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1. Introduction 
 

Accurate assessment of the geological conditions ahead 

of a tunnel face is crucial for safe and economical tunnel 

construction (Inazaki et al. 1999, Utsuki and Tsuruta 2018, 

Han et al. 2020). The measurement of the unconfined 

compressive strength (UCS) of the rock is of great 

importance in this assessment (Bieniawski 1974, Yilmaz 

2009b, Nazir et al. 2013). The UCS standard test of the rock 

is directly determined in the laboratory by the measurement 

of compression characteristics of rock specimen under the 

axial load. This test is standardized by the American Society 

for Testing and Materials (ASTM 2006) and the 

International Society for Rock Mechanics (ISRM and 

Hudson 2007). Nevertheless, some shortcomings exist in 

this kind of direct laboratory test. It is not easy to obtain a 

sufficiently perfect core sample if the rock of interest is 

weak, thinly bedded, or densely fractured. In addition, the 

direct laboratory test is time-consuming and costly (Zorlu et 

al. 2008, Dehghan et al. 2010, Mohamad et al. 2015, Wang 

et al. 2020). Some researchers report that due to standard 

UCS test methods require costly equipment, it is 

economical and convenient to use the indirect test methods 

to measure UCS (Yagiz et al. 2012, Othman et al. 2018, 

Mokhtari and Behnia 2019). 

In indirect test methods, in order to avoid the difficulties 

in preparing and testing core samples by direct method, 

many researchers have developed some prediction methods, 

such as Schmidt hammer rebound number, point load index,  
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p-wave velocity and physical properties to related with the 

UCS using regression techniques or artificial intelligence 

techniques (Shakoor and Bonelli 1991, Kahraman 2001, 

Yılmaz and Sendır 2002, Tsiambaos and Sabatakakis 2004, 

Toghroli et al. 2018, Yagiz 2019). Compared with the UCS 

direct test, these index tests need relatively few samples, 

which have the advantages of quick and easy fast operation, 

portability and low costs. Nevertheless, Zhang (2016)  

pointed out that when considering different rock types, 

different strength values can be calculated by different 

empirical formulas. Moreover, Meulenkamp and Grima 

(1999) described that statistical regression methods have the 

disadvantage of predicting only the average value; 

Therefore, over prediction of low UCS value and under 

estimation of high UCS value may occur. At the same time, 

many scholars also proposed that the regression analysis 

technology has limitations on the prediction accuracy of 

solving complex nonlinear tasks (Baykasoğlu et al. 2004). 

In addition, according to the research of Meulenkamp and 

Grima (1999), in contrast to the statistical regression 

analysis, the UCS value predicted by artificial neural 

network (ANN) is not force to be the average value, so the 

existing variance of measurement data can be retained and 

employed. For the assessment of the rock mass quality 

ahead of a tunnel face, although these existing direct and 

indirect test techniques can be applied to measure the UCS 

of the exposed rock, it is very difficult to predict the UCS 

values of the unexposed rocks ahead of the tunnel face. 

Recently, with the rapid development of measurement-

while-drilling (MWD) technology, the evaluation 

technology of rock mass quality ahead of a tunnel face has 

been improved (Schunnesson 1996, Sugawara et al. 2003, 

Høien and Nilsen 2014, Galende-Hernández et al. 2018); 

Therefore, as long as the original data is properly processed 
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and effectively analyzed, the MWD technology can be 

regarded as a robust method for detailed characterization of 

large rock mass. Many scholars have done a lot of research 

in this field. By analyzing the change of drilling parameters, 

Scoble et al. (1989) determined different geological 

structures. The original MWD system was developed by 

Aoki et al. (1999); The geological conditions of different 

ground depths were evaluated by analyzing the data 

obtained by drilling in rock with a hydraulic drill. Peck 

(1989) verified that MWD parameters can be used to 

estimate the compressive and shear strength of rocks. Teale 

(1965) introduced specific energy as a composite MWD 

parameter, and connected the bit performance parameters in 

rotary drilling with the concept of energy required to 

excavate rock per unit volume. Hatherly et al. (2015) 

described that the wear of the bit affects the recognition 

accuracy of rock mass characteristics. Schunnesson et al. 

