vo and wp) by substituting Eq.(6)
into Egs. (19) and the subsequent results into Eq. (18)
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3. Analytical solutions

The analytical solution of Eq. (21) can be determined
for sandwich plates under various boundary conditions by
employing the following expansions of generalized

displacements:
U, oX (X)Y (y) got
o > oy,
Vo 1= mn m(x) (y) (22)
Wo

Wi X (X)Yy (y) et

where i=V—=1, (Unn, Vi, W) are coefficients, and w=wu,
denotes the eigenfrequency associated with (m, n)"
eigenmode. The functions X,,(x) and Y,(y) are suggested by
Sobhy (2013) to satisfy various boundary conditions, and
they are listed in Table 1 noting that A=mn/a and y=nn/b.
Substituting expressions (22) into Egs. (21) and
multiplying each equation by the corresponding
eigenfunction then integrating over the domain of solution,
we can determine, after some mathematical manipulations,

the following expressions:
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Table 1 The admissible functions X;,(x) and Y(y)

Boundary conditions The functions X,, and Y,
At x=0,a Aty=0, b Xon(x) Y.(»)

SSSS Xn(© = XT(O) =0 %O :Y'} ©-0 sin(2 X) sin(u y)
Xin(8) =Xn(a)=0 Yo (0) =Y, (0)=0

Csss *n(0) =X, (©) =0 W(Q=%0)=0 sin(4 x)[cos(4 X) 1] sin(u y)
Xin(8) =Xn(a)=0 Yo (0) =Y, (0)=0

cscs Xn(©) =X, (©) =0 (@) =%(0)=0 sin(4 x)[cos(4 x) 1] sin(u X)[cos(u X) 1]
Xin(8) =Xn(a)=0 Yo (0) =Y, (0)=0
X (0)= X_ (0) = —Y'(b) =

CCSS n(® Xrln ©=0 ¥ ®) Yr,', (0)=0 sin?(4 x) sin(u y)
Xin(8) =Xn(a)=0 Yo (0) =Y, (0)=0
X (0)= X_ (0) = —Y'(0) =

ccee n(® X’,"(O) 0 KIC) Y'T ©=0 Sin2(2 x) sin2(uy)
Xm(8) =Xn(a)=0 Yo (0) =Y, (b) =0

FFCC X:n(o) ~ Xm(O) =0 Yo (0):Y'?(0):0 cos?(2 x)[sinz(/l x)+1} sin(uy)
Xm(@) =Xp(a)=0 Y, (0) =Y, (b) =0

()’ Denotes the derivative with respect to the corresponding coordinates

Sy =-Dpayz— 2( Dy, + 2D66)a11 —Dyas - S Djyog (0!7 10y, 01,043, 08, g, aZO) =
~ Dty ~23((D5; +2D g +( D5, + 2D ) g | - ba " o .
S e : [ X8 Xt X A X8 XA XA,y
2 H11057+2(H12+H66)0‘21+Hee(“zo*“zz) (24) 00
+H 2003 + Ayog + Assy (26)
+K g1 + Kot — Ky oy = Plarg — Pty (27, @91, 039, 0023, @6 031 ) =
ba
w vt . 5 i ot
00
My =—loa The non-trivial solution is determined when the

determinant of Eq. (23) equals zero. For the free vibration

M3 = log +Ji0; 0 o o .
problem, we have P =P, =B =0 . While for the

m,, =—ly _
2 02 buckling analysis, we put »=pj=0; P?=P and PP=¢P,
Mys =l + 104 25) ie, £=PUPY .
Mgy = —lyoy + B Jy45 It is noted that the present solution depends on the
choice of parameter § of the proposed theory. In this study,
My, =—liag + B o5 the adequate value is taken as a solution of the eigenvalue
roblem |S;j| =0
m33=—I0a1+Iz(a3+ag)+2ﬁJ2(all+a5) p ‘ ”‘
+B° K, (27 +aug)
. 4. Numerical results and discussions
with
ba For checking the accuracy of the developed model,
(. 03.05) “(XmYm, XmY”, XmYn(q'V))XmYndxdy several comparisons and parametric studies are presented in
00 the following. All presented results are in dimensionless
form as
(“21114’0‘101“33'0‘161‘117):
ba wa? Pa’ a'K,, a’K, b°K, h®E
[ i Xt X X X X ) iy T T e R B R P N L
00 (26) : : : .
ba The properties of the materials used in the FG-sandwich
(ctg, @ a12) = [ [ (X0Yas XY XY, )X 1Y, dxdly plate are
! ! e Ceramic (Alumina, ALO3): E~=380 GPa, v=0.3, p,=3800
kg/m?
ba ..
ron , Metal (Aluminium, Al): Em= 70 GPa, v=0.3, p.=2707
(a281a14va15):II(XmanXmYn(IV)er(nV)Yn )XmYndXdy k /m3 ( ) p
00 g

