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1. Introduction 
 

Thermoelasticity is the theory of study of stresses and 

strains due to temperature changes. Hall effect is produced 

due to the electric current flowing along a conducting 

material with an attached magnetic field to it. As most of 

the natural bodies like earth are rotating with an angular 

velocity and have magnetic fields associated with them, so 

the hall current and thus hall effect are very important 

research fields. The effects have been correlated with 

nonlocality in this study.  The concept of nonlocality is 

well established. It considers that the stress at a point is not 

just dependent upon strain at that point only but the strain 

due to the points all over the whole body. 

Two temperature theory was developed by Chen and 

Gurtin (1968). Edelen et al. (1971) and Edelen and Law 

(1971) developed the concept of nonlocal continuum 

mechanics. Eringen (2002) derived nonlocal continuum 

field theories. Youssef (2005) gave the theory of two-

temperature-generalized thermoelasticity. Youssef and Al-

Lehaibi (2007) studied the state space approach of two-

temperature generalized thermoelasticity. Marin (2010) 

discussed the concept of thermoelasticity in detail for 

dipolar bodies. Abbas et al. (2011) studied the propagation 

of plane waves in a fiber -reinforced, anisotropic 

thermoelastic half-space under the effect of a magnetic 

field. Abbas and Othman (2012) studied thermoelastic  
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interaction in a fiber-reinforced anisotropic half-space. 

Othman and Abbas (2012) studied generalized 

thermoelasticity of thermal-shock problem. Abbas (2014) 

constructed a model based upon two temperature 

generalized thermoelastic theory. Atwa and Jahangir (2014) 

investigated the two temperature effects on plane waves in 

generalized thermo-microstretch elastic solid. Marin and 

Florea (2014) investigated behaviour of solutions in 

thermoelasticity of porous micropolar bodies Mokhtar et al. 

(2015) used hyperbolic shear deformation theory for post 

buckling analysis of beams. Sharma et al. (2016) and 

Kumar et al. (2016) described the effects of hall current in a 

transversely isotropic magneto-thermoelastic two 

temperature medium with rotation due to normal force. 

Marin and Nicaise (2016) and Marin et al. (2016) extended 

the thermoelasticity concepts to porous micropolar bodies. 

Rakrak et al. (2016) used nonlocal elasticity theory for 

analyzing free vibration in a carbon nanotube. Ebrahimi et 

al. (2016) applied Eringen’s nonlocal elasticity theory for 

vibration analysis of FG nanobeams. Othman and Marin 

(2017) studied effect of thermal loading due to laser pulse 

on thermoelastic porous medium. Ezzat and El-Barrry 

(2017) studied the magneto-thermoelasticity based on 

memory dependent derivatives. Abdelmalek et al. (2017) 

discussed the hygrothermal effects on the free vibration 

behavior of a composite plate.  

Belmahi et al. (2018) discussed the vibrations of 

nanobeams under different boundary conditions. Belkacem 

et al. (2018) investigated buckling of plates under different 

boundary conditions. Dihaj et al. (2018) used nonlocal 

elasticity theory for analyzing free vibrations of a carbon 

nanotube embedded in an elastic medium. Karami et al. 

(2018) developed a nonlocal strain gradient theory. Hassan 

et al. (2018) studied convective heat transfer and Zenkour 

 
 
 

Deformation in a nonlocal magneto-thermoelastic solid with hall current  
due to normal force 

 

Parveen Lata1a and Sukhveer Singh2 
 

1Department of Basic and applied Sciences, Punjabi University Patiala, India 
2Punjabi University APS Neighbourhood Campus, Dehla Seehan, India 

 
(Received April 27, 2020, Revised May 26, 2020, Accepted June 5, 2020) 

 
Abstract.  The present article is concerned about the study of disturbances in a homogeneous nonlocal magneto-thermoelastic 

medium under the combined effects of hall current, rotation and two temperatures. The model under assumption has been 

subjected to normal force. Laplace and Fourier transform have been used for finding the solution to the field equations. The 

analytical expressions for conductive temperature, stress components, normal current density, transverse current density and 

displacement components have been obtained in the physical domain using a numerical inversion technique. The effects of hall 

current and nonlocal parameter on resulting quantities have been depicted graphically. Some particular cases have also been 

figured out from the current work. The results can be very important for the researchers working in the field of magneto-

thermoelastic materials, nonlocal thermoelasticity, geophysics etc. 
 

Keywords:  thermoelasticity; nonlocality; nonlocal theory of thermoelasticity; normal force; hall current; rotation; 

Laplace and Fourier transform  

 



 

Parveen Lata and Sukhveer Singh 

(2018) studied generalized thermoelastic problem of a 

thermo-mechanically loaded beam. Abouelregal (2019) 

studied the rotating magneto-thermoelastic rod due to 

moving heat sources via Eringen’s nonlocal model. 

Abualnour et al. (2019) analyzed antisymmetric laminated 

reinforced composite plates. Balubaid et al. (2019) used 

nonlocal two variable refined plate theory for investigating 

free vibrations of a plate. Belmahi et al. (2019) used 

nonlocal elasticity theory in their study. Belbachir et al. 