(2012) proposed a method to estimate the range of rock 

strength values based on the MWD hardness parameter 

index recorded by Atlas Copco software. Celada et al. 

(2009) investigated the correlation between specific energy 

and rock mechanical parameters through laboratory tests, 

and demonstrated that the specific energy value has a 

certain correlation with rock mass rating index. Kahraman 

et al. (2016) evaluated the feasibility of estimating UCS, 

Brazilian tensile strength, point load strength and Schmidt 

hammer test value by penetration rate parameter. However, 

limited by the difficulty of efficient analysis and processing 

of the MWD data, the technology of predicting UCS ahead 

of a tunnel face using the MWD data has not been 

effectively applied in the field. 

In recent decades, the ANN has been applied to solve 

geotechnical engineering problems as a powerful tool 

(Alimoradi et al. 2008, Yilmaz 2009a, Ocak and Seker 

2012, Kwon and Lee 2018, Xue 2019). However, the 

disadvantages of slow learning speed and easy to fall into 

local minima exist in the realization of ANN (Jadav and 

Panchal 2012, Momeni et al. 2014). In order to solve these 

problems, optimization algorithms such as genetic 

algorithm (GA) can be used to enhance the performance of 

ANN (Bhatti et al. 2011, Karimi and Yousefi 2012, 

Khandelwal et al. 2018).  
The main purpose of this research is to establish a 

hybrid optimization model, GA-ANN, to predict of UCS 
utilizing the MWD data acquired from the new Nagasaki 
tunnel (east) of the West Kyushu line of the high-speed 
railway project in Japan. A conventional regression model 
and simple ANN model are developed. Subsequently, the 
hybrid optimization model of GA-ANN is developed. 
Finally, the best prediction model is selected by comparing 
the results of these models. The results can contribute to the 
accurate, effective and objective assessment of rock mass 
quality ahead of a tunnel face. 
 

 

2. Data collection and regression analysis 
 

2.1 Project description 
 

As a mountainous country, if the construction of roads 

and railways in Japan adopts the construction around 

mountains, the project cost will be huge. Therefore, it is  

 
Fig. 1 The location of the project tunnel 

 

 

inevitable to need a lot of tunnel excavation in highway and 

railway construction. The complicated and dangerous 

geological conditions such as water gushing, mud bursting 

and cavity are very common in mountain tunnels, which is 

more common in southern Japan. The new Nagasaki tunnel 

is part of Japan’s West Kyushu line with a total length of 

7.46 km. The New Nagasaki tunnel is divided into two 

parts, namely, the new Nagasaki tunnel (east) and the new 

Nagasaki tunnel (west) (Fig. 1). As the research object of 

this study, the new Nagasaki tunnel (east) was started in 

March 2013 and completed in 2017. The length of the two 

tunnels is 3.885 km and 3.575 km respectively. The New 

Austrian Tunneling Method is the main method of tunnel 

excavation. The shape of the tunnel is a horseshoe with a 

height of 9.3 m and a width of 10.4 m. The main rock type 

that the tunnel passes through is pyroxene andesite with 

poor surrounding rock geological conditions and elastic 

wave velocity range of 2.5-3.5 km/sec. 

 

2.2 Data collection 
 

In the field measurement, important parameters 

including the MWD data and the UCS values were 

recorded. Situ tests, i.e., advanced drilling data (the MWD 

data) and Schmidt hammer rebound number were recorded 

at the same time in the same tunnel section. It should be 

noted that due to the reason that some field measurements 

are difficult to carry out, the MWD data used in this paper 

have not been obtained from all tunnel sections. 

The MWD data of this study comes from the hydraulic 

rotary percussion drill, which carries out drilling operation 

ahead of the tunnel face. In order to eliminate the influence 

of the error, the drilling data of a certain location is 

processed averagely within one meter. The parameters of 

MWD data including the penetration rate (PR), hammer 

pressure (HP), rotation pressure (RP), feed pressure (FP), 

hammer frequency (HF) and specific energy (SE). Among 

these MWD parameters, the specific energy is a composite 

parameter, which refers to the energy consumed to destroy 

the rock per unit volume, as shown in Eq. (1) (Masayuki et 

al. 2001): 