The configurations (1-0-1, 1-1-1, 1-2-1 and 1-3-1) are
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Table 2 Comparison of dimensionless frequency “w*” of simply supported EGM sandwich square plates “k=1.5" resting
on Pasternak’s elastic foundations

Ky=J,=0 K, =100,J, =0 K, =100,J, =100

Scheme Theory
a/h=5 a/h=10 a/h=20 a/h=5 a/h=10 a/h=20 a/h=5 a/h=10 a/h=20

Model 1 9655 1.0200 10356 14125 14633 14781 47808 48854 49135
1:0-1 Model2 59647 10198 10356 14121 14632 14781 47808 4.8854 49136
Present 09656 1.0201 10357 14129 14633 14782 47956 48857 49136
Model 1 g1 1.1396 11563 14697 15248 15407 46537 47517 4.7789
1.1 Model2 1y gg7 11305 L1563 14695 1.5247 15407 46537 47517 47789
Present 10812 1.1396 11563 14700  1.5248 15407 46629 47519 47789
Model 1y 1870 12578 12781 15392 1.6045 16236 4609 47076 47357
12-1 Model2 1y ye7n 12578 12781 15392 1.6045 16236 46100 47076 4.7357
Present 11873 12578 12781 15395 16045 16236 46180 47078 47357
Model 1y 5663 1.3479 13716 15954 16703 16924 45910 46901 47192
1-3-1 Model2 5666 13480 13716 15956 16704 16924 45911 46901 47192
Present 12665 13479 13716 15957 16703 16924 45987  4.6902 47192

@Given from Ait Amar Meziane et al. (2014)

13

Table 3 Comparison of dimensionless frequency
conditions (b/a=2, Ko=Jy=10)