(2019) analyzed bending of cross laminated plates under 

thermal and mechanical loadings. Lata and Singh (2019) 

discussed nonlocal effects for their study. Soleimani et al. 

(2019) also used nonlocal elasticity theory to prove their 

results. Marin et al. (2019) discussed energy partition 

concept for thermoelastic materials. Medani et al. (2019) 

discussed the behavior of a plate and used energy principle 

for the study. Jahangir et al. (2020) studied reflection of 

photothermoelastic waves. Lata and Kaur (2019) studied 

effects of hall current in transversely isotropic magneto 

thermoelasic rotating medium due to normal force. Tildji et 

al. (2019) studied the vibrations for a microbeam. 

Mahmoudi et al. (2019) proposed a new refined quasi shear 

deformation theory. Bensattalah et al. (2020) theoretically 

analyzed the effects on critical buckling load of triple 

walled carbon nanotubes under the effects of nonlocal 

elasticity theory. Bousahla et al. (2020) studied the behavior 

of CNT beams using shear deformation theory. Chikr et al. 

(2020) proposed a new four unknown integral model for 

plates resting on elastic foundations using Galerkin’s 

approach. Gafour et al. (2020) used nonlocal shear 

deformation theory for their study. Kaddari et al. (2020) 

gave a new model and used it to study structural behavior of 

plates on elastic foundation. Lata and Singh (2020) 

discussed time harmonic interactions in a nonlocal 

thermoelastic medium. Zenkour (2020) investigated the 

effects of magnetic field parameter and different 

thermoelasticity theories. Bellal et al. (2020) studied 

buckling behavior of a graphene sheet using a nonlocal 

integral model. Hosseini (2020) investigated a size-

dependent coupled thermoelasticity analysis using a new 

modified nonlocal model of heat conduction, based on the 

GN theory and nonlocal Eringen theory of elasticity. 

Rahmani et al. (2020) studied the influences of boundary 

conditions on bending and free vibration behavior of plates. 

Refrafi et al. (2020) discussed the effects of hygro-thermo-

mechanical conditions on FG plates. Tounsi et al. (2020) 

proposed a four variable plate theory for studying AFG 

plates resting on a two-parameter elastic foundation. 
From above discussion, it has been observed that work 

has already been carried out in recent years on hall current 
effects. But the effects of hall current on the variations in a 
nonlocal thermoelastic solid have not been examined yet. 
As, we are already aware of the fact that nonlocal theory of 
thermoelasticity is a vital theory due to its dependence for 
properties on all the points of a body rather than being 
concentrated on a single point as most other theories do. 
Also, hall current is produced in a rotating medium with a 
magnetic field attached to it and as such effects are 
prevalent in heavenly bodies such as earth, moon etc. and 
thus it is of utmost importance for researchers. So, in this 
paper an effort has been made to study the effects of hall 

current on a magneto-thermoelastic medium under the 
effect of non-local parameters. The analytic expressions for 
the displacements, stresses, current density and temperature 
change have been obtained in two-dimensional transversely 
isotropic magneto-thermoelastic solid. 
 

 

2. Basic equations 
 

Following Eringen (2002) and Abouelregal (2019), the 

equation of motion for a homogeneous nonlocal magneto-

thermoelastic solid rotating with a uniform angular 

velocity  Ω =  Ω𝑛, where n is a unit vector demonstrating 

the direction of the rotation axis and taking into account 

Lorentz force is 

(λ + 2𝜇)∇(∇. 𝒖) − 𝜇 (∇ × ∇ × 𝒖) − 𝛽∇𝜃
+ (1 − 𝜖2∇2)𝐹
= 𝜌(1 − 𝜖2∇2)[�̈� + Ω × (Ω × u)

+ 2Ω × 𝑢]̇ 
(1) 

where, 𝐹 = 𝜇0 (𝐽 ×  𝐻0
⃗⃗ ⃗⃗ ⃗) denotes the Lorentz force, 𝐻0

⃗⃗ ⃗⃗ ⃗ 

is the external applied magnetic field intensity vector,  𝐽 is 

the current density vector, 𝑢 is the displacement vector, 𝜇0 

and 휀0  are the magnetic and electric permeabilities 

respectively. The terms Ω × (Ω × u) and 2Ω × �̇� are the 

additional centripetal acceleration due to the time-varying 

motion and Coriolis acceleration respectively. 

The above equations are supplemented by generalized 

Ohm’s law for media with finite conductivity and including 

the hall current effect 

𝐽 =
𝜎0

1 + 𝑚2
( 𝐸 + 𝜇0 (�̇� × 𝐻 −

1

𝑒𝑛𝑒

𝐽 × 𝐻0)) (2) 

The heat conduction equation with multi-dual-phase-lag 

and constitutive relations by Zenkour (2020) for a 

homogeneous non local thermoelastic solid is given as  

𝐾∗ℒ𝑣∇2𝜃 =  ℒ𝑞
𝜕

𝜕𝑡
(𝜌𝐶∗𝜃 + 𝛽𝜃0𝑢𝑖,𝑗),   (3) 

where, 

ℒ𝑣 = 1 + ∑
𝜏𝑣

𝑟

𝑟!

