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1. Introduction 
 

Particle Flow Code (PFC) method is one of the widely 

used discrete element methods in geomechanics, put 

forward jointly by American scholars, Cundall and Strack 

(1979). Compared with the continuum mechanics-based 

numerical approach (Lin et al. 2019, Xu et al. 2020a), the 

basic idea of PFC is that material is discretized into a set of 

rigid particles, the motion of particles is controlled by 

Newton's second law, and the contact force between 

particles is controlled by the law of force-displacement. 

Particles can be separated, which makes PFC capable to 

simulate large deformation of materials (Bock and Prusek 

2015, Guo et al. 2020). As a discontinuous medium  
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calculation method, it shows good applicability in 

geotechnical engineering related calculation (Gracia et al. 

2019, Hashemi et al. 2014, Meidani et al. 2018, Xu et al. 

2020c). To characterize the rock materials or the rock-like 

materials, the bond model was proposed. In literature, the 

bond model is widely used to simulate the mechanical and 

failure behaviors of the rock under two dimensional 

conditions (Haeri et al. 2019, Jafri and Yoo 2018, 

Manouchehrian et al. 2014). A large number of laboratory 

tests and numerical simulation were conducted using linear 

parallel bond model, i.e., LPBM (De Silva and Ranjith 

2020, Haeri et al. 2019, Mehranpour et al. 2018, Shemirani 

et al. 2018), which explain the evolution of the force chain 

and cracks that are difficult to observe in laboratory tests 

from the microscopic perspective (Hasanpour et al. 2016, 

Lotidis et al. 2019, Sarfarazi et al. 2018). The energy can be 

consumed by bond crack propagation or stored in the PFC 

model, thus the mechanism of rock failure can be further 

interpreted (Hofmann et al. 2016, Khazaei et al. 2015, 

Poulsen et al. 2018). It is known that the reliable selection 

of input parameters is the basis of successful numerical 

simulation (Xu et al. 2020b). Thus, in the above research, 

determining the micromechanical parameters is the 

precondition for effective and accurate simulation. 

However, the micromechanical parameters are not 

directly corresponding to the macroscopic parameters of 

real material. The conventional mechanical parameters 

calibration is the “trial-and-error” process with less 

objectivity and much uncertainties (Chen et al. 2019). It 
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means that the conventional mechanical parameter 

calibration is a time-consuming process. Thus, how to 

obtain credible micromechanics parameters quickly is an 

unavoidable and important problem (Ajamzadeh et al. 

2018). Because the parameters between particles are 

difficult to be determined directly by laboratory or field 

tests, some scholars have carried out research on the 

relationship between macro and micro parameters, trying to 

find out the law of how the micromechanical parameters 

influence macroscopic parameters. In literature, a series of 

semiquantitative function relations between 

micromechanical parameters and macroscopic parameters 

were proposed (Shi et al. 2019). 

In order to calibrate the micromechanical parameters of 

the parallel bond model, enumeration method is widely 

used in rock micromechanical parameter calibration. It 

assumes a set of random micromechanical parameters and 

adopts them to carry out numerical tests. If the elastic 

modulus, uniaxial compressive strength and Poisson’s ratio 

are in agreement with the laboratory test results, the 

micromechanical parameters can be accepted. Its core idea 

is to reproduce the macroscopic mechanical response of 

rock by iterating the micromechanical parameters through 

so-called “trial-and-error” process. Generally, researchers 

carry out laboratory tests to obtain the uniaxial compressive 

strength, elastic modulus and Poisson’s ratio of rocks. For 

example, Bahaaddini et al. (2013) applied numerical 

program of uniaxial compression test to calibrate the 

micromechanical parameters according to the order of 

macro-elastic modulus, Poisson’s ratio and uniaxial 

compressive strength of rocks. It was supposed that the 

macroscopic modulus of elasticity was controlled by 

effective modulus, stiffness ratio, parallel bond modulus 

and parallel bond stiffness ratio. In addition, Poisson’s ratio 

was controlled by the microscopic stiffness parameter. The 

uniaxial compressive strength was decided by the 

microscopic strength parameter of the parallel bond. After 

many attempts, a set of micromechanical parameters were 

obtained. In the process of micromechanical parameters 

calibration, the particle density had no effect on the quasi-

static behavior of the model (Bahaaddini et al. 2016). The 

traditional calibration method depends on the process of 

enumeration to select the micromechanical parameters to 

reproduce the desired macro properties measured in the 

laboratory experiments, which has less objectivity and 

much uncertainties. From the practical experiences, for 

instance, the microscopic stiffness ratio affects all the 

values of macro elastic modulus, Poisson’s ratio and 

uniaxial compressive strength. If the Poisson's ratio is 

calibrated against stiffness ratio, the elastic modulus and the 

uniaxial compressive strength will be changed by the 

variance of the stiffness ratio. Furthermore, it is known that 

the number of input parameters of linear parallel bond 

model is more than 10, which makes it more difficult to 

calibrate the micromechanical parameters using 

enumeration method. 
The present study is focused on determining the 

micromechanical parameters of the rock material through a 
quick process. Firstly, a series equations are proposed to 
reduce the number of independent micromechanical 
parameter. Then, the semi-quantitative functional 

relationship between the macroscopic parameters and the 
micromechanical parameters are obtained based on multi-
factor variance analysis and the multiple linear regression. 
Furthermore, the micromechanical parameter correction 
iteration formula is proposed through the single factor 
analysis. Hence, a quick calibration method of linear 
parallel bond model (CM-LPBM) is developed, and the 
micromechanical parameter calibration of the limestone is 
taken as an case to verify the proposed method. It provides 
guidance for determining the micromechanical parameters 
of limestone based on parallel bond model reasonably and 
quickly. In addition, the CM-LPBM is compared with 
laboratory tests and other calibration methods. 
 