𝐸𝑠 =
𝐴𝐿𝑁𝑠𝑓

𝑣𝑆
× 𝑘 (1) 
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Fig. 2 Distribution of the parameters of the input data and 

output data 

 

Table 1 Basic statistics of dataset parameters 

Item Symbol Unit Mean Min Max Std. Dev 

Input 

PR m/min 0.88 0.15 13.30 0.80 

HP MPa 15.13 9.40 16.10 0.97 

RP MPa 4.56 1.90 12.50 1.35 

FP MPa 4.36 1.59 8.70 1.05 

HF 1/s 33.46 0.00 63.00 13.96 

SE J/cm3 327.49 15.10 1549.80 191.40 

Output UCS MPa 34.19 8.00 84.00 19.16 

 

 

where Es is the specific energy (J/cm3), f is hammer 

frequency (1/min), v is penetration rate (cm/min), S is cross-

sectional area of the drill hole (cm2), k is loss coefficient, A 

is piston com pression area (cm2), L is piston stroke(cm), Ns 

is the hammer pressure (MPa). The function of the k is to 

eliminate the energy loss caused by the friction between the 

drill pipe and the wellbore. It was determined based on 

laboratory rock drilling tests. 

Considering the time-consuming and high cost of the 

standard uniaxial compression test, Schmidt hammer test is 

generally employed to measure the UCS of rock as an 

indirect method. This indirect method has the advantages of 

simple operation, no sample preparation and convenient 

field application (Goudie 2006, Demirdag et al. 2009, 

Hoseinie et al. 2012). The operation procedure of Schmidt 

hammer test is as follows: 

• Press on the surface of the rock material with a 

Schmidt hammer. After the switch is turned, the piston in 

Schmidt hammer hits the plunger.  

• The hammer test should be carried out at five 

different representative points perpendicular to the core 

samples, and the spacing between these representative 

points should be at least twice the diameter of the plunger.  

In the construction of the new Nagasaki tunnel (east), 

detailed observation report of the exposed tunnel face is 

used to comprehensively evaluate the surrounding rock of 

the tunnel. The UCS is one of the important terms in the 

observation report, which is calculated indirectly by 

Schmidt hammer rebound number.  

In this study, MWD data, and UCS were collected in 

situ in the new Nagasaki tunnel (east phase). A total of 1350 

datasets from 1350 sections of the tunnel were recorded and 

collected. To predict the UCS value, the MWD data (PR, 

HP, RP, FP, HF and SE) are regarded as input parameters of 

the ANN, and the UCS values are regarded as output 

parameters. Table 1 summarizes the descriptive statistical 

distribution of all parameters in the database. Their visual 

statistic distribution is provided in Fig. 2. According to the 

analysis in Table 1 and Fig. 2, the values of these 

parameters are widely distributed. It should be noted that a 

small number of singular values exist in the MWD data. In 

order to investigate the robustness of ANN, the original data 

are not filtered in this paper. 

 

2.3 Regression analysis 
 

In addition, the correlation between each MWD 

parameter and their corresponding UCS was investigated. 

Fig. 3 summarizes the input datasets used and shows the 

relationship matrix between all data. 

The correlations between input parameters (PR, HP, RP, 

FP, HF and SE) and output parameters (UCS) were 

determined by simple regression models. For fitting 

problem, the correlation coefficient (R2), root mean square 

error (RMSE) and variance account for (VAF) are often 

used as evaluation indexes to evaluate the performance of 

the developed models, as employed by Grima and Babuška 

(1999), Yilmaz (2009b), Kayabasi (2012). The equations 

were evaluated with taking into consideration an evaluation 

index of R2. The most suitable equation types for predicting 

UCS were evaluated and selected by power, exponential 

and linear equations based on the values of R2. The 

equations used for the prediction of UCS are listed in Fig. 4. 