*’ of (1-1-1) EGM sandwich plates with various boundary

=0 k=0.5 k=3.5
B.C  Theory

alh=5 alh=10 alh=20 alh=5 a/h=10 a/h=20 alh=5 a/h=10 a/h=20

Model 15 4747 2.8519 2.9944 2.1360 23371 2.4055 1.8894 1.9923 2.0248

FFCC M"(‘}flz 2.4736 2.8516 2.9943 2.1352 2.3368 2.4054 1.8880 1.9918 2.0247

Present  2.4229 27793 2.9660 2.0792 2.2983 23926 1.8507 1.9742 2.0194

Model 15 3473 2.6053 2.6953 2.0305 2.1658 22093 1.8189 1.8906 1.9124

ccec M"Sflz 2.3467 2.6052 2.6952 2.0301 2.1657 2.2093 1.8182 1.8904 1.9123

Present  2.3448 2.6035 2.6947 2.0285 2.1649 2.2091 1.8178 1.8902 1.9123

Model 15 3349 2.5270 2.5906 2.0360 2.1399 2.1722 1.8539 1.9148 1.9328

CSCS M"Sf” 2.3345 2.5269 2.5906 2.0358 2.1398 2.1721 1.8535 1.9146 1.9328

Present 23123 25164 25875 2.0227 2.1351 2.1708 1.8474 1.9128 1.9323

Model 15 5746 25175 2.6015 1.9691 2.0959 2.1364 1.7665 1.8334 1.8536

CCSs M"Sflz 2.2740 2.5173 2.6014 1.9687 2.0957 2.1363 1.7658 1.8331 1.8535

Present  2.2644 2.5133 2.6003 1.9636 2.0940 2.1358 1.7640 1.8326 1.8534

Model 15 2207 23931 2.4496 1.9408 2.0334 2.0619 1.7729 1.8270 1.8429

CSSS M"(‘.f)elz 2.2204 2.3930 2.4495 1.9406 2.0334 2.0619 1.7725 1.8269 1.8429

Present  2.1906 23803 24458 1.9245 2.0278 2.0604 1.7653 1.8247 1.8423

Model 1 5385 1.5947 1.6113 1.3990 14310 1.4401 1.3376 1.3594 1.3655

SSSS M°§}$12 1.5387 1.5948 1.6113 1.3990 1.4310 1.4401 1.3375 1.3594 1.3655

Present  1.5438 1.5963 1.6117 1.4010 1.4316 1.4403 1.3384 1.3597 1.3655

@Given from Ait Amar Meziane et al. (2014)
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4,88

4,86 4
4,84
4,82 4
4,80 4
4,78 4
3 4764
8 471
>
g 472+
3 470
g 468 B Present k=05
T —@— Ait Amar Meziane et al, (2014), k=05
4,66 4 —A— Present k=1
464 —¥— Ait Amar Meziane et al, (2014), k=1
' V’ —4—Present k=2
4,62 —P— Ait Amar Meziane et l, (2014), k=2
4,60 4 / —4— Present k=5
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Fig. 2 Dimensionless frequency “w*” versus the ratio “a/h” for various values of the inhomogeneity parameter “4” and
various types of simply- supported EGM sandwich square plates resting on elastic foundations “Ko=J=100"
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Fig. 3 Dimensionless frequency “w*” versus the ratio
“a/h” of the (2-1-2) E-FG sandwich square plates resting
on Winkler’s elastic foundation with various boundary
conditions(K0=100, k=2)

the layers thicknesses ratio defined as

* 1-0-1 the plate is made of two layers of equal thickness
without a core.

* 1-1-1 the plate has the same thicknesses of the layers
(core and faces sheets)

¢ 1-2-1 the plate has the thickness of the core is twice
the thickness of face sheets.

* 1-3-1 the plate has the thickness of the core is thrice
the thickness of face sheets.

4.1 Free vibration of the FG sandwich plate

In this first part, several numerical results of the free
vibrational analysis of the FG-sandwich plate with and
without elastic foundation computed by the current three
unknowns shear deformation theory are presented in the
form of explicit tables and graphs.

To verify the accuracy of the current model, the
obtained results of the free vibrational analysis of the
simply supported E-FG sandwich plate resting on elastic
foundations are compared with the models existing in the
literature (Ait Amar Meziane et al. 2014). From the results
of the fundamental frequency of the E-FG sandwich plate
are given in the Table 2, it can be seen that the present
model is in good agreement with the two models developed

11
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Fig. 4 Dimensionless frequency “w*’ versus the
aspect ratio “b/a” of simply-supported and clamped
E-FG sandwich plate (1-2-1) for different values of
foundation stiffness’s “Ko” and “Jy” (a/h=10, k=2)

by Ait Amar Meziane et al. (2014). We can note from the
results that the thick E-FG sandwich plate give the smaller
value of the fundamental frequencies. Also, it is clear that
the configuration 1-3-1 give the biggest values of the
fundamental frequency.

The Table 3 shows the comparison of the fundamental
frequency “w*” of the (1-1-1) rectangular E-FG sandwich
plate on the Winkler-Pasternak elastic foundation
“J1=J>,=10" versus the material index “k” and geometry
ratio “a/h” with various boundary conditions (FFCC,
CCCC, CSCS, CCSS, CSSS and SSSS). From the
comparison made in the Table 3, it is clear that the current
results obtained using the present three unknowns shear
deformation theory are in good agreement those computed
by Ait Amar Meziane et al. (2014) with four variable
refined shear deformation model.

From the table, we can see that the increasing in the
values of the material index “A” lead to decrease the
fundamental frequencies “w*”’ for different boundary
conditions.