 

2. Selection and simplification of micromechanical 
parameters of limestone 
 

When PFC method is used to simulate the mechanical 

behavior of rock and soil, the commonly used contact 

constitutive models include linear model (LM), linear 

contact bond model (LCBM) and linear parallel bond model 

(LPBM). LM and LCBM are suitable for simulating soil 

materials (Cundall and Strack 1979, Kwok and Bolton 

2010). Compared with contact bonds, parallel bonds can 

transmit both force and moment, which can well reflect the 

mechanical properties of rock and hence has been widely 

applied to numerical simulation of intact and fractured rock 

masses (Bahrani and Kaiser 2017). Thus, the LPBM was 

adopted to simulate the mechanical behavior of rock in this 

paper. When the parallel bond breaks, the unbonded model 

is equivalent to the linear contact model. The parallel bond 

contact breakages can be regarded as microscopic cracks, 

and the combination of multiple microscopic cracks will 

evolve into a macro-fracture of the rock. 

The linear parallel bond model was applied in this study 

to establish the 2D discrete element numerical model of 

rock. The model-genesis procedure refers to the fistPkg26 

(Potyondy, 2018). The size of specimens was 100 mm in 

height and 50 mm in width (see in Fig. 1), and the 

procedure of model generation consists of a packing phase 

followed by a finalization phase. In the packing phase, the 

linear contact model was installed at all grain-grain contacts 

and the PFC walls were generated to prevent the balls 

escaping from the vessel. Additionally, the movement of the 

vessel walls was controlled by the servomechanism. 

Subsequently, in the finalization phase, the linear parallel 

bond model and the LPBM related material properties were 

assigned to the contacts. Ultimately, the well-connected ball 

assembly was obtained. 

The micromechanical parameters and physical 

parameters of the model shall be input when uniaxial 

compression test is carried out to calibrate the micro-

mechanical parameters of limestone. Micromechanical 

parameters include effective modulus 𝐸∗, stiffness ratio 𝜅∗, 

frictional coefficient 𝜇 , parallel bond effective 

modulus 𝐸̅∗, parallel bond stiffness ratio 𝜅̅∗, mean value of 

parallel bond normal strength 𝜎𝑐,𝑚, mean value of parallel 

bond tangential strength 𝜏𝑐̅,𝑚, standard deviation of parallel 

bond normal strength 𝜎𝑐,𝑠𝑑, standard deviation of parallel 

bond tangential strength 𝜏𝑐̅,𝑠𝑑, and radius multiplier 𝜆̅.  
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Table 1 Values of micromechanical parameters 

Micromechanical 

parameter 
𝐸∗ 

/GPa 
𝜅∗ 

𝜎̅𝑐,𝑚 

/MPa 

𝜎̅𝑐,𝑠𝑑 

/MPa 

𝜏̅𝑐,𝑚 

/MPa 

𝜏̅𝑐,𝑠𝑑 

/MPa 
𝜇 

Value 3 3 26.5 6.625 132.5 33.125 0.7 

 

Table 2 Comparison between indoor tests and numerical test 

Serial No. 
𝐻 

/mm 
𝑊 

/mm 

𝜌 

/kgm-3 

𝐸 
/GPa 

𝜎𝑈𝐶𝑆 
/MPa 

𝜐 

a1 98.08 49.35 2700 3.84 49.67 - 

a2 96.44 49.38 2680 4.07 52.97 - 

a3 99.56 49.55 2700 4.21 56.72 - 

Mean value - - - 4.04 53.12 0.250 

Numerical test 100 50 2700 4.09 53.75 0.251 

Relative error - - - 1.25% 1.19% 0.40% 

 

 

Physical parameters include minimum particle size 

𝑅𝑚𝑖𝑛 , maximum particle size 𝑅𝑚𝑎𝑥 , particle density 𝜌 , 

rock specimen height 𝐻  and rock specimen width 𝑊 . 

Macroscopic parameters to be obtained are elastic modulus 

𝐸 , Poisson’s ratio 𝜐  and uniaxial compressive strength 

𝜎𝑈𝐶𝑆. With relatively large number of the input parameters, 

the model parameters are therefore simplified to reduce the 

variation of the parameters. 

Previous studies by Potyondy and Cundall (2004) 

provide a fundamental reference to simplify the  

 

 
 

micromechanical parameters. It shows that when 𝐸∗ =

𝐸̅∗ ,  𝜅∗ = 𝜅̅∗ ，𝜆̅ = 1，𝑅𝑚𝑎𝑥 𝑅𝑚𝑖𝑛⁄ = 1.66  are satisfied, 

the PFC numerical test results can reproduce the 

characteristics of rock materials. Additionally, the standard 

deviation of parallel bond strength is assigned as a quarter 

of the parallel bond strength in the subsequent study. The 

input micromechanical parameters will satisfy the above 

relations. 

The particle sizes relative to model sizes will affect 

model accuracy and macroscopic characteristics, therefore, 

it is necessary to determine a reasonable particle size to 

ensure the model accuracy and calculation efficiency. When 

the particle size is very small, its influence on the 

macroscopic characteristics of the model can be ignored, 

but the model size and computer performance contradict 

each other, so the particle size cannot be too small. The 

𝑅𝑚𝑎𝑥 𝑅𝑚𝑖𝑛⁄  is regarded as a set value. To determine 𝑅𝑚𝑖𝑛 , 

the resolution of a dimension 𝑅𝐸𝑆 (Zhou et al. 2011) is 

defined as: 

𝑅𝐸𝑆 = (𝐿 𝑅𝑚𝑖𝑛⁄ )[1 (1 + 𝑅𝑚𝑎𝑥 𝑅𝑚𝑖𝑛⁄ )⁄ ] (1) 

where 𝐿 is the minimum size of the model. Zhou (2011) 

carried out PFC uniaxial compression numerical experiment 

to study the influence of 𝑅𝐸𝑆 on macroscopic parameters 

of rock and soil materials. The results showed that the 

number and size of particles had little effect on macro 

mechanical parameters when 𝑅𝐸𝑆 ≥ 10  and  𝑅𝐸𝑆  was 

taken as 10 in the follow-up study. Combined with previous 

 

Fig. 1 Numerical sample established in present research 

  

(a) Stress-strain curves with different bond strength ratios (b) Uniaxial compressive strength of numerical models with 

different bond strength ratios 

Fig. 2 Influence of bond strength ratio on macroscopic mechanical response 
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research, this paper found that when 𝑅𝑚𝑖𝑛 was 0.5 mm, its 

𝑅𝐸𝑆  is more than 10, which can satisfy the accuracy 

requirement of the model and avoid the problems caused by 

size effect. 