As shown in Fig. 4, the results of R2 was calculated as 

0.082, 0.198, 0.173, 0.117, 0.003, and 0.276, for PR, HP, 

RP, FP, HF and SE, respectively. The correlation between 

UCS and SE is better than the correlation among the other 

parameters; however, a low coefficient of determination (R2 

= 0.276) is obtained. These results show a low correlation 

between a single MWD parameter and the UCS. Therefore, 

using all or part of the MWD parameters to develop 

prediction model requires further study. In the following 

sections, attempt for applying an advanced hybrid ANN 

technology to predict the UCS based on multiple MWD 

parameters will be carried out. 
Before developing the prediction models, to minimize 

the influence of order of magnitude on the prediction 
results, the database was normalized to the range of 0-1 by 
the following equation: 

𝑋𝑛𝑜𝑟𝑚 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 (2) 

where Xnorm and x are normalized and measured data, 

respectively. xmin and xmax are the minimum and maximum 

value, respectively, of x.  
The datasets were divided into training set and testing 

set to develop and evaluate the established networks. 
Swingler (1996), Looney (1996) and Nelson and 
Illingworth (1991) suggested that 80%, 75% and 70-80%,  
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respectively, of the whole datasets should be used as 
training set. Therefore, in this research, 1350 data sets were 
divided into training set and testing set by 80% and 20% 
ratio, respectively. A total of 1080 training sets and 270 
testing sets were conducted to develop the UCS prediction 
models. 
 
 

3. Methods 
 

3.1 MLR 
 

MLR is based on the development of simple linear 

regression technology, attempting to find an equation 

through measured data to describe the relationship between 

two or more interpretive variables (characteristics) and 

dependent variables (output). MLR is widely used in 

various branches of science and technology (Preacher et al. 

2006, Nathans et al. 2012, Khademi et al. 2017). The 

mathematical form of MLR is as follows: 

𝑦 = 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑛𝑥𝑛 + 𝑐 (3) 

where, xi, y, c and bi are the ith independent variable, ith 

dependent variable, a constant (intercept) and the vector of 

regression coefficients (slope). 

 

3.2 ANN 
 

As an information processing program, ANN was first  

proposed by McCulloch and Pitts (McCulloch and Pitts  

 

 

1943). Three layers, input layer, hidden layer and output 

layer, constitute a typical ANN. Groups of processor 

elements (or nodes) exist in each layer, which relates to 

each other between layers. The input signal of the previous 

layer is weighted to get the output signal as the next layer 

input. The activation function exists in each node of the 

hidden layer and the output layer. These activation 

functions are used to calculate the output of each node. The 

number of nodes in the input and output layer is determined 

by the dimension of their respective variables. However, it 

is difficult to determine the number of the hidden layer 

nodes. Generally, according to the problem to be solved, the 

optimal number of hidden layer nodes is determined by trial 

and error procedure. There are several training algorithms 

for ANN. The error back-propagation algorithm is the well- 

known and often used training algorithm. In this algorithm, 

the continuous adjustment of the connection weight 

between nodes is to reduce the error between the measured 

and the predicted output through the neural network 

iteration, and the error will spread to the input layer. If the 

error level between the output and the expected value is 

high, the adjustment of weight and deviation will continue. 

Therefore, the back-propagation algorithm was selected as a 

training algorithm in this research. Fig. 5 shows the ANN 

model of predicted UCS with six input and one output 

variables in this study.  

 

3.3 GA 
 

GA was developed by professor Holland of the  

 

Fig. 3 General information related to the input parameter 
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university of Michigan (Holland 1992). As an algorithm in 

the computer science field, GA is a heuristic search 

algorithm for solving optimization problems. This 

algorithm is often used in optimization and search solutions. 

Heredity, mutation, natural selection and hybridization are  

 

 

 

used in GA. It has the advantages of simple principle and 

operation, strong generality, unlimited constraints, implicit 

parallelism and global solution searching ability, and is 

widely employed in combinatorial optimization problems. 

However, the biggest disadvantage is that when the  

  
(a) PR (b) HP 

  
(c) RP (d) FP 

  
(e) HF (f) SE 

Fig. 4 The best simple regression model of each input parameter 

 

Fig. 5 Framework of the ANN model and the flowchart of GA 
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selection of activation function is not appropriate, the GA 

may only converge to the local optimal, but not the global 

optimal (Mohamad et al. 2017). The GA program is divided 

into three stages: chromosome fitness evaluation, parental 

chromosome selection, and the application of genetic 

operators on parental chromosomes. The new chromosome 

produced becomes the next generation population, and the 

process is iterated until the stop condition is reached. GA 

has a large number of application cases in civil engineering, 

traffic engineering and other engineering fields due to its 

excellent performance. The detailed description of genetic 

algorithm and its application can be acquired from the 

studies (Whitley 1994, Kosakovsky Pond et al. 2006, 

Kumar et al. 2010, Qiu et al. 2015, Jahed Armaghani et al. 