It can be also concluded that the FG sandwich plate with
two free edges and two opposite clamped edges (FFCC)
give the biggest values of the frequency “w*”

The variation of the non-dimensional fundamental
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Table 4 Comparison of critical buckling load “N” of simply supported EGM sandwich square plates “k=0.5” resting
on Pasternak’s elastic foundations “&=1"

Scheme  Theory Ko=Jo=0 K¢=100, J©=0 Ky=100, J;=100
alh=5 alh=10 alh=20 alh=5 alh=10 alh=20 alh=5 alh=10 alh=20
Model 1 @ 2.5618 2.8127 2.8834 4.3247 4.5756 4.6463 39.1232 39.3741 39.4449
1-0-1 Model2®  2.5592 2.8120 2.8833 43221 4.5749 4.6462 39.1206 39.3734 39.4447
Present 2.5618 2.8127 2.8835 4.3247 4.5757 4.6464 39.1233 39.3742 39.4449
Model 1 @ 3.1030 3.4156 3.5040 4.8659 5.1785 5.2669 39.6644 39.9770 40.0655
1-1-1  Model2®  3.1015 3.4152 3.5039 4.8644 5.1781 5.2668 39.6629 39.9766 40.0654
Present 3.1030 3.4156 3.5040 4.8659 5.1785 5.2670 39.6645 39.9771 40.0655
Model 1 @ 3.5165 3.9026 4.0129 5.2795 5.6655 5.7758 40.0780 40.4640 40.5744
1-2-1 Model2® 35166 3.9027 4.0130 5.2795 5.6656 5.7759 40.0780 40.4641 40.5744
Present 3.5166 3.9026 4.0129 5.2795 5.6655 5.7759 40.0780 40.4641 40.5744
Model 1 @ 3.8243 4.2743 4.4030 5.5872 6.0364 6.1659 40.3857 40.8349 40.9644
1-3-1 Model 2@  3.8253 4.2738 4.4031 5.5882 6.0368 6.1660 40.3868 40.8353 40.9646
Present 3.8243 4.2735 4.4030 5.5872 6.0364 6.1659 40.3858 40.8349 40.9645

@ Given from Ait Amar Meziane et al. (2014)

Table 5 Comparison of critical buckling load “N” of (1-1-1) EGM sandwich plates with various boundary conditions
(b/a=2, K():Jo:l())

k=0 k=0.5 k=3.5
B.C  Theory

alh=5 alh=10 alh=20 alh=5 alh=10 alh=20 alh=5 alh=10 alh=20

Model 1 157316 206940 22.6679 10.9709 12.9380 13.6121 7.8557 8.5665 8.7850

FFCC Model2 159165 20,6806 22.6667 10.9609 12.9346 13.6112 7.8423 8.5621 8.7838

Present  15.2671 19.6685 22.2406 10.4701 12.5168 13.4665 7.5660 8.4128 8.7379

Model 113 4716 15.8553 16.8365 9.1520 10.1974 10.5257 6.7161 7.0785 7.1835

ccee Model 25 5640 15.8532 16.8360 9.1467 10.1958 10.5252 6.7091 7.0764 7.1829

Present  13.0641 15.8351 16.8293 9.1407 10.1897 10.5233 6.7099 7.0759 7.1827

Model 110 9052 12.4673 12.9712 7.7552 83183 8.4846 5.8764 6.0659 6.1185

CsCs M"Sf” 10.9012 12.4662 12.9709 7.7523 8.3175 8.4843 5.8726 6.0648 6.1182

Present  10.7534 123673 12.9397 7.6747 8.2825 8.4742 5.8427 6.0539 6.1152

Model 115 9080 15.5750 16.5080 9.0485 10.0467 10.3584 6.6581 7.0033 7.1028

CCSs M"Sflz 12.9010 15.5729 16.5074 9.0435 10.0451 10.3580 6.6514 7.0013 7.1023

Present  12.8160 15.5259 16.4928 9.0059 10.0293 10.3535 6.6412 6.9975 7.1013

Model 114 6425 12.0761 12.5336 7.5981 8.1123 82630 57919 5.9643 6.0120

CSSS M"Sf” 10.6389 12.0752 12.5334 7.5955 8.1116 8.2628 5.7885 5.9633 6.0117

Present  10.4029 11.9501 12.4954 7.4871 8.0681 8.2505 5.7483 5.9497 6.0080

Model 1 7 5561 7.9091 8.0175 5.7942 5.9239 5.9590 4.8267 4.8685 4.8795

SSSS M"(‘}f’lz 7.5253 7.9089 8.0175 5.7936 5.9238 5.9590 4.8259 4.8684 4.8795

Present  7.5804 7.9249 8.0217 5.8129 5.9291 5.9604 4.8328 4.8702 4.8799

@Given from Ait Amar Meziane ef al. (2014)