Previous research showed that ratio of parallel bond 

strength mean value 𝜏𝑐̅,𝑚 𝜎𝑐,𝑚⁄  had an impact on the 

macroscopic mechanical response of the numerical 

specimen. Uniaxial compressive numerical tests were 

carried out with different 𝜏𝑐̅,𝑚 𝜎𝑐,𝑚⁄ . Stress strain curves 

and uniaxial compressive strength 𝜎𝑈𝐶𝑆  obtained are 

shown in Fig. 2(a) and Fig. 2(b) respectively. It can be seen 

that the specimen exhibits brittleness when 

𝜏𝑐̅,𝑚 𝜎𝑐,𝑚 ≥ 1/3⁄ . We note that the slope of stress-strain 

curve nearly kept constant when 𝜏𝑐̅,𝑚 𝜎𝑐,𝑚⁄  changed. The 

uniaxial compressive strength 𝜎𝑈𝐶𝑆 increased with the 

increase of the ratio of the mean value of parallel bond 

strength 𝜏𝑐̅,𝑚 𝜎𝑐,𝑚⁄ . However, the macroscopic mechanical 

parameters of rock had little change when 𝜏𝑐̅,𝑚 𝜎𝑐,𝑚⁄ > 2 , 

the reason is that the uniaxial compressive strength of 

numerical model was controlled by 𝜎𝑐,𝑚  under this 

condition. In literature, the mean strength ratio can be set to 

5 to simulate the mechanical behavior of rock, and the 

obtained simulation results were good consistent with the 

laboratory tests (Li et al. 2016, Fakhimi 2004). Therefore, 

in present study, the mean strength ratio 𝜏𝑐̅,𝑚 𝜎𝑐,𝑚⁄   is set 

to a constant value equal to 5. The four micromechanical 

parameters (𝜎𝑐,𝑚 , 𝜏𝑐̅,𝑚 , 𝜎𝑐,𝑠𝑑 , 𝜏𝑐̅,𝑠𝑑) related to parallel 

bond strength are finally simplified into a free variable 

(𝜎𝑐,𝑚).. 

To verify the rationality of the parameter simplification 

analysis, numerical simulation was conducted. It was set 

that 𝐸∗ = 𝐸̅∗ , 𝜅∗ = 𝜅̅∗ , 𝜆̅ = 1,𝑅𝑚𝑖𝑛 = 0.5 mm，𝑅𝑚𝑎𝑥 𝑅𝑚𝑖𝑛⁄ =

1.66，𝜎̅𝑐,𝑠𝑑 = 0.25𝜎̅𝑐,𝑚，𝜏̅𝑐,𝑠𝑑 = 0.25𝜏̅𝑐,𝑚，𝜏̅𝑐,𝑚 𝜎̅𝑐,𝑚⁄ = 5. The 

uniaxial compression test results regarding limestone of 

karst conduit in Qiyueshan Tunnel (Wu 2017) was taken as 

the target. It is found that the independent micromechanical 

parameters in the parallel bond contact constitutive model 

are simplified to 𝐸∗ , 𝜅∗ , 𝜎𝑐,𝑚  and 𝜇 . The numerical 

experiment of PFC2D uniaxial compression was carried out 

by means of “trial-and-error method”. Based on the iterative 

process of “trial-and-error method” reported by Bahaaddini 

et al. (2013), the macroscopic parameters including 𝐸, 𝜐 

and 𝜎𝑈𝐶𝑆  were matched by enumeration of the 

micromechanical parameters in order. After many times’ 

attempts, the micromechanical parameters were obtained. 

The selected micromechanical parameters are shown in 

Table 1. The stress-strain curves obtained from laboratory 

uniaxial compression tests and numerical tests are shown in 

Fig. 3. The results of numerical and laboratory tests are 

compared and the relative errors are shown in Table 2. From 

the table, the relative error of the numerical test is not more 

than 1.25%, which guarantees the accuracy of the 

established model. It can be seen that the macroscopic 

responses of the numerical model are in good agreement 

with laboratory test. Thus the validity of the simplification 

of the micromechanical parameters in the present study is 

verified. In the following study, we select the 

micromechanical parameters shown in Table 1 as the 

benchmark, referred to as “benchmark parameters”. 

 

Fig. 3 Numerical model and test result comparison 

 

 

3. Macro-and-micro parameter function relationship 
based on multiple linear regression 
 

3.1 Multi-factor variance analysis 
 

Elastic modulus  𝐸 , Poisson’s ratio 𝜐  and uniaxial 

compressive strength 𝜎𝑈𝐶𝑆  can be obtained through 

uniaxial compression numerical test so as to study the effect 

of micromechanical parameters (𝐸∗,𝜅∗, 𝜇, 𝐸̅∗, 𝜅̅∗, 𝜎𝑐,𝑚 , 

𝜏𝑐̅,𝑚, 𝜎𝑐,𝑠𝑑, 𝜏𝑐̅,𝑠𝑑, 𝜆̅) on macroscopic parameters. Using the 

above parameters to simplify the method, set dependent 

variables to be 𝐸∗ , 𝜅∗ , 𝜎𝑐,𝑚  and 𝜇, take parameters in 

Table 1 as the benchmark, and carry out orthogonal 

numerical experiment with 4 factors and 5 levels by means 

of the L25(54) orthogonal table. The orthogonal experiment 

and simulation results are shown in Table 3. 

Based on the orthogonal test results shown in Table 3, 

multivariate analysis of variance is carried out to analyze 

the main effects of various factors. This paper adopts F-test 

with the significant level α being 0.05. If Sig. < 0.05, it is 

considered that corresponding micromechanical parameters 

have a significant effect on the macroscopic parameters. 

The results are shown in Fig. 4. 