𝑅1
𝑟=1

𝜕𝑟

𝜕𝑡𝑟,  (4) 

ℒ𝑞 = 𝜚 + 𝜏0
𝜕

𝜕𝑡
+ ∑

𝜏𝑞
𝑟

𝑟!

𝑅2
𝑟=2

𝜕𝑟

𝜕𝑡𝑟  (5) 

Here 𝜏𝑣 , 𝜏𝑞  and 𝜏0  are thermal memories in which 

𝜏𝑣 is the phase lag of the temperature gradient while 𝜏𝑞 is 

the phase lag of the heat flux (0 ≤ 𝜏𝑣 < 𝜏𝑞). Generally, the 

value of 𝑅1 = 𝑅2 = 𝑅 may reach 5 or more according as 

refined multi-dual-phase-lag theory required while 𝜚 is a 

non-dimension parameter (= 0 or 1 according to the 

thermoelasticity theory).  

The constitutive relations are given by, 

𝑡𝑖𝑗 = 𝜆𝑢𝑘,𝑘𝛿𝑖𝑗 + 𝜇(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) −  𝛽𝜃𝛿𝑖𝑗 (6) 

where 𝜆, 𝜇 are material constants, 𝜖  is the nonlocal 

parameter, 𝜌  is the mass density, 𝒖  = (𝑢, 𝑣, 𝑤)  is the 
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displacement vector, 𝜃 is absolute temperature and 𝜃0 is 

reference temperature, 𝐾∗ is the coefficient of the thermal 

conductivity, 𝐶∗ the specific heat at constant strain,  𝛽 =
(3λ + 2μ)α  where α  is coefficient of linear thermal 

expansion, Ω is the angular velocity of the solid, 𝑒𝑖𝑗  are 

components of strain tensor, 𝑒𝑘𝑘  is the dilatation, 𝛿𝑖𝑗 is 

the Kronecker delta, 𝑡𝑖𝑗 are the components of stress 

tensor. 

 

 

3. Formulation of the problem 
 

We consider a perfectly conducting homogeneous non 

local isotropic magneto-thermoelastic medium, which is 

rotating uniformly with an angular velocity Ω initially at 

uniform temperature 𝜃0  The rectangular Cartesian 

coordinate system (x, y, z) is introduced, having origin on 

the surface (z = 0) with z-axis pointing normally 

downwards into the half space. The surface of the medium 

is subjected to normal force acting at z = 0. We restrict our 

analysis to two-dimensional problem with 

𝒖 = (𝑢, 0, 𝑤). (7) 

We also assume that 

𝐸 = 0, 𝛀 = (0, Ω, 0). (8) 

Now, using Eq. (7) 

𝐽𝑦 =  0.  (9) 

The current density components 𝐽𝑥 and 𝐽𝑧  using Eq. 

(2) are given as: 

𝐽𝑥 =  
𝜎0𝜇0𝐻0

1+𝑚2 (𝑚
𝜕𝑢

𝜕𝑡
−

𝜕𝑤

𝜕𝑡
),  (10) 

𝐽𝑧 =  
𝜎0𝜇0𝐻0

1+𝑚2 (
𝜕𝑢

𝜕𝑡
+ 𝑚

𝜕𝑤

𝜕𝑡
). (11) 

Using Eq. (7) in Eq. (1) and Eq. (3), yields 

(𝜆 + 2𝜇)
𝜕2𝑢

𝜕𝑥2 + (𝜆 + 𝜇)
𝜕2𝑤

𝜕𝑥𝜕𝑧
+ 𝜇 

𝜕2𝑢

𝜕𝑧2 − 𝛽
𝜕𝜃

𝜕𝑥
−

(1 − 𝜖2∇2)𝜇0𝐽𝑧𝐻0 = 𝜌(1 − 𝜖2∇2) {
𝜕2𝑢

𝜕𝑡2 − Ω2u +

2Ω
𝜕𝑤

𝜕𝑡
}, 

(12) 

(𝜆 + 2𝜇)
𝜕2𝑤

𝜕𝑧2 + (𝜆 + 𝜇)
𝜕2𝑢

𝜕𝑥𝜕𝑧
+ 𝜇 

𝜕2𝑤

𝜕𝑧2 − 𝛽
𝜕𝜃

𝜕𝑧
−

(1 − 𝜖2∇2)𝜇0𝐽𝑥𝐻0 = 𝜌(1 − 𝜖2∇2) {
𝜕2𝑤

𝜕𝑡2 − Ω2w −

2Ω
𝜕𝑤

𝜕𝑡
}, 

(13) 

𝐾∗ℒ𝑣 (
𝜕2𝜃

𝜕𝑥2 +
𝜕2𝜃

𝜕𝑧2) =  ℒ𝑞
𝜕

𝜕𝑡
[𝜌𝐶∗𝜃 + 𝛽𝜃0 (

𝜕𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑧
)]. (14) 

we define the following dimensionless quantities 

(𝑥′, 𝑧′, 𝑢′, 𝑤′) =
𝜔1

𝑐1
(𝑥, 𝑧, 𝑢, 𝑤), 𝑡𝑖𝑗

′ =
𝑡𝑖𝑗

𝛽𝜃0
,     𝑡′ =

𝜔1𝑡,    𝑎′ =
𝜔1

2

𝑐1
2 𝑎, 𝜃′ =

𝜃

𝜃0
, Ω′ =

Ω

𝜔1
, 𝜏𝑣

′ = 𝜔1𝜏𝑣 , 𝜏0
′ =

𝜔1𝜏0, 𝜏𝑞
′ = 𝜔1𝜏𝑞. 