frequencies “w*” of simply supported E-FG sandwich plate “a/b=1". From the graphs it can be seen that the non-
on elastic foundations versus geometry ratio “a/h” and dimensional fundamental frequencies “w*” is in direct
index “k” are plotted in the Fig. 2. The aspect ratio is taken correlation relation with the both the index “4” and “a/h”
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Fig. 5 Critical buckling load “N” versus the ratio “a/h” for various values of the inhomogeneity parameter “k” and various
types of simply- supported EGM sandwich square plates resting on elastic foundations(Ko=Jo=10, =1, a=b)

ratio and this is the same for the 1-1-1 and 2-1-2 FG plate. It
can be confirmed again that the results are in good
agreement with those given in the literature (Ait Amar
Meziane et al. 2014).

Fig. 3 plot the non-dimensional frequency “w*” of 2-1-2
FG-sandwich plate on elastic foundations with “Ko=100,
k=2” versus the type of boundary conditions and geometry
ratio “a/h”. The obtained results are compared with those
given by Ait Amar Meziane et al. (2014). A good agreement
is confirmed between current results and those computed by
Ait Amar Meziane et al. (2014). From the plotted curves it
can be noted that the boundary condition has an important
role on the non-dimensional frequency “w*” it is clear from
the graphs that the biggest values of the non-dimensional
frequency “w*” are obtained for FFCC FG-sandwich plate.
It is confirmed again that the non-dimensional frequency
“o*” increase with increasing in the values of the “a/h”.

Fig. 4 gives the variation of the frequencies “w*” versus
the aspect ratio b/a, boundary conditions and foundations
parameters “Ko, Jo” of the 1-2-1 E-FG sandwich plate with
“a/h=10, k=2". From the plotted graphs, we can see clearly
that the FG-plate with four clamped edges gives the bigger
values of the frequencies “w*” than simply supported FG-
plate. It can be observed also that the smaller values of the
frequency “w*” are obtained of the plate with foundations
parameters (Ko, Jo=100). Also an inverse relation is
observed between the aspect ratio and frequency “w*”.

4.2 Stability of the FG sandwich plate

The second part is reserved to numerical results of the
buckling analysis of the E-FG sandwich plate with and
without elastic foundation with various boundary
conditions.

Table 4 present a comparison of the critical buckling
load “N” of simply supported E-FG sandwich square plates
“k=0.5" reposed on Winkler-Pasternak elastic foundations.
From the computed results, it can be seen that the current
model is in good agreement with those obtained by Ait
Amar Meziane et al. (2014) for various type of simply
supported FG-sandwich plate (1-0-1, 1-1-1, 1-2-1 and 1-3-
1). It can be observed from the results that the presence of
the Winkler-Pasternak elastic foundations lead to an
increase of the critical buckling load of the FG-sandwich
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Fig. 6 Critical buckling load “N” versus the ratio “a/h”of
the (2-1-2) EGM sandwich square plates resting on
Winkler’s elastic foundation with various boundary
conditions (Ko=100, k=2, £=1)

plate. From the comparison of the various types of the FG-
sandwich plate, it is clear that the 1-3-1 FG-plate gives the
higher values of the critical buckling load.

Table 5 shows the comparison of the critical buckling
load “N” of the (1-1-1) rectangular E-FG sandwich plate on
the elastic foundation “K¢=/Jo=10" as function the
parameters “k” and “a/h” with different boundary
conditions (FFCC, CCCC, CSCS, CCSS, CSSS and
SSSS). From the table, it is can be confirmed again that the
present model with only three unknown give almost the
same results of the critical buckling load “N” of FG-
sandwich plate as those computed by Ait Amar Meziane et
al. (2014) with RPT model. From the results, we can
observe that the critical buckling load “N” is in inverse
relation with the material index “k” for various boundary
conditions. It can be also concluded that the smaller values
of the critical buckling load “N” are given by a simply-
supported FG-sandwich plate.