 

Table 3 Orthogonal experimental design 

Scenarios 
𝐸∗ 

/GPa 
𝜅∗ 

𝜎̅𝑐,𝑚 

/MPa 
𝜇 

𝐸 
/GPa 

𝜐 
𝜎𝑈𝐶𝑆 
/MPa 

1 2 2 21.5 0.8 3.21 0.217 45.98 

2 5 1 21.5 0.6 8.62 0.128 42.00 

3 4 1 26.5 0.7 7.23 0.104 54.79 

4 1 2 26.5 0.9 1.80 0.196 74.80 

5 3 1 31.5 0.8 5.63 0.109 68.31 

6 2 3 31.5 0.7 2.89 0.244 69.25 

7 4 2 36.5 0.6 5.79 0.215 79.71 

8 5 2 31.5 0.5 7.18 0.213 53.36 

9 5 4 26.5 0.8 6.11 0.276 44.70 

10 4 4 31.5 0.9 4.97 0.273 55.10 

11 3 4 36.5 0.5 3.78 0.272 65.40 
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Table 3 Continued 

Scenarios 
𝐸∗ 

/GPa 
𝜅∗ 

𝜎̅𝑐,𝑚 

/MPa 
𝜇 

𝐸 
/GPa 

𝜐 
𝜎𝑈𝐶𝑆 
/MPa 

12 2 4 16.5 0.6 2.67 0.273 32.30 

13 2 1 36.5 0.9 3.97 0.097 96.93 

14 4 3 21.5 0.5 5.22 0.250 43.07 

15 1 3 36.5 0.8 1.62 0.233 98.86 

16 1 1 16.5 0.5 2.14 0.125 59.34 

17 3 2 16.5 0.7 4.64 0.196 35.46 

18 5 5 36.5 0.7 5.36 0.304 60.86 

19 1 4 21.5 0.7 1.51 0.255 50.44 

20 3 5 21.5 0.9 3.62 0.288 39.97 

21 2 5 26.5 0.5 2.47 0.288 49.29 

22 4 5 16.5 0.8 4.63 0.297 27.54 

23 5 3 16.5 0.9 6.33 0.245 31.64 

24 1 5 31.5 0.6 1.42 0.273 67.39 

25 3 3 26.5 0.6 4.14 0.252 54.43 

 

 

According to the results of multivariate analysis of 

variance, the significant influence order of macroscopic 

parameters obtained is as follows: 

Elastic modulus 𝐸 : factors with significance include 

effective modulus 𝐸∗ and stiffness ratio 𝜅∗, besides 𝐸∗ >
𝜅∗; 

Poisson’s ratio 𝜐: factor with significance is stiffness 

ratio 𝜅∗ only; 

Uniaxial compressive strength 𝜎𝑈𝐶𝑆 : factors with 

significance include effective modulus 𝐸∗, stiffness ratio 

𝜅∗  and parallel bond normal strength mean value 𝜎𝑐,𝑚 , 

besides 𝜎𝑐,𝑚 > 𝐸∗ > 𝜅∗. 

Furthermore, frictional coefficient 𝜇 has no significant 

influence on macroscopic parameters in present study. 

Parallel bond strength has no significant influence on the 

macroscopic elastic parameters, corroborated with the 

influence of parallel bond strength parameters on 

macroscopic elastic parameters revealed in Fig. 2 above. 

Uniaxial compressive strength is mainly affected by the 

parameter of parallel bond strength. In addition, it should be 

noted that the microscopic stiffness parameters also have a 

significant effect on macroscopic uniaxial compressive 

strength. 
 

3.2 Regression analysis of macro-and-micro 
parameters based on multi-factor variance analysis 
 

Based on the results of multivariate analysis of variance, 

the macro-micro parametric function was established step 

by step according to the number of significant factors. 

Since the stiffness ratio 𝜅∗ is the only micromechanical 

parameter that has a significant effect on Poisson’s ratio 𝜐, 

the method of controlling variables can be adopted. Based 

on the micromechanical parameters shown in Table 1, a 

 
(a) Elastic modulus 

 
(b) Poisson’s ratio 

 
(c) Uniaxial compressive strength 

Fig. 4 Results of multi-factor variance analysis 

 

 

Fig. 5 Comparison of the stiffness ratio -Poisson’s ratio 

curves by different regression methods 
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out with different stiffness ratios 𝜅∗ . The 𝜐 - 𝜅∗ curves 

obtained by different regression methods are shown in Fig. 

5. 

It is can be seen that although it is convenient to use 

linear regression, the single linear function does not have 

enough precision to describe the functional relationship 

between Poisson’s ratio and stiffness ratio (R2 = 0.8997); 

considering significance level and coefficient of 

determination, a logarithmic relation is used to describe the 

effect of stiffness ratio on Poisson’s ratio (R2 = 0.9916, Sig. 

= 0.00033), which is more precise. Its function relation is as 

follows: 

𝜐 = 0.095 ln 𝜅∗ + 0.141  (R2 = 0.9916) (2) 

For elastic modulus 𝐸, factors with significant effect 

include effective modulus 𝐸∗ and stiffness ratio 𝜅∗. Using 

multiple linear regression, the function relation is as 

follows: 

𝐸 = 1.257𝐸∗ − 0.475𝜅∗ + 1.933  (R2 = 0.963) (3) 

For uniaxial compressive strength 𝜎𝑈𝐶𝑆 , factors with 

significant effect include effective modulus 𝐸∗ , stiffness 

ratio 𝜅∗  and parallel bond normal strength mean value 

𝜎𝑐,𝑚 , the function relation is shown in Eq.(4): 

𝜎𝑈𝐶𝑆 = −5.402𝐸∗ − 3.880𝜅∗ + 2.092𝜎̅𝑐,𝑚 + 28.454  (R2

= 0.922) (4) 

From the function relation of macro-micro parameters, the 

positive and negative correlations between macroscopic 

parameters and micromechanical parameters can be 

obtained. Poisson’s ratio 𝜐 is positively related to stiffness 

ratio  𝜅∗ ; elastic modulus  𝐸  is positively related to 

effective modulus 𝐸∗ and negatively related to stiffness 

ratio 𝜅∗; uniaxial compressive strength 𝜎𝑈𝐶𝑆 is positively 

related to parallel bond normal strength mean value 𝜎𝑐,𝑚 

and negatively related to effective modulus  𝐸∗  and 

stiffness ratio 𝜅∗. 