(15) 

where, 

𝑐1
2 =

𝜇

𝜌
 and 𝜔1 =  

𝜌 𝐶∗𝑐1
2

𝐾∗ . (16) 

Upon introducing the quantities defined by Eq. (15) in 

Eqs. (12)-(14), and suppressing the primes, yields 

(1 + 𝑎1)
𝜕2𝑢

𝜕𝑥2
+ 𝑎1

𝜕2𝑤

𝜕𝑥𝜕𝑧
+

𝜕2𝑢

𝜕𝑧2
− 𝑎2

𝜕𝜃

𝜕𝑥

= (1 − 𝜖2∇2) [
𝑀

1 + 𝑚2
(

𝜕𝑢

𝜕𝑡
+ 𝑚

𝜕𝑤

𝜕𝑡
) +

𝜕2𝑢

𝜕𝑡2

− 𝑎3Ω2𝑢 + 2Ω
𝜕𝑤

𝜕𝑡
] 

(17) 

(1 + 𝑎1)
𝜕2𝑤

𝜕𝑧2 + 𝑎1
𝜕2𝑢

𝜕𝑥𝜕𝑧
+

𝜕2𝑤

𝜕𝑥2 − 𝛽
𝜕𝜃

𝜕𝑧
= (1 −

𝜖2∇2) [
𝑀

1+𝑚2 (𝑚
𝜕𝑢

𝜕𝑡
−

𝜕𝑤

𝜕𝑡
) +

𝜕2𝑤

𝜕𝑡2 − 𝑎3Ω2𝑤 − 2Ω
𝜕𝑢

𝜕𝑡
], 

(18) 

ℒ𝑣𝑎4 (
𝜕2𝜃

𝜕𝑥2 +
𝜕2𝜃

𝜕𝑧2) =  ℒ𝑞
𝜕

𝜕𝑡
[𝑎5𝜃 + 𝛽 (

𝜕𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑧
)]. (19) 

where,  𝑎1 =
𝜆+𝜇

𝜇
, 𝑎2 =

𝛽𝜃0

𝜇
, 𝑎3 =

𝜔1
2

𝑐1
2 , 𝑎4 =

𝐾∗𝜔1

𝑐1
, 

𝑎5 = 𝜌𝐶∗ and 𝑀 =
𝜎0𝜇0

2𝐻0
2

𝜌
.  

 

The initial and regularity conditions are given by 

𝑢(𝑥, 𝑧, 0) = 0 = �̇�(𝑥, 𝑧, 0), 

𝑤(𝑥, 𝑧, 0) = 0 = �̇�(𝑥, 𝑧, 0), 

𝜃(𝑥, 𝑧, 0) = 0 = �̇�(𝑥, 𝑧, 0) for 𝑧 ≥ 0, −∞ < 𝑥 < ∞, 

𝑢(𝑥, 𝑧, 𝑡) = 𝑤(𝑥, 𝑧, 𝑡) = 𝜃(𝑥, 𝑧, 𝑡) = 0 𝑓𝑜𝑟 𝑡 >
0 𝑤ℎ𝑒𝑛 𝑧 → ∞. 

(20) 

Applying Laplace & Fourier Transforms defined by  

𝑓(̅x, z, s) = ∫ 𝑓(𝑥, 𝑧, 𝑡)
∞

0
𝑒−𝑠𝑡𝑑𝑡, (21) 

𝑓(ξ, 𝑧, 𝑠) = ∫ 𝑓(̅𝑥, 𝑧, 𝑠)
∞

−∞
𝑒𝑖ξ𝑥𝑑𝑥.  (22) 

On Eqs. (17)-(19), we obtain a system of equations, 

[(1 + 𝑎1)(−𝝃2) + 𝐷2 − (1 + 𝜖2ξ2 − 𝜖2D2)(
𝑀

1+𝑚2 𝑠 +

𝑠2 − 𝑎3Ω2)] �̃� + [𝜄𝑎1𝜉𝐷 − (
𝑀𝑚

1+𝑚2 𝑠 + 2Ω𝑠) (1 +

𝜖2ξ2 − 𝜖2D2)]�̃� − [𝜄𝜉𝑎2]�̃� = 0, 

(23) 

[𝜄𝑎1𝜉𝐷 − (
𝑀

1+𝑚2 𝑠 + 𝑠2 − 2Ω𝑠) (1 + 𝜖2ξ2 − 𝜖2D2)]�̃� +

[(1 + 𝑎1)𝐷2 − 𝝃2 + (1 + 𝜖2ξ2 − 𝜖2D2)(
𝑀

1+𝑚2 𝑠 +

𝑎3Ω2)] �̃� − [𝑎2𝐷]�̃� = 0, 

(24) 

[ℒ𝑞𝑠𝛽(𝜄𝜉�̃� + 𝐷�̃�)] + [ ℒ𝑞𝑎5𝑠 + ℒ𝑣 𝑎4(−𝐷2 +

𝜉2)]�̃� = 0.  
(25) 

where, 

ℒ𝑣 = 1 + ∑
𝜏𝑣

𝑟

𝑟!

