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1. Introduction 
 

In modern industries, the use of advanced composite 

materials in engineering applications are increased because 

of their ability to control and to withstand stresses caused 

by thermo-mechanical loading. Functionally graded 

materials (FGM) belong to this new generation of advanced 

composite materials in which the thermal and mechanical 

properties change gradually in one or more directions 

according to the volume fraction of its constituent materials 

(Lal et al. 2017, Almitani 2018, Rezaiee-Pajand et al. 2018, 

Bessaim et al. 2018, Faleh et al. 2018, Ahmed et al. 2019, 

Akbaş 2019, Sayyad and Ghumare 2019, Fenjan et al. 

2019a, Ramirez et al. 2019, Esmaeili and Beni 2019, 

Ahmed et al. 2019, Al-Maliki et al. 2020,Gafour et al. 

2020, Kar and Panda 2020). With the massive application of 

FGM in modern technologies such as energy sources, 

aerospace, automotive, nuclear reactor, mechanical, 

nanostructures, civil, electronic and shipbuilding industries 

(Sedighi et al. 2015, Batou et al. 2019, Chaabane et al. 

2019, Berghouti et al. 2019, Salah et al. 2019, Hellal et al. 

2019, Boulefrakh et al. 2019, Tlidji et al. 2019, Boukhlif et 

al. 2019, Balubaid et al. 2019, Al-Maliki et al. 2020, 

Kaddari et al. 2020, Rahmani et al. 2020), many researchers 

have focused on the study and development of theories  
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relating to the behavior of FG structures and particularly 

thermo-mechanical analysis. Various FGM plate theories 

have been developed to predict the structures behavior in 

the past decades, such as classical plate theory (CPT), the 

first shear deformation theory (FSDT) and the High order 

Shear Deformation plate Theory (HSDT). The FSDT was 

used by Cong et al. (2015) to investigate the nonlinear 

stability of eccentrically stiffened moderately thick FG 

plates with temperature-dependent material properties 

subjected to in plane compressive and thermo-mechanical 

load. In the same framework, Ping et al. (2014) have 

employed the local meshless method with moving Kriging 

interpolation for geometrically nonlinear analysis of 

functionally graded plates in thermal environments.  By 

using the third order shear deformation theory (TSDT), the 

same researchers (Cong et al. 2017) studied the nonlinear 

dynamic response of stiffened FGM plate in thermal 

medium subjected to mechanical and thermal loads. They 

consider the temperature-dependent materials properties. 

Ghiasian et al. (2014) investigated the thermal buckling of 

shear deformable temperature-dependent circular/ annular 

FGM plates. Zhu et al. (2014) analyze the 

thermomechanical behavior of moderately thick FGM 

plates using a local meshless method with Kriging 

interpolation technique. Trinh et al. (2017) studied the static 

bending, buckling and free vibration of FG sandwich 

microplates subjected to thermomechanical loading on the 

base of the modified couple stress theory by using Navier 

solutions. Li et al. (2016, 2017) use the four-variable 

refined plate theory to investigate the thermomechanical 

bending of FG sandwich plates.  Using the HSDT, Kar et 

al. (2016) studied the linear/nonlinear deformation of FG 
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spherical shell panel subjected to thermomechanical load. 

They included the nonlinear geometry. Parida and Mohanty 

(2017) performed a mathematical model to investigate the 

nonlinear free vibration of FG skew plate in thermal 

environment. They present a formulation based on the 

HSDT in conjunction with Green-Lagrange-type geometric 

nonlinearity. Yoosefian et al. (2020) investigated the 

nonlinear thermo-elastic bending of circular/annular 

symmetric FGM sandwich plates. Zarga et al. (2019) 

presented an analysis of the thermo-mechanical bending of 

FG sandwich plates by a quasi-3D shear deformation 

theory. Tounsi et al. (2020) presented a four variable 

trigonometric integral plate theory for hygro-thermo-

mechanical bending analysis of FG ceramic-metal plates 

resting on a two-parameter elastic foundation. Boussoula et 

al. (2020) developed a simple nth-order shear deformation 

theory for thermomechanical bending analysis of different 

configurations of FG sandwich plates. It should be noted 

also that the thermal effects is examined for laminated 

structures (Abualnour et al. 2019, Belbachir et al. 2019 and 

2020).  