 

 

4. Micromechanical parameter calibration method 
and case study 
 

4.1 Micromechanical parameter inversion method 
 

Based on the macro-micro parameter function relation, 

calibration formula of micromechanical parameters can be 

obtained by back calculation, shown as Eqs. (5)-(7): 

𝜅∗ = e(𝜐−0.141) 0.095⁄  (5) 

𝐸∗ = (𝐸 + 0.475𝜅∗ − 1.933) 1.257⁄  (6) 

𝜎𝑐,𝑚 = (𝜎𝑈𝐶𝑆 + 5.402𝐸∗ + 3.880𝜅∗ − 28.454) 2.092⁄  (7) 

During PFC micromechanical parameter calibration, 

macro-mechanical parameters (uniaxial compressive 𝜎𝑈𝐶𝑆, 

elastic modulus 𝐸 and Poisson’s ratio 𝜐) shall be obtained 

first from uniaxial compressive tests and then calculate 

micromechanical parameters preliminarily by Eqs. (5), (6) 

and (7) as the remaining micromechanical parameters 

 

Fig. 6 Influence curve of effective modulus on elastic 

modulus 

 

 

Fig. 7 Influence curve of parallel bond normal strength 

on uniaxial compressive strength 

 

 

satisfy the simplified parameter relations above; carry out 

PFC numerical tests with this group of micromechanical 

parameters to calculate the macroscopic parameters; 

compare the macroscopic parameters obtained from 

numerical tests and macroscopic responses obtained from 

laboratory test. If the calibration accuracy does not meet the 

requirements, then the micromechanical parameters are 

adjusted iteratively until the reasonable accuracy range is 

reached. 

In order to determine the iteration step, numerical tests 

of single factor effect of effective modulus on elastic 

modulus and parallel bond normal strength on uniaxial 

compressive strength were carried out by controlling 

variables. Univariate function curve obtained are shown in 

Figs. 6 and 7. It can be seen that the two sets of 

micromechanical parameters are positively related to 

corresponding macroscopic parameters and have significant 

effect on macroscopic parameters, which is consistent with 

the results obtained by multi-factor variance analysis and 

regression analysis. It is reasonable to conduct iterative 

adjustment to the micromechanical parameters by linear 

function.  

Macroscopic parameters such as uniaxial compressive 
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strength 𝜎𝑈𝐶𝑆 , elastic modulus 𝐸 and Poisson’s ratio 𝜐 

can be obtained by laboratory physical tests. On the basis of 

ensuring that conditions like boundary and loading are 

consistent with physical tests, the PFC parameter calibration 

numerical tests can be carried out. According to the 

principle that PFC simulation shall be consistent with the 

macroscopic responses of physical experiments, the 

micromechanical parameters of the constitutive model of 

parallel bond contact should be determined. The calibration 

of limestone is then taken as an example, and its specific 

process is as follow: 

1) Following the principle that the size of numerical test 

model shall be consistent with the size of laboratory 

physical test rock samples, the height 𝐻 and width 𝑊 of 

rock samples are obtained, therein, the recommended height 

𝐻 and width 𝑊 being 100 mm and 50 mm respectively in 

the present study. Measure and calculate the particle density 

𝜌. Carry out laboratory tests to obtain the macro-mechanical 

parameters including uniaxial compressive strength 𝜎𝑈𝐶𝑆, 

elastic modulus 𝐸 and Poisson’s ratio 𝜐. 

2) Determine minimum particle size 𝑅𝑚𝑖𝑛  and 

maximum particle size with comprehensive consideration of 

simulation preciseness, calculation efficiency and particle 

size distribution of rock samples. As is hard to obtain real 

particle distribution size, the particle size can be simplified 

to Gauss distribution. The number of the shortest edge 

particles should be greater than 30; moreover, the 𝑅𝐸𝑆 of 

the model calculated based on Eq. (1) shall be no less than 

10, therefore, it is suggested that 𝑅𝑚𝑖𝑛 = 0.5  mm, 

 𝑅𝑚𝑎𝑥 𝑅𝑚𝑖𝑛⁄ = 1.66. 

3) Preliminary calibration of elastic parameters, 

including elastic modulus 𝐸 and Poisson’s ratio 𝜐. The 

micromechanical parameter, stiffness ratio 𝜅∗ is obtained 

by substituting Poisson’s ratio 𝜐 obtained from laboratory 

tests into Eq. (5); the micromechanical parameter, effective 

modulus 𝐸∗ is obtained by submitting elastic modulus 𝐸 

and stiffness ratio 𝜅∗ into Eq. (6). 

4) Preliminary calibration of strength parameter, i.e., 

uniaxial compressive strength 𝜎𝑈𝐶𝑆. Mean value of parallel 

bond normal strength 𝜎𝑐,𝑚  is obtained by submitting 

uniaxial compressive strength 𝜎𝑈𝐶𝑆, stiffness ratio 𝜅∗ and 

effective modulus 𝐸∗ into Eq. (7). 

5) Set 𝐸∗ = 𝐸̅∗, 𝜅∗ = 𝜅̅∗ , 𝜆̅ = 1 , 𝜎𝑐,𝑠𝑑 = 0.25𝜎𝑐,𝑚 , 

𝜏𝑐̅,𝑠𝑑 = 0.25𝜏𝑐̅,𝑚 , 𝜏𝑐̅,𝑚 = 5𝜎𝑐,𝑚 , and all micromechanical 

parameters can be obtained; 

6) Input the above micromechanical parameters to 

PFC2D and carry out PFC parameter calibration numerical 

tests to obtain the macroscopic responses of numerical 

model. Compare the macroscopic parameters of the 

numerical model with that of the physical tests and 

calculate the error. Take allowable error as 5%. Accept the 

calibrated micromechanical parameters if the relative error 

is less than or equal to 5%, otherwise, micromechanical 

parameter correction iteration is needed. 