𝑅1
𝑟=1 𝑠𝑟 , and ℒ𝑞 = 𝜚 + 𝜏0𝑠 + ∑

𝜏𝑞
𝑟

𝑟!

𝑅2
𝑟=2 𝑠𝑟 . (26) 

From Eqs. (23)-(25), we obtain a set of homogeneous 

equations which will have a nontrivial solution if 

determinant of coefficient [�̃�, �̃�, �̃�]𝑇 vanishes so as to give 

a characteristic equation as 
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[𝐷6 + Q𝐷4 + 𝑅𝐷2 + 𝑆](�̃�, �̃�, �̃�) = 0. (27) 

where, 

𝑄 =
1

𝑃
{𝛽𝑎2휁8휁10 + (휁1 − 휁7)(휁3휁4 − 휁1𝜉2)휁11 + (휁8휁11)(휁3휁7 −

𝜉2) − 휁11(𝑎1
2휁9

2 − 2휁3휁5휁6)}, 

𝑅 =
1

𝑃
{(휁1 − 휁7)[𝛽𝑎2휁9

2휁10 + 휁11(휁1𝜉4 + 휁3휁4) + 𝑎5휁10(휁1 +

휁3휁4)] − (휁3휁7 − 𝜉2)[휁11(휁11𝜉2 + 휁8 + 휁3휁4) + 𝑎5휁8휁10] +

(𝑎1
2휁9

2 − 2휁3휁5휁6)(휁11𝜉2 + 𝑎6휁10) − 휁3
2휁5휁6휁11}, 

𝑆 =
1

𝑃
{휁3휁6[𝛽𝑎2휁9휁10 + 휁3휁5(휁11𝜉2 + 휁10𝑎5)] + (휁3휁7 −

𝜉2)[𝛽𝑎2휁9
2휁10 + (휁11𝜉2 + 휁10𝑎5)(휁1𝜉2 + 휁3휁4)]}, 

𝑃 = 휁8휁11(휁1 − 휁7) − 휁5휁6휁11. 

where, 𝐷 =
𝑑

𝑑𝑧
 , 휁1 = 1 + 𝑎1 , 휁2 =

𝑀

1+𝑚2 𝑠 , 휁3 = 1 +

𝜖2ξ2 , 휁4 = 휁2 + 𝑠2 − 𝑎3Ω2 , 휁5 = (휁2𝑚 + s2 − 2Ω𝑠)𝜖2 , 

휁6 = (휁2𝑚 + 2Ω𝑠)𝜖2 , 휁7 = (휁2 + 𝑎3Ω2)𝜖2 , 휁8 = 1 +
휁4𝜖2, 휁9 = 𝜄𝜉, 휁10 = ℒ𝑞𝑠, 휁11 = ℒ𝑣𝑎4.  

The roots of the Eq. (27) are ±𝜆𝑖(𝑖 = 1,2,3) satisfying 

the radiation condition that  �̃�, �̃�, �̃� → 0 as 𝑧 → ∞,  the 

solutions of equation can be written as, 

�̃� = 𝐴1𝑒−𝜆1𝑧 + 𝐴2𝑒−𝜆2𝑧 + 𝐴3𝑒−𝜆3𝑧, (28) 

�̃� = 𝑑1𝐴1𝑒−𝜆1𝑧 + 𝑑2𝐴2𝑒−𝜆2𝑧 + 𝑑3𝐴3𝑒−𝜆3𝑧, (29) 

�̃� = 𝑙1𝐴1𝑒−𝜆1𝑧 + 𝑙2𝐴2𝑒−𝜆2𝑧 + 𝑙3𝐴3𝑒−𝜆3𝑧. (30) 

where, 

𝑑𝑖 =
𝑃∗𝜆𝑖

4+𝑄∗𝜆𝑖
2+𝑅∗

𝑇∗𝜆𝑖
4+𝑈∗𝜆𝑖

2+𝑉∗   𝑖 = 1,2,3.  (31) 

𝑙𝑖 =
𝑃∗∗𝜆𝑖

4
+𝑄∗∗𝜆𝑖

2
+𝑅∗∗

𝑇∗𝜆𝑖
4+𝑈∗𝜆𝑖

2+𝑉∗   𝑖 = 1,2,3. 