Plates resting on elastic foundation were discussed 

through a number of researchers using several techniques.  

Trinh and Kim (2018) presented a theoretical procedure 

based on the FSDT to study the buckling loads and post-

buckling equilibrium path of the moderately thick FG 

sandwich shells supported by elastic foundation and 

subjected to thermomechanical loads. Nguyen et al. (2016) 

presented an analytical solution to study the thermal 

stability of eccentrically stiffened FGM plate on elastic 

foundation subjected to mechanical, thermal and 

thermomechanical load. They use the Reddy third order 

shear deformation plate theory (TSDT). Using the same 

theory, Nguyen et al. (2018) investigated the nonlinear 

thermo-mechanical response of imperfect Sigmoid FGM 

circular cylindrical shells surrounded on elastic foundations. 

Kolahchi et al. (2016) investigated the nonlinear dynamic 

stability behavior of polymeric temperature dependent 

viscoelastic plates reinforced by SWCNTs resting on 

orthotropic temperature dependent elastomeric medium.  

Most of research on FG plates or beams has been 

undertaken with structures resting on elastic foundations 

with constant modules. However, studies on structures 

based on variable elastic foundations are limited in the 

literature. Pradhan and Murmu (2009) illustrated the 

thermomechanical vibration  analysis of FG beams and FG 

sandwich (FGSW) beams resting on variable elastic 

foundations. Sobhy (2015) presented a 2D theory based on 

the sinusoidal shear deformation plate theory to study the 

thermomechanical bending of FG plates with various 

boundary conditions and resting on variable elastic 

foundation. Attia et al. (2018) developed a 2D simple 

HSDT for thermo mechanical bending of temperature-

dependent FG plates on variable elastic foundation. 

Most research on FGM uses the rules of mixture to 

assess the effective material properties; an appropriate 

micromechanical model must be applied to accurately 

estimate the effective multiphysical properties. Among the 

works in the literature, a few standard micromechanical 

models could be remarked (Nemati and Mahmoodabadi 

2019), as Voigt (1889), Reuss (1929) and Mori-Tanaka 

(1973). Benyoucef and his co-workers (Bachir Bouiadjra et 

al. 2018, Yahiaoui et al. 2018) have presented some 

research on the effect of micromechanical models on the 

response of FG structures. 

As shown in the above literature review, the 

thermoelastic analysis of FG structures has received little 

attention. It is known that FG structures are often applied in 

severe thermal environments and the understanding of their 

thermoelastic performance is in great demand. This work is 

done to meet demand. 

As far as authors known, in literature there is no 

available work treating the effect of micromechanical 

models on the thermoelastic response of FG plates resting 

on variable elastic foundation and using a quasi-3D plate 

theory. Thus, the present paper aims to improve the 2D 

theory developed by Attia et al. (2018) by including the 

stretching effect to study the effect of several 

micromechanical models on the thermomechanical response 

of FG thick plate resting on variable elastic foundation. The 

highlight of the used theory is that contains undetermined 

integral terms and involves a reduced number of variables 

and governing equations than the conventional quasi-3D 

theories. Different micromechanical models are assessed to 

determine the effective material properties of FG plates. 

The effects of these models, the thermomechanical loading 

and the elastic foundation on the overall response of the 

plates will be discussed in detail via a parametric study. 

 

 

2. Effective properties of FGMs 
 

2.1 Temperature-dependent materials 
 

FGMs are composite materials most often made of 

ceramic and metal. Since they are used in high temperature 

environments, the constituents of FGM may possess 

temperature-dependent properties (Reddy and Chin 1998). 