Based on the influence of the micromechanical 

parameters on the macroscopic parameters revealed above, 

micromechanical parameters can be calibrated iteratively 

according to the order of stiffness ratio, effective modulus 

and parallel bond normal strength, which can effectively 

reduce the influence of the posterior calibration on the 

macroscopic parameters of the prior order calibration. 

Micromechanical parameter correction method based on 

linear function iteration can be obtained and the specific 

iteration procedure is as follows: 

1) Calculate the relative error of Poisson’s ratio 𝜐 

between the numerical model and the laboratory 

experimental model. Accept the value of stiffness ratio if its 

relative error is no more than 5%; conduct iterative 

calibration to stiffness ratio 𝜅∗ if the relative error of 

Poisson’s ratio is greater than 5% and the iterative function 

is shown in Eq. (8), 

𝜅∗(𝑘+1) = 𝜅∗ + 𝜆1 × sgn(∆𝜐(𝑘)) (8) 

sgn(∆𝜐(𝑘)) = {1     ∆𝜐(𝑘) ≥ 0

−1   ∆𝜐(𝑘) < 0
 (9) 

where ∆𝜐(𝑘)  is the difference value between the actual 

Poisson’s ratio and the Poisson’s ratio obtained from 

numerical model in No. k iteration, and 𝜆1 is the correction 

step of stiffness ratio. Because of the convenience of linear 

function, the stiffness ratio was corrected by using linear 

function. Suggested 𝜆1 in the present study is 0.1 and “+” 

indicates a positive correlation between Poisson’s ratio and 

stiffness ratio. 

|∆𝜐(𝑘) 𝜐⁄ | ≤ 0.05 (10) 

Adopt the Eq. (8) to iterate with equal step length and 

carry out numerical experiments to verify. The termination 

condition of iteration is shown in Eq. (10). Accept the 

correction value of stiffness ratio 𝜅∗ after meeting the 

termination condition of iteration and complete the 

calibration of stiffness ratio 𝜅∗. 

2) Set stiffness ratio 𝜅∗  as 𝜅∗(𝑘) and keep other 

micromechanical parameters unchanged. Calculate the 

relative error of elastic modulus between numerical model 

and laboratory model; accept the value of effective modulus 

𝐸∗ if the relative error is no greater than 5%; otherwise, 

conduct iterative calibration to effective modulus 𝐸∗. And 

the iteration formula is shown in Eq. (11): 

𝐸∗(𝑘+1) = 𝐸∗ + 𝜆2 × ∆𝐸(𝑘)  (11) 

where ∆𝐸(𝑘)  is the difference value between the actual 

elastic modulus and the elastic modulus obtained from 

numerical model in No. k iteration and 𝜆2 is the iteration 

coefficient of effective modulus. It can be seen that the 𝜆2 

is the reciprocal value of slope of the curve in Fig. 6. 

Additionally, it is reasonable to conduct correction to 

effective modulus by adopting linear iteration formula 

(R2 = 0.996). Suggested 𝜆2 in the present study is 0.883 

and “+” indicates a positive correlation between elastic 

modulus and effective modulus. 

|∆𝐸(𝑘) 𝐸⁄ | ≤ 0.05 (12) 

Adopt the Eq. (11) to correct 𝐸∗  and carry out 

numerical experiments to verify. The termination condition 

of iteration is shown in Eq. (12). Accept the correction 

value of effective modulus 𝐸∗ after meeting the 

termination condition of iteration and complete the 

calibration of effective modulus 𝐸∗. 
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Table 4 The target macroscopic mechanical parameters of 

limestone 

𝜎𝑈𝐶𝑆/MPa 𝐸/GPa 𝜐 

80.23 20.20 0.262 

 

Table 5 The obtained macroscopic mechanical parameters 

of limestone using CM-LPBM 

Iterative 
number 

Micromechanical 

parameter 
The obtained macro-parameter 

𝜅∗ 
𝐸∗ 

/GPa 

𝜎̅𝑐,𝑚 

/MPa 
𝜇 𝜐 

𝜀𝜐 
/% 

𝐸 
/GPa 

𝜀𝐸 
/% 

𝜎𝑈𝐶𝑆 
/MPa 

𝜀𝜎𝑈𝐶𝑆
 

/% 

Target     0.262  20.20  80.23  

Step1 3.57 15.88 72.38 0.7 0.256 2.3 16.78 16.9 104.44 30.2 

Step2 3.57 18.90 72.38 0.7 0.261 0.4 19.52 3.4 89.25 11.2 

Step3 3.57 18.90 67.77 0.7 0.254 3.1 19.57 3.1 83.5 4.1 

 

 

3) Adopt the corrected stiffness ratio 𝜅∗ and corrected 

effective modulus 𝐸∗  and keep other micromechanical 

parameters unchanged. Calculate the relative error of 

uniaxial compressive strength between numerical model 

and laboratory experiment model. Accept the value of 

parallel bond normal strength 𝜎𝑐,𝑚 if its relative error is no 

greater than 5%; otherwise, conduct iterative calibration to 

parallel bond normal strength 𝜎𝑐,𝑚  and its iteration 

formula is shown in Eq. (13): 

𝜎̅𝑐,𝑚
(𝑘+1) = 𝜎̅𝑐,𝑚 + 𝜆3 × ∆𝜎𝑈𝐶𝑆

(𝑘) (13) 

where ∆𝜎𝑈𝐶𝑆
(𝑘) is the difference value between the actual 

uniaxial compressive strength and the uniaxial compressive 

strength obtained from numerical model in No. k iteration 

and 𝜆3 is the iteration coefficient of parallel bond normal  

 

 

strength. The 𝜆3 can be calculated in the same way as 𝜆2.  

As shown in Fig. 7, the suggested value of 𝜆3 is 0.511; “+” 

indicates a positive correlation between uniaxial 

compressive strength and parallel bond normal strength. 

|∆𝜎𝑈𝐶𝑆
(𝑘) 𝜎𝑈𝐶𝑆⁄ | ≤ 0.05 (14) 

Adopt the step length 𝜆3 in Eq. (13) to correct 𝜎𝑐,𝑚 

and carry out numerical experiments to verify. The 

termination condition of iteration is shown in Eq. (14). 