The critical buckling load “N” versus the ratio “a/h”
and inhomogeneity parameter “k” of simply- supported E-
FG sandwich plates seated on elastic foundations with
(Ko=Jo=10, &=1, a=b) is illustrated in Fig. 5. From the
plotted curves, it can be noted that the current results are
almost the same with those given by Ait Amar Meziane et
al. (2014). It can also be observed that the increasing in the
ratio “a/h” leads to an increase in the critical buckling
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Fig. 8 Critical buckling load “N” versus the ratio “a/h”
of simply-supported and clamped E-FG sandwich
square plate (1-2-1) for different values of “&” (Ko=Jo=10,
k=2)

load “N”. But this last decreases when the inhomogeneity
parameter “k” increases.

Fig. 6 illustrates the variation of critical buckling load
“N” of the 2-1-2 FG-sandwich plate seated elastic
foundation with (Ky=100, 4=2) for various boundary
conditions (FFCC, CCCC, CSCS, CCSS, CSSS and SSSS).
The FG sandwich plate is supposed under biaxial
compressive loads “&=1".

The present results of the critical buckling load “N”

are in good agreement with those given by Ait Amar
Meziane et al. (2014). From the graphs it can be observed
that smaller values of the critical buckling load “N” are
obtained for SSSS FG-sandwich plate.
Fig. 7 presents the variation of the critical buckling load
“N” of the clamped and simply supported 1-1-1 E-FG
sandwich plate with (a/h=10, k=2) as foundations
parameters “Ko, Jo”. From the obtained graphs, it can be
noted that the biggest values of the critical buckling load
“N” are obtained for parameters “K¢=100, Jo=120" and this
is confirmed for both SSSS and CCCC boundary
conditions.

The variations of the critical buckling load “N” of the 1-

2-1 FG-sandwich plate on elastic foundation versus loads
ratio “&’are illustrated in the Fig. 8. From the plotted
curves, it can be noted that the smaller values of the critical
buckling load “N” are obtained for simply supported E-FG
with biaxial compressive load “¢=1". But the larger values
are obtained for clamped FG-sandwich plate under uniaxial
compressive load along x-axis.

5. Conclusions

A simplified innovative trigonometric higher orders
shear deformation with only three unknowns variable was
developed for free vibrational and mechanical stability
analysis of E-FG sandwich plate with various boundary
conditions. The equations of motion are obtained from the
Hamilton’s principle. The accuracy and efficiency of the
developed model has been checked for the stability and
dynamic analysis of FG-sandwich plate. Several parametric
studies has been examined and discussed to show the
various parameters influencing the fundamental frequency
and critical buckling load of the plate.

Finally it can be concluded that, the present theory can
improve the numerical computational cost due to their
reduced degrees of freedom and it can be used to study
other structures made of different types of materials
(Sedighi and Shirazi 2013, Avcar 2014 Sedighi et al. 2015,
Panjehpour et al. 2018, Othman and Fekry 2018, Dihaj et
al. 2018, Belmahi, et al. 2018, Yaylacl et al. 2019, Al-
Maliki et al. 2020, Lopez-Chavarria et al. 2019, Nikkhoo et
al. 2019, Kossakowski and Uzarska 2019, Zouatnia and
Hadji 2019, Bakhshi and Taheri-Behrooz 2019, Belmahi et
al. 2019, Fladr et al. 2019, Hamad et al. 2019, Mohamed et
al. 2019, Jothi Saravanan et al. 2019, Khater et al. 2020,
Singh and Kumari 2020, Rezaiee-Pajand and Karimipour
2020, Ghadimi 2020, Shokrieh and Kondori 2020,
Ghannadpour and Mehrparvar 2020, Lee et al. 2020, Yiiksel
and Akbag 2019, Karami and Janghorban 2019, Selmi 2019,
Al-Basyouni et al. 2020, Safarpour et al. 2020, Kunche et
al. 2019, Eltaher et al. 2020, Motezaker et al. 2020,
Ghabussi et al. 2020, Timesli 2020).
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