2018). 

 

 

4. Modeling 
 

4.1 MLR modeling 
 

In this research, training datasets were applied to 

calculate the MLR models to correlate the UCS to the input 

parameters of PR, HP, RP, FP, HF and SE of the training 

datasets. Eq. (4) shows the results obtained from the 

regression analysis. 

JH= -36.498-0.381PR+5.052HP-4.022RP 

+2.776FP-0.181HF+0.021SE 
(4) 

Eq. (4) shows that parameters including HP, FP and SE 

have a direct relationship with UCS. Whereas, PR, RP and 

HF have an inverse relationship with UCS. The evaluation 

of the developed MLR model with testing datasets will be 

discussed in Sect. 5. 

 

 

4.2 ANN modeling 
 

The construction of ANN model was carried out in this 

section. As previously mentioned, the multi-layer 

perceptron was applied for predicting the UCS. The 

parameters of PR, HP, RP, FP, HF and SE were designated 

as the inputs, and the parameter of UCS was designated as 

the outputs. 

 

4.2.1 ANN parameters 
The most effective parameters of ANN are training 

function, learning rate (η), momentum term (α), number of 

hidden layers and number of hidden layer nodes. The 

establishment of the ANN prediction model is to determine 

these main parameters. In order to predict the UCS 

accurately, these parameters were studied in detail to 

determine the optimal ANN parameters. According to the 

suggestion of Hasanipanah et al. (2016), Levenberg 

Marquardt algorithm is used to train neural network 

prediction model. As many researchers (Hecht-Nielsen 

1987, Hornik et al. 1989, Garson 1998) introduced, the 

ANN with one hidden layer has enough performance to 

solve overwhelming majority engineering prediction tasks. 

Therefore, in this study, all the prediction models are 

designed with a hidden layer. To develop the ANN model, 

the difficulty is encountered in determining the learning 

rate, the momentum term and the number of hidden layer 

nodes. 

 

4.2.2 Training function 
The training function is generally divided into two 

types: one is a heuristic algorithm using the steepest descent 

method, such as resilient back-propagation (trainrp) and 

variable learning rate algorithms (traingdx); the other is a  

  
(a) Traingdx (b) Trainrp 

  
(c) Trainscg (d) Trainlm 

Fig. 6 The various trials with 1-30 nodes with four training functions 
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standard numerical algorithm, such as Scaled Conjugate 

Gradient (trainscg) and Levenberg-Marquardt (trainlm). To 

select the optimal training function, several models were 

developed using these four training functions. The ANN 

architecture of 6-15-1, the η of 0.01 and α of 0.5 were 

utilized, and the performance indices of RMSE were 

employed to assess the developed models. The results of 

various ANN experiments with 1-30 nodes trained by 

traingdx, trainrp, trainscg and trainlm are shown in Fig. 6. 

Fig. 6 illustrates that in all functions, traindx had the 

weakest performance. Among them, the trainlm fluctuation 

reduces the errors during nodes and shows the best 

performance in both training and testing stage. Thus, the 

trainlm was chosen as the optimum the best training 

function. 

 

4.2.3 ANN parameters 
To choose the best values of η and α, several ANN 

models were constructed with η values of 0.02, 0.04, 0.06, 

0.08, 0.1, 0.2, 0.4, 0.6 and 0.8, respectively, and α values of 

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9, respectively. The 

ANN architecture of 6-15-1 and trainslm training function 

were applied. RMSE values were applied to evaluate the 

capacity of these models. Based on the evaluation, the 

optimal η and α values were chosen as 0.02 and 0.9, 

respectively, as shown in Fig. 7. Therefore, these values 

were chosen as the optimal value of η and α. 