Accept the correction value of parallel bond normal strength 

𝜎𝑐,𝑚 after meeting the termination condition of iteration 

and complete the calibration of parallel bond normal 

strength 𝜎𝑐,𝑚. 

Finally, the micromechanical parameters corresponding 

to macroscopic mechanical parameters of laboratory rock 

samples are calibrated, and the procedure of the proposed 

CM-LPBM can be seen in Fig. 8. 
 

4.2 Case study 
 

In order to verify the micromechanical parameter 
calibration method (CM-LPBM) proposed in the present 
study, we have obtained the limestone samples from the pit 
of Huarun Cement (Pingnan) Co., Ltd. Hejing Phase I and 
Phase II limestone mine and carried out uniaxial 
compression tests. The cylindrical specimen is obtained 
with the height being 100 mm and the width 50 mm. The 
mechanical parameters obtained are shown in Table 4. We 
then select the macroscopic parameters in Table. 4 for 
micromechanical parameter calibration. 

Calibrate the micromechanical parameters of limestone 
by adopting the proposed calibration method (see in Fig. 8), 
and specific calibrating procedures are as follows: 

Step 1: Carry out experiment tests with the height, width 

 

Fig. 8 Procedure of the proposed mechanical parameters calibration method (CM-LPBM) 
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and density of rock specimen being 100 mm, 50 mm and 

2680 kg/m3 respectively. From the obtained data, rock 

uniaxial compressive strength 𝜎𝑈𝐶𝑆 is 80.23 MPa, elastic 

modulus 𝐸 is 20.20 GPa and Poisson’s ratio 𝜐 is 0.262; 

Step 2: Set the minimum particle radius 𝑅𝑚𝑖𝑛 =0.5 

mmand 𝑅𝑚𝑎𝑥 𝑅𝑚𝑖𝑛⁄ = 1.66 , and particle distribution 

follows Gauss distribution; 

Step 3: Preliminary calibration of elastic parameters of 

limestone. Submit the Poisson’s ratio of limestone       

𝜐 = 0.262 obtained from laboratory tests into Eq. (5) and 

obtain the stiffness ratio 𝜅∗=3.57. Submit limestone elastic 

modulus 𝐸 = 20.20 GPa  and stiffness ratio  𝜅∗ =
3.57 into Eq. (6) and obtain the effective modulus         

𝐸∗ = 15.88 GPa; 

Step 4: Preliminary calibration of limestone strength 

parameter, uniaxial compressive strength 𝜎𝑈𝐶𝑆 . Submit 

uniaxial compressive strength 𝜎𝑈𝐶𝑆 = 80.23 MPa , 

stiffness ratio 𝜅∗ =3.57 and effective modulus 𝐸∗ =
15.88 GPa  into Eq. (7) and obtain the mean value of 

parallel bond normal strength 𝜎𝑐,𝑚 = 72.38 MPa. 

Step 5: Set 𝐸∗ = 𝐸̅∗ ， 𝜅∗ = 𝜅̅∗ ， 𝜆̅ = 1 ， 𝜎𝑐,𝑠𝑑 =

0.25𝜎𝑐,𝑚，𝜏𝑐̅,𝑠𝑑 = 0.25𝜏𝑐̅,𝑚，𝜏𝑐̅,𝑚 = 5𝜎𝑐,𝑚  and 𝜇 = 0.7 , 

and then obtain the remaining micromechanical parameters; 

Step 6: Input the above micromechanical parameters 

into PFC2D, establish the limestone PFC model based on 

LPBM and carry out uniaxial compressive numerical tests. 

Macroscopic responses of the numerical model can be 

obtained. Based on results of numerical simulation, the 

macroscopic elastic modulus 𝐸 = 16.78 GPa , Poisson’s 

ratio 𝜐 = 0.256 and uniaxial compressive strength 𝜎𝑈𝐶𝑆 =
104.44 MPa; 

It can be seen that the relative error of Poisson’s ratio 𝜐 

is less than 5%, meeting the requirement of accuracy while 

there is relatively big error of the elastic modulus 𝐸 and 

uniaxial compressive strength 𝜎𝑈𝐶𝑆  between numerical 

simulation and laboratory tests, which needs to be corrected 

by linear iteration. 

Step 7: Conduct iterative correction of contact modulus. 

Submit ∆𝐸(1) = 3.42 GPa into Eq.(11) and obtain 𝐸∗(2) =
18.90 GPa. Keep other parameters unchanged and conduct 

modulus correction only. The parameters of limestone 

uniaxial compressive strength 𝜎𝑈𝐶𝑆 = 89.25 MPa , elastic 

modulus 𝐸 = 19.52 GPa  and Poisson’s ratio 𝜐 = 0.261 

were obtained through numerical tests. Carry out accuracy 

verification to Poisson’s ratio 𝜐, elastic modulus 𝐸 and 

uniaxial compressive strength 𝜎𝑈𝐶𝑆 with Eq. (10), (12) and 

(14) respectively; with calculation, apart from uniaxial 

compressive strength 𝜎𝑈𝐶𝑆 , the other macroscopic 

parameters all meet the accuracy requirement. 

Step 8: Conduct iterative correction to parallel bond 

normal strength. Submit ∆𝜎𝑈𝐶𝑆
(1) = −9.02 MPa into Eq. 

(13)  and ob ta in 𝜎𝑐,𝑚
(2) = 67.77 MPa .  Keep  other 

parameters unchanged and correct parallel bond normal 

strength only. Carry out numerical tests and obtain 

l imestone uniaxial  compressive strength 𝜎𝑈𝐶𝑆 =
83.5 MPa, elastic modulus 𝐸 = 19.57 GPa and Poisson’s 

ratio𝜐 = 0.254. Carry out accuracy verification to Poisson’s 

ratio 𝜐, elastic modulus 𝐸 and uniaxial compressive 

 

Fig. 9 Stress-strain curves obtained from the process of 

parameter calibration 

 

 

strength 𝜎𝑈𝐶𝑆 with Eq. (10), (12) and (14) respectively; the 

specific procedure is shown in Table 5. It can be seen that 

the three iteration termination conditions were matched, and 

relative error were controlled within 5%. Thus, a set of 

LPBM model micromechanical parameters which can 

indicate macroscopic response of limestone was obtained 

successfully through CM-LPBM. 