Therefore, the properties including Young’s modulus E, 

thermal expansion α and thermal conductivity k are 

assumed to be temperature-dependent and are expressed as 

function of temperature (Attia et al. 2018, Nemati and 

Mahmoodabadi 2019): 

 

(1) 

1 0 1 2, , ,P P P P and 3P are the coefficients of temperature 

T expressed in Kelvin and are unique to the constituent 

materials. T is rise temperature through the thickness 

direction. ( , )fP T z it is an effective property. In our case, it 

can be either metal or ceramic. The values of each of the 

coefficients appearing in the preceding equation are listed in 

Table 1. 

 

2.2 Micromechanical models 
 

Unlike traditional microstructures, in FGMs the material 

properties are spatially varying, which is not trivial for a 

 1 2 3
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micromechanics model (Jaesang and Addis 2014). 

A number of micromechanics models have been 

proposed for the determination of effective properties of 

FGMs.  

In this work, the Voigt, Reuss, LRVE, Tamura and Mori-

Tanaka models are employed to determine the effective 

material properties of the FG plate. 

 

2.2.1 Voigt model  
The Voigt model is relatively simple; this model is 

frequently used in most FGM analyses estimates properties 

of FGMs as (Mishnaevsky 2007, Zimmerman 1994): 

 
(2) 

 

2.2.2 Reuss model 
Reuss assumed the stress uniformity through the 

material and obtained the effective properties as 

(Mishnaevsky 2007, Zimmerman 1994): 

 
(3) 

 

2.2.3 Tamura model 
The Tamura model uses actually a linear rule of 

mixtures, introducing one empirical fitting parameter 

known as “stress-to-strain transfer” (Gasik 1995, Zuiker 

1995) 

 

(4) 

Estimate for q=0 correspond to Reuss rule and with

q to the Voigt rule, being invariant to the 

consideration of with phase is matrix and which is 

particulate. The effective property is found as: 

 

(5) 

 

2.2.4 Description by a representative volume element 
(LRVE) 

The LRVE is developed based on the assumption that 

the microstructure of the heterogeneous material is known. 

The input for the LRVE for the deterministic 

micromechanical framework is usually volume average or 

ensemble average of the descriptors of the microstructures. 
The effective property is expressed as follows by the LRVE 

method (Akbarzadeh et al. 2015):    

    

(6) 

 

2.2.5 Mori-Tanaka model 
According to Mori–Tanaka homogenization scheme, the 

effective Bulk Modulus (K) and the effective shear modulus 

(G) are given by Mori and Tanaka (1973): 

 

(7a) 

where 

 
(7b) 

In all models outlined above, the subscripts c and m 

refer to the ceramic and metal respectively and ( , )P T z it’s 

a property that can be, Young’s modulus E, thermal 

expansion α or thermal conductivity k of the FG plate. 

The volume fractions of the ceramic and metal phases are 

related by 1 mC VV  , and CV  is expressed as: 

     

(8) 

 

 

3. Theoretical developments 
 

Consider a rectangular FG plate, with total thickness h, 

length a, and width b, referred to the rectangular Cartesian 

coordinates (x, y, z), as shown in Fig. 1.  

The plate is assumed to rest on a two parameter elastic 

foundation which consists of closely spaced springs 

interconnected through a shear layer made of 

incompressible vertical elements, which deform only by 

transverse shear. 

The mechanical characteristics of the plate are assumed 

to be varied according to is thickness. 
 

3.1 Kinematics and strains 
 

The displacement field satisfying the conditions of 

transverse shear stresses (and hence strains) vanishing at (x, 

y, ±h/2) on the outer (top) and inner (bottom) surfaces of the 

plate, is given as follows (Achouri et al. 2019, Khiloun et 

al. 2019, Boutaleb et al. 2019, Sahla et al. 2019):    

    

(9) 

where 2
1 ,k  ,2

2 k ;;; 000 wvu ; are four unknown 

displacements of the mid-plane of the plate. 