 

4.2.4 The number of hidden layer nodes 
The number of hidden layer nodes has a great influence  

on the prediction performance of ANN (Kanellopoulos and 

Wilkinson 1997, Gao 1998, Monjezi et al. 2011). To 

evaluate this influence, different experiments of artificial 

neural network model with hidden layer nodes in 1-60, 

input layer nodes and output layer nodes in 1 and 6 

respectively were set up, as shown in Appendix (A). The 

prediction performance of the developed models was 

assessed by performance index RMSE and R2. Superior 

models have lower value of RMSE and higher values of R2. 

However, it is difficult to choose the optimal prediction 

model. For this reason, Zorlu et al. (2008) recommended a 

easier method based on sorting method to realize this 

choice. On the basis of this method, each performance 

index was sorted, and the sorting value indicates the  

 

 

strength of performance. For example, RMSE values of 

13.72, 11.87, 10.42, 9.86, 9.22, 9.75, 9.48, 9.22, 9.06, 8.42, 

9.02, 7.98, 8.84, 8.87, 9.09, 8.30, 9.78, 7.95, 8.66, 8.64, 

8.15, 8.50, 8.68, 7.81, 8.18 and 8.39 were obtained from 

training sets of models 1-26 shown in Appendix (A), 

respectively. Therefore, the sorting result value were 1, 2, 3, 

4, 9, 6, 7, 8, 11, 19, 12, 24, 14, 13, 10, 21, 5, 25, 16, 17, 23, 

18, 15, 26, 22 and 20, respectively. The result value of R2 

was also carried out in this way. After that, the training 

stage and testing stage were sorted respectively, and the 

total rank was the sum of the sorting values of the two 

stages, as shown in Appendix (A). As the results shown in 

Appendix (A), the No.12 model was selected as the model 

with the best performance in all the developed models. The 

average RMSE was 7.98 and 10.11, respectively, and R2 

was 0.827 and 0.721, respectively. Therefore, the ANN 

structure of 6–12–1 was finally determined as the optimum 

model for UCS value prediction. The optimal prediction 

model of ANN (run 5 times) will be further discussed in 

Sect. 4.3. In Sects. 4.3, note that GA-ANN hybrid model of 

the neural network structure was developed based on 6–12–

1, and indices of RMSE and R2 were also used to evaluate 

the developed prediction models. 
 

4.3 GA-ANN modeling 
 

To solve the problems of slow convergence and local 

optimization, many researchers employed GA to optimize 

the weights and biases of ANN, and successfully complete 

many engineering tasks (Balasubramanian et al. 2008, 

Yazdanmehr et al. 2009, Benyelloul and Aourag 2013, 

Khandelwal and Armaghani 2016). The hybrid GA-ANN 

algorithm flowchart is shown in Fig. 5. The steps of 

structuring the hybrid GA-ANN predictive model for UCS 

is detailed in the following section. 

 

4.3.1 GA parameters 
To developing GA models, population size (Spop), 

methods of selection, number of generations (Ngen), 

mutation probability and crossover probability are the 

critical parameters set by the user. In this study, after the 

trial and error procedure, the mutation probability was 

determined as 25 % and the crossover probability was used 

with 70%. For the selection of crossover operation methods,  

  
(a) η (b) α 

Fig. 7 Effects of learning rate and momentum parameters on ANN 
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the roulette method is often used to create two offspring 

from parents (Yu et al. 2010). Hence, in this study, the 

roulette wheel method was utilized for crossover operations. 
 

4.3.2 Value of the Spop 
As shown in Table 2, many GA-ANN models were 

developed to select the optimal population size. The 

population size (Spop) was set as 25-600, the ANN structure 

was set at 6–12–1, and the maximum generation was set as 

100. As in the previous section, performance indexes R2 and 

RMSE are applied to evaluate the developed models and the 

optimal model was select ed using a simple ranking process. 

As shown in the total rank results in Table 2, model No. 12 

has the highest prediction performance compared with other 

models. Hence, the value of 500 was determined as the 

optimal Spop. 
 

4.3.3 Value of the Ngen 
In order to determine the optimal Ngen, different GA-

ANN models were also developed with a fixed value of 

1000 as the Ngen and the values of 25-600 of the Spop. As 

shown in Fig. 8, the RMSE values for all models remains 

constant after more than 700 generations. Based on this, the 

value 700 is determined as the optimal Ngen. 