The stress-strain curves obtained from the process of 

parameter calibration can be seen in Fig. 9. It can be seen 

that after three steps of numerical calculations, the 

micromechanical parameters corresponding to the 

macroscopic responses of limestone in laboratory tests were 

obtained. We also note that there is a significant difference 

between the curve of Step1 and the curve of Step3. 

Because it is difficult to avoid the error in preliminary 

calibration of micromechanical parameters by using the 

semi-quantitative functional relationship between 

micromechanical parameters and macroscopic parameters, 

in the second and third steps of calibration, iterative 

correction was conducted based on Eq. (8)-(14). It can be 

seen that the calibration of elastic parameters will affect the 

strength parameters of limestone during iteration correction, 

while the elastic properties of the numerical model are 

basically unchanged during the process of calibration of 

limestone strength parameters. When the parallel bond 

strength is adjusted, the difference at the slope of stress-

strain curve can be neglected. The influence law between 

macroscopic and microscopic mechanical parameters 

reflected in the calibration process (see in Fig. 9 and Table 

5) further verified the results of multi-factor variance 

analysis in Section 3, and the accuracy and efficiency of 

CM-LPBM meet the requirements of micromechanical 

parameter calibration. 

 

 

5. Discussion 
 

In order to further validate the proposed calibration 

method, i.e., CM-LPBM, other calibration methods were 

performed for obtaining the micromechanical parameters of 

limestone. Based on physical test, the macroscopic  
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Fig. 10 Comparison of CM-LPBM and previous 

calibration methods 

 

 

parameters of limestone are shown in Table 4. Then, the 

accuracy of other two methods is compared. 

According to Buckingham π theorem, Yang et al. (2006) 

used PFC2D to model the bonded materials and studied the 

quantitative relationships between particle level parameters 

and mechanical properties of the specimens. They got 

dimensionless parameters and then established the empirical 

formulas between macro and micro parameters, the relation 

is given as follows: 

𝜐 = 0.20 ln 𝜅∗ + 0.14 (15) 

𝐸

𝐸∗
= 0.78 + 0.14 ln

𝐻

𝑅𝑎𝑣𝑔

− 0.34 ln 𝜅∗ (16) 

𝜎𝑈𝐶𝑆  𝜎𝑐,𝑚 = 1.69~1.88⁄  (17) 

It should be noted that Young’s modulus and Poisson’s 

ratio are computed under plane stress state to match the 

properties of the real materials in Yang’s study. In present 

study, the calculation method of the elastic constants is 

same as Potyondy’s (2018). We obtained the 

micromechanical parameters using Eqs. (15)-(17), and then 

carried out numerical simulation to get the macroscopic 

parameters of limestone. The macroscopic parameters 𝐸 =
23.66 GPa, 𝜐 = 0.242, 𝜎𝑈𝐶𝑆 = 71.2 MPa  were obtained 

by Yang’s method, and the corresponding relative error 

between numerical model and indoor sample are 17.1%, 

7.6% and 11.3% respectively. The main cause of the error 

comes from the variations of rock properties. The obtained 

quantitative relationships (Eqs. (15)-(17)) are empirical in 

nature. It is difficult to calibrate the micromechanical 

parameters of a random rock only using the empirical 

relationships. Therefore, to reduce the error, Yang (2006) 

proposed that some modifications may be needed to model 

a specific material.  

Zhou (2011) applied BP neural network model to 

inverse the micromechanical parameters. When the 

quantitative relationship between macro-micro parameters 

is not clear, it is appropriate to use neural network to realize 

the nonlinear mapping of macro-micro parameters.  

When BP neural network is used for the 

micromechanical parameter calibration, the approximation 

and generalization ability of BP neural network is closely 

related to the typicality of the samples. However, as a 

natural product, different diagenetic conditions endow the 

rock with different macro mechanical properties, even if the 

same rock may show great differences in macroscopic 

behaviors. Nevertheless, the BP neural network is still a 

feasible and effective method to calibrate the 

micromechanical parameters. 

The comparison of relative errors using CM-LPBM and 

other calibration methods were shown in Fig. 10. It can be 

seen that the new calibration method, CM-LPBM, has 

higher accuracy. The proposed iterative correction formulas 

of micromechanical parameters can be used for 

compensating the relative error when semi-quantitative 

functional relationship is adopted to calibrate the 

micromechanical parameters of a specific rock. Thus the 

CM-LPBM overcomes the limitation of the application 

scope of Yang’s method. Additionally, the proposed method 

is presented as a flow chart (see in Fig. 8), which has 

advantages of objectivity and efficiency compared with 

conventional “trail-and-error” method. 
 

 

6. Conclusions 
 

The main micromechanical parameters that affect the 

macroscopic mechanical parameters were revealed in 

present study. The semi-quantitative function relationships 

between the micromechanical parameters and the 

macroscopic parameters were established. Additionally, the 

iteration correction formula of the micromechanical 

parameters were proposed. An efficient calibration method 

for rock micromechanical parameters of  parallel bond 

model (CM-LPBM) was developed, with the following 

conclusions. 

(1) Based on the numerical simulation results and the 

multi-factor variance analysis, the independent 

micromechanical parameters of the LPBM to be calibrated 

were simplified to effective modulus, stiffness ratio, parallel 

bond normal strength and frictional coefficient. 

(2) The semi-quantitative functional relationship 

between the macro-and micromechanical parameters using 

regression analysis was established. The iterative correction 

formula of the micromechanical parameters based on the 

single factor analysis was proposed. 

(3) Laboratory experiment for the case study was carried 

out to verify the proposed calibration method (CM-LPBM). 

Using the proposed CM-LPBM, the micromechanical 

parameters of limestone were obtained by a few times of 

inversion calculation, which forms a sharp contrast 

compared to the traditional “trial-and-error” method. The 

error of macroscopic parameters between the numerical 

model and the indoor sample was less than 5%. The results 

show that the proposed parameter calibration method is 

efficient and reliable. 
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