𝑃∗ = 휁8휁11, 

𝑄∗ = −[휁11(휁1 + 휁3휁4) + 휁8(휁11𝜉2 + 휁10𝑎6)], 

𝑅∗ = 𝛽𝑎2휁9
2휁10 + (휁11𝜉2 + 휁10𝑎5)(휁1𝜉2 + 휁3휁4), 

𝑇∗ = 휁11(휁1 − 휁7), 

𝑈∗ = −(휁1 − 휁7)(휁11 + 𝑎5휁10) + 𝛽𝑎2휁10 + 휁11(휁3휁7 − 𝜉2), 

𝑉∗ = −𝑎5휁10(휁3휁7 − 𝜉2), 

𝑃∗∗ = 휁8(휁1 − 휁7) − 휁5휁6, 

𝑄∗∗ = −[(휁1 − 휁7)(휁1𝜉2 + 휁3휁4) − 휁8(휁3휁7 − 𝜉2) − 2휁3휁5휁6], 

𝑅∗∗ = −[(휁1𝜉2 + 휁3휁4)(휁3휁7 − 𝜉2) − 휁3
2휁5휁6. 

(32) 

 

 

4. Boundary conditions 
 

We consider on the half-surface (𝑧 = 0) normal force 

is applied. The boundary conditions are 

(1) 𝑡𝑧𝑧(𝑥, 𝑧, 𝑡) = 𝐺(𝑡)𝛿(𝑥), (33) 

(2) 𝑡𝑥𝑧(𝑥, 𝑧, 𝑡) = 0, (34) 

(3) 𝜃(𝑥, 𝑧, 𝑡) = 0,   (35) 

where 𝛿(𝑥) is dirac delta function of 𝑥 and 𝐺(𝑡) is a 

function defined as 

𝐺(𝑡) = {

0;         𝑡 ≤ 0

𝑇1
𝑡

𝑡0
;   0 < 𝑡 ≤ 𝑡0

𝑇1;         𝑡 > 𝑡0

.  (36) 

where 𝑡0 indicates the length of the time to raise the heat 

and 𝑇1 is a constant, this means that the boundary of the 

half space, which is initially at rest and has a fixed 

temperature 𝑡0, is suddenly raised to a temperature equal to 

function 𝐺(𝑡)𝛿(𝑥)  and maintained at this temperature 

afterwards.  

Applying Laplace and Fourier transform to Eq. (33), we 

get, 

�̃�(휁, 0, 𝑠) = �̅�(𝑠), where �̅�(𝑠) = 𝑇1
(1−𝑒−𝑠𝑡0)

𝑡0𝑠2 . 

Applying the Laplace and Fourier transform defined by 

Eqs. (21) and (22) on the boundary conditions (33)-(35) and 

then using the dimensionless quantities defined by Eq. (15) 

and using Eqs. (4) and (6) and substituting values of 

�̂�, �̂�, �̂� 𝑎𝑛𝑑 �̂� from Eqs. (28)-(30), and solving, we obtain 

the components of displacement, stresses and conductive 

temperature as 

�̃� = 𝑇1
(1−𝑒−𝑠𝑡0)

Δ𝑡0𝑠2
{∑ 𝑀1𝑖𝑒−𝜆𝑖𝑧3

𝑖=1 }, (37) 

�̃� = 𝑇1
(1−𝑒−𝑠𝑡0)

Δ𝑡0𝑠2
{∑ 𝑑𝑖𝑀1𝑖𝑒−𝜆𝑖𝑧3

𝑖=1 } , (38) 

𝜃 = 𝑇1
(1−𝑒−𝑠𝑡0)

Δ𝑡0𝑠2 {∑ 𝑙𝑖𝑀1𝑖𝑒−𝜆𝑖𝑧3
𝑖=1 }, (39) 

�̃� = 𝑇1
(1−𝑒−𝑠𝑡0)

Δ𝑡0𝑠2
{∑

𝑙𝑖

1+𝑎𝜉2−𝑎𝜆𝑖
2 𝑀1𝑖𝑒−𝜆𝑖𝑧3

𝑖=1 }, (40) 

𝑡𝑧�̃� = 𝑇1
(1−𝑒−𝑠𝑡0)

Δ𝑡0𝑠2 {∑ 𝑅𝑖𝑀1𝑖𝑒−𝜆𝑖𝑧3
𝑖=1 }, (41) 

𝑡𝑧�̃� = 𝑇1
(1−𝑒−𝑠𝑡0)

Δ𝑡0𝑠2 {∑ Δ2𝑖𝑀1𝑖𝑒−𝜆𝑖𝑧3
𝑖=1 }, (42) 

𝑡𝑥�̃� = 𝑇1
(1−𝑒−𝑠𝑡0)

Δ𝑡0𝑠2 {∑ 𝑆𝑖𝑀1𝑖𝑒−𝜆𝑖𝑧3
𝑖=1 }, (43) 

𝐽�̃� = 𝑇1
(1−𝑒−𝑠𝑡0)

Δ𝑡0𝑠2 {∑ 𝑈𝑖𝑀1𝑖𝑒−𝜆𝑖𝑧3
𝑖=1 }, (44) 

𝐽�̃� = 𝑇1
(1−𝑒−𝑠𝑡0)

Δ𝑡0𝑠2 {∑ 𝑉𝑖𝑀1𝑖𝑒−𝜆𝑖𝑧3
𝑖=1 }, (45) 