 

4.3.4 Network modelling 
In this step, predicted GA-ANN models were developed 

with the structure of 6-12-1 and the optimal GA parameters 

and trained 5 times. The prediction performance indices of 

the developed models are listed in Table 3. More valuation 

of the developed models will be carried out in Sect. 5. 
 

 

5. Results and discussion 
 

In the last stage of prediction model development, the  

 

 

Fig. 8 The results of RMSE of different the GA-ANN 

models with different values of Spop 

 

 

MLR model was trained once for the final UCS prediction 

model, and the ANN and the GA-ANN model were trained 

five times. The indices of R2, RMSE and VAF are utilized 

to assess these models.  

Table 3 displays the results of the developed models. A 

larger total rank value indicates stronger prediction 

performance, and the optimal model is determined based on 

this principle. The total rank of all developed models is 

indicated in Table 4. As shown, ANN model No. 1 and GA-

ANN model No. 3, have a total rank of 30 and 27, 

respectively, which indicates the highest performance for 

the modelling techniques. For a certain training dataset, 

note that only one prediction formula can be fitted using the 

MLR method. Therefore, only one prediction model of the 

MRL was developed in this study.  

The best performance indices of the optimal models are 

expressed in Table 5. The results depict that the 

performance level of the MLR model can be increased from 

approximately 0.40 (for MLR model) to approximately 0.78  
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Table 2 Effect of the population size on the hybrid GA-ANN in predicting UCS 

No. Population size Ga-ANN results Rank value Total rank 

  Training Testing Training Testing  

  R2 RMSE R2 RMSE R2 RMSE R2 RMSE  

1 25 0.797 8.636 0.711 10.226 1 1 4 4 10 

2 50 0.807 8.434 0.700 10.452 2 2 2 3 9 

3 75 0.833 7.821 0.742 9.736 8 8 7 7 30 

4 100 0.844 7.596 0.733 9.947 10 10 5 5 30 

5 150 0.830 7.924 0.753 9.487 7 6 12 12 37 

6 200 0.817 8.195 0.748 9.535 4 4 9 11 28 

7 250 0.836 7.770 0.698 10.718 9 9 1 1 20 

8 300 0.829 7.913 0.761 9.300 6 7 14 14 41 

9 350 0.821 8.085 0.746 9.567 5 5 8 9 27 

10 400 0.848 7.495 0.737 9.849 12 12 6 6 36 

11 450 0.846 7.520 0.749 9.593 11 11 11 8 41 

12 500 0.854 7.334 0.755 9.467 14 14 13 13 54 

13 550 0.808 8.369 0.704 10.560 3 3 3 2 11 

14 600 0.851 7.412 0.748 9.562 13 13 10 10 46 
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(for ANN models) based on R2 by developing the ANN 

model. The performance level of the ANN model can be 

increased based on R2 by developing a hybrid GA-ANN 

model from approximately 0.78 (for ANN models) to 

approximately 0.82 (for GA-ANN models). The results of 

MLR (with R2, RMSE and VAF values of 0.365, 15.324 and 

0.365 for training, respectively, and R2, RMSE and VAF 

values of 0.405, 14.536 and 0.405 for testing, respectively); 

 

 

 

ANN (with R2, RMSE and VAF values of 0.846, 7.538 and 

0.846, respectively, for training and R2, RMSE and VAF 

values of 0.784, 8.768 and 0.783 for testing, respectively); 

and GA-ANN (with R2, RMSE and VAF values of 0.881, 

6.641 and 0.881, respectively, for training and R2, RMSE 

and VAF values of 0.819, 8.102 and 0.815, respectively, for 

testing) are obtained for each optimal model of the 

developed MLR, ANN and GA-ANN models. Moreover,  

Table 3 The performance indices of the final developed models 

Type Phase No. R2 RMSE VAF Rank value 
Total 

rank 

      R2 RMSE VAF  

MLR 
Training 1 0.365 15.324 0.365 1 1 1 1 

Testing 1 0.405 14.536 0.405 1 1 1 1 

ANN 

Training 

1 0.846 7.538 0.846 5 5 5 15 

2 0.842 7.658 0.841 3 3 3 9 

3 0.774 9.149 0.774 1 1 1 3 

4 0.845 7.567 0.845 4 4 4 12 

5 0.828 7.968 0.828 2 2 2 6 

Testing 

1 0.784 8.768 0.783 5 5 5 15 

2 0.770 9.120 0.767 4 4 4 12 

3 0.677 10.909 0.666 2 2 2 6 

4 0.764 9.174 0.763 3 3 3 9 

5 0.610 12.555 0.556 1 1 1 3 

GA-ANN 

Training 

1 0.865 7.056 0.865 3 3 3 9 

2 0.881 6.629 0.881 5 5 5 15 

3 0.881 6.641 0.881 4 4 4 12 

4 0.845 7.600 0.844 2 2 2 6 

5 0.841 7.677 0.841 1 1 1 3 

Testing 

1 0.802 8.430 0.800 3 3 4 10 

2 0.818 8.175 0.697 4 4 1 9 

3 0.819 8.102 0.815 5 5 5 15 

4 0.793 8.629 0.791 2 2 3 7 

5 0.783 8.892 0.779 1 1 2 4 

Table 4 The total rank of all phases of the final developed models 

Type No. Total rank 

MLR 1 1 

ANN 

1 30 

2 21 

3 9 

4 21 

5 9 

GA-ANN 

1 19 

2 24 

3 27 

4 13 

5 7 
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(a) The MLR models 

 
(b) The ANN models 

 
(c) The GA-ANN models 

Fig. 9 Correlation coefficients of the optimal models 

  
(a) The MLR models (b) The ANN models 

 
(c) The GA-ANN models 

Fig. 10 Comparison of the predicted and measured UCS in the optimal models with testing data sets 
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the correlation index values of R2 between the measured 

values of UCS and the predicted values predicted by the 

optimal MLR, ANN and GA-ANN model are graphically 

shown in Fig. 9. The comparison between measured UCS 

and predicted UCS using all three models with testing 

datasets are shown in Fig. 10. The results show that the 

ANN and GA-ANN models have better prediction ability 

than the MLR models. When both the training dataset and 

testing dataset are considered, R2 values of 0.846 and 0.784 

and R2 values of 0.881 and 0.819 for the ANN technique 

and GA-ANN technique, respectively, indicate that the GA-

ANN model has slightly higher prediction performance 

compared with other models. 
 
 

6. Conclusions 
 

The accurate prediction of the Unconfined compressive 

strength (UCS) utilizing measurement-while-drilling 

(MWD) data is one of the most influential factors in tunnel 

safety construction. One of the most important advantages 

of artificial neural network (ANN) methods is that they can 

solve complex multivariate nonlinear mapping problems. 

However, ANN methods have significant drawbacks: the 

disadvantages of slow learning speed and easy to fall into 

local minima. In this study, therefore, an optimization 

algorithm of the genetic algorithm (GA), was employed to 

develop hybrid model of GA-ANN to estimate the UCS 

value ahead of tunnel face. For this purpose, 1350 datasets, 

including six measure-while-drilling parameters of 

penetration rate (PR), hammer pressure (HP), rotation 

pressure (RP), feed pressure (FP), hammer frequency (HF) 

and specific energy (SE), were collected from the new 

Nagasaki tunnel (east) of the West Kyushu Line high-speed 

railway in Japan and set as inputs, while the UCS was set as 

output. To evaluate the prediction performance of the hybrid 

models, MLR and ANN models were also developed to 

estimate the UCS. 

A comparison among these developed models was 

performed by three performance indices, i.e., R2, RMSE 

and VAF. The results indicate that the ANN and GA-ANN 

models have a high degree of accuracy and efficiency. 

However, the hybrid GA-ANN model has slightly higher 

prediction performance for predicting the UCS compared 

with other models. The results of R2 = 0.881 and 0.819, 

RMSE = 6.641 and 8.102 and VAF = 0.881 and 0.815 for 

the training sets and testing sets were obtained for the GA-

ANN model, respectively. The findings demonstrate that the 

GA-ANN model is better than MLR and ANN model.  

Although the UCS of the rocks ahead of the tunnel face can 

be estimated via the MWD data using optimized ANN 

model, some problems should be considered further. How to 

apply stronger optimization techniques to further improve 

the accuracy of prediction. What is the effect of different 

combination of MWD parameters on prediction results. 

These are still outstanding issues, so it is necessary to study 

these further. 
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