∆=  ∑ 𝑀3𝑖N𝑖
3
𝑖=1 . (46) 

where, 

𝑀11 = ∆22∆33 − ∆32∆23, 𝑀12 = ∆21∆33 − ∆31∆23, 𝑀13 =
∆32∆21 − ∆31∆22, 𝑀31 = ∆22∆33 + ∆32∆23, 𝑀32 = ∆21∆33 +

∆31∆23, 𝑀33 = ∆32∆21 + ∆31∆22, 

∆2𝑖= 𝜄𝜉𝑑𝑖 − 𝜆𝑖, ∆3𝑖= 𝑙𝑖𝜆𝑖, N𝑖 = 𝜆𝑖𝑑𝑖(𝜆 + 2𝜇) + 𝛽𝑙𝑖, R𝑖 =

𝜆𝑖𝑑𝑖(𝜆 + 2𝜇) + 𝛽𝜃0𝑙𝑖, U𝑖 = (𝑚 − 𝑑𝑖)
𝜎0𝜇0𝐻0𝑠

1+𝑚2 , 

V𝑖 = (1 + 𝑚𝑑𝑖)
𝜎0𝜇0𝐻0𝑠

1+𝑚2 , S𝑖 = 𝜄𝜉(𝜆 + 2𝜇) − 𝛽𝜃0𝑙𝑖; 𝑖 = 1,2,3. 

112



 

Deformation in a nonlocal magneto-thermoelastic solid with hall current due to normal force 

5. Particular cases 
 

(i) If 𝑎 = 0 , then from Eqs. (37)-(45), the 

corresponding expressions for displacements, stresses, 

current density and conductive temperature for nonlocal 

isotropic solid without two temperature are obtained. 

(ii) If 𝜖  = 0, then from Eqs. (37)-(45), the 

corresponding expressions for displacements, stresses, 

current density and conductive temperature for local 

isotropic solid with hall current and two temperature are 

obtained.  

(iii) If  𝜖 = 𝑎 = 0 , then from Eqs. (37)-(45), the 

corresponding expressions for displacements, stresses, 

current density and conductive temperature for isotropic 

local thermoelastic solid are obtained. 

(iv) If  m = 𝜖 = 0 , then from Eqs. (37)-(45), the 

corresponding expressions for displacements, stresses, 

current density and conductive temperature for local 

isotropic solid without hall current are obtained. 

 

 

6. Inversion of the transformation 
 

For obtaining the solution of the problem in physical 

domain, the transforms in Eqs. (37)-(45) need to be 

inverted. Here all the displacement components, stress 

components and conductive temperature are of the 

form 𝑓(𝜉, 𝑧, 𝑠), being a function of 𝑧 and the parameters 

of Laplace and Fourier transforms s and 𝜉. For obtaining 

the function  𝑓(𝑥, 𝑧, 𝑡)  in the physical domain, we first 

invert the Fourier transform as used by Sharma et al. 

(2008), using 

𝑓(𝑥, 𝑧, 𝑠) =
1

2𝜋
∫ 𝑒−𝑖𝜉𝑥∞

−∞
𝑓(𝜉, 𝑧, 𝑠)𝑑𝜉 =

1

2𝜋
∫ |cos(𝜉𝑥) 𝑓𝑒 − 𝑖 sin(𝜉𝑥) 𝑓0|

∞

−∞
𝑑𝜉. 

(47) 

where, 𝑓𝑒 and 𝑓0 are respectively the even and odd parts 

of  𝑓(𝜉, 𝑧, 𝑠).  Thus the expression gives the Laplace 

transform 𝑓(𝑥, 𝑧, 𝑠) of the function 𝑓(𝑥, 𝑧, 𝑡), which  can 

be inverted Following Honig and Hirdes (1984). 

The Last step is to calculate the integral in Eq. (47), 

which is evaluated by the method as described in Press et 

al. (1986). It involves the use of Romberg’s integration with 

adaptive step size. This also uses the results from successive 

refinements of the extended trapezoidal rule followed by 

extrapolation of the results to the limit when the step size 

tends to zero. 
 
 

7. Numerical results and discussion 
 

Magnesium material has been selected for the purpose 

of numerical calculation which is transversely isotropic and 

according to Dhaliwal and Singh (1980), physical data for 

which is given as 

𝜆 = 9.4 × 1010𝑁𝑚−2, 𝜇 = 3.278 × 1010𝑁𝑚−2, 𝐾∗ = 1.7 ×

102𝑊𝑚−1𝐾−1, 𝜌 = 1.74 ×  103𝐾𝑔𝑚−3, 𝜃0 = 298 𝐾, 𝐶∗ =

10.4 × 102𝐽𝐾𝑔−1𝑑𝑒𝑔−1, 𝜇
0

= 4𝜋 × 10−7𝐻𝑚−1, 𝜎0 =
10−9

36𝜋
𝐹𝑚−1, 𝐻0 = 1 𝐽𝑚−1𝑛 𝑏−1, 𝑎 = 0.05. 

 

Fig. 1 Variation of displacement component 𝑢  with 

displacement x 

 

 

Fig. 2 Variation of displacement component 𝑤  with 

displacement x 

 

 

Using the above values, a comparison of values of 

displacement components  𝑢  and  𝑤 , stress 

components 𝑡𝑧𝑧 , 𝑡𝑥𝑥 , 𝑡𝑧𝑥 , current density components 𝐽𝑧 , 

𝐽𝑥  and conductive temperature 𝜑  for a transversely 

isotropic nonlocal magneto-thermoelastic solid with 

distance x has been made and the effects of hall current and 

nonlocality have been studied. 

1) The solid green colored line with center symbol 

square corresponds to local parameter (𝜖 = 0) and m =
0. 

2) The solid reddish colored line with center symbol 

circle represents local parameter (𝜖 = 0) and  m = 1. 

3) The solid blue colored line with center symbol 

upward triangle corresponds to nonlocal parameter (𝜖 = 2) 

and m = 0. 

4) The solid purplish colored line with center 

symbol downward triangle represents nonlocal parameter 

(𝜖 = 2) and m = 1. 

Fig. 1 shows the variations of the displacement 

component 𝑢 for isotropic magneto-thermoelastic nonlocal 

medium with hall effects. It is clear that the values of 𝑢 

follow oscillatory pattern. For 𝜖 = 0 and m = 1, the 

variations are increasing rapidly for 0 < 𝑥 < 2 while later 

on it follows oscillatory path but the oscillations are less as 

compared to other values. All other values for different 𝜖  
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Fig. 3 Variation of stress component 𝑡𝑧𝑧  with 

displacement x 

 

 

Fig. 4 Variation of stress component 𝑡𝑧𝑥  with 

displacement x 

 

 

Fig. 5 Variation of stress component 𝑡𝑥𝑥  with 

displacement x 

 

 

and 𝑚 follows perfectly oscillatory path from beginning to 

end. Fig. 2 depicts the variation of values of displacement 

component 𝑤 w.r.t displacement. The pattern is oscillatory 

with a clear difference between values for local and non-

local parameters. For all the values w follows oscillatory 

pattern. For 𝜖 = 0 and  𝑚 = 0, the variations are 

following oscillatory path with highest magnitude of 

variations. Fig. 3 describes the variations of the stress 

component   𝑡𝑧𝑧 . Here too the behavior followed is  

 

Fig. 6 Variation of conductive temperature 𝜑  with 

displacement x 

 

 

Fig. 7 Variation of normal current density 𝐽𝑧  with 

displacement x 

 

 

Fig. 8 Variation of transverse current density 𝐽𝑥  with 

displacement x 
 

 

oscillatory while the variations are perfectly oscillatory for 

all the values but the effects of hall effect and nonlocality 

are clearly visible. Fig. 4 shows the variation of stress 

component   𝑡𝑧𝑥 . Here too the behavior followed is 

oscillatory with nonlocality effects clearly having more 

magnitude of oscillations for both vaues of m. Fig. 5 shows 

the variation of stress component  𝑡𝑥𝑥 . The behavior 

followed is oscillatory with more magnitude of oscillations 

for𝜖 = 0, 𝑚 = 0 and 𝜖 = 2, m = 0 . Fig. 6 shows the 

variation of conductive temperature  𝜑 . The pattern 

followed is oscillatory for all the values with the magnitude 
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of variations less for  𝜖 = 0, 𝑚 = 0 and maximum for 

𝜖 = 2, 𝑚 = 0. Fig. 7 shows the variation of normal current 

density vector 𝐽𝑧  w.r.t. x. The pattern followed is 

oscillatory with the maximum magnitude of variations for 

𝜖 = 2, 𝑚 = 0 and minimum for 𝜖 = 0, 𝑚 = 1. Also, the 

effects for nonlocal parameter and hall current are clearly 

visible. Fig. 8 shows the variation of transverse current 

density 𝐽𝑥 w.r.t. x. The variation for all values is oscillatory 

with almost same type of trends followed. The difference 

for all values shows the effects of nonlocality and hall 

current. 

 

 

8. Conclusions 
 

From above discussion, it is clear that there is a great 

impact of nonlocal parameter and hall current on the 

components of displacements, stress components, current 

density and conductive temperature in an isotropic 

magneto-thermoelastic medium. It is observed from the 

figures (1-8) that nonlocality is playing a significant effect. 

Under the combined effects of nonlocality and hall current; 

all the components are following an oscillatory path with 

respect to variations in x. This paper gives an inspiration to 

study the effects of nonlocalty further in magneto-

thermoelastic materials. The results obtained in this paper 

can be useful for the people interested in the fields of 

nonlocal thermoelasticity, nonlocal material sciences and 

material designing.  The results provide a motivation to 

investigate conducting thermoelectric materials as a new 

class of applicable thermoelectric solids. The research has 

more importance as the interaction of hall current, rotation 

and nonlocality together has not been studied yet and so can 

found various applications especially for the researchers 

working in the field of optics, acoustics, geomagnetic, and 

oil prospecting, geophysics, marine engineering, acoustics 

etc. 
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