The coefficient
 
k1 and k2 depends on the geometry. It 

can be seen that the kinematic in Eq. (9) introduces only 

four unknowns 0 0( , , )u v w and with considering the 

thickness stretching effect. 

The shape function f(z) is given as follows: 

 

(10a) 
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Fig. 1 Coordinate system and geometry for rectangular 

FG plates on elastic foundation 
 

 

and 

 
(10b) 

The strain- displacement expressions, based on the 

formulation, are written under following compact form: 

 

,  

(11) 

where  

,  , 

(12a) 

 

,  

(12b) 

The integrals used in the above equations shall be 

resolved by a Navier type method and can be given as 

follows: 

,   , 

,  

(13a) 

where the coefficients A’ and B’  are expressed according 

to the type of solution used, in this case via Navier. 

Therefore, A’, B’ , k1 and k2 are expressed as follows: 

,  , ,  
(13b) 

where α and β are used in Eq. (35). 

 

3.2 Constitutive relations 
 

The linear constitutive relations of a FG plate can be 

expressed as 

 

(14) 

The Cij (i,j=1,2,4,5,6) expressions in terms of 

engineering constants are given below 

 

(15a) 

 
(15b) 

 
(15c) 

 
(15d) 

 
(15e) 

The plate is assumed to rest on two-parameter elastic 

foundation model, which consists of closely spaced springs 

interconnected through a shear layer made of 

incompressible vertical elements, which deform only by 

transverse shear. The response equation of this foundation is 

given by: 

 (16) 

where R is the density of the reaction force of elastic 

foundation, K  is Winkler parameter depended on x only. 

It is assumed to be linear, parabolic or sinusoidal (Sobhy 

2015, Attia et al. 2018, Pradhan and Murmu 2009): 
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the shear layer foundation stiffness 2 is the Laplace 

operator in x and y, and w is the deflection of the plate. 

Note that, if ξ=0, the elastic foundation becomes 

Pasternak foundation and if the shear layer foundation 

stiffness is neglected, the Pasternak foundation becomes the 

Winkler foundation. 
 

3.3 Equations of motion 
 

The principle of virtual work is here in utilized to 

determine the equations of motion.  

The variation of strain energy of the plate is calculated 

by (Draiche et al. 2019, Chikr et al. 2020, Refrafi et al. 

2020): 

 

(18) 

where A is the surface; and stress resultants N, M, Q, and S 

are defined by and stiffness components are expressed as: 

 

(19) 

 

(20a) 

 

(20b) 

 

(20c) 

The variation of potential energy of the applied loads 

can be expressed as 

 
(21) 

The variation of potential energy of the foundation can 

be expressed as 

 
(22) 

Substituting the expressions of δU, δV and δUR : 

 

(23) 

Integrating by parts, and collecting the coefficients of 

δu0, δv0, δw0, and δθ, and the following equations of motion 

of the plate are obtained: 

 

(24) 

The stress resultants are obtained as: 

 

(25a) 

 

 

(25b) 

where  
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(26f) 

and stiffness components are given as: 

 

(27a) 

 

(27b) 

 

(27c) 

 

(27d) 

By substituting Eq. (25) into Eq. (24), the equation of 

motion can be expressed in terms of displacements 

0 0 0( , , , )u v w  and the appropriate equations take the form: 

 

(28a) 

 

(28b) 

 

(28c) 

 

(28d) 

 

3.4 Temperature field 
 

Thermal analysis is performed by imposing constant 

surface temperatures on ceramic and metal-rich surfaces. 

The temperature variation is assumed to occur only in the 

thickness direction. The thermal analysis is conducted by 

solving the one-dimensional heat conduction equation. The 

one dimensional steady-state heat conduction equation in 

the z-direction is given by: 

 

(29) 

With the boundary condition T(h/2) = Tt and 

T(−h/2)=Tb=T0. Here a stress-free state is assumed to exist 

at T0=300 K. The analytical solution of the Eq. (29) is:  

 

(30) 

In the case of power-law FG plate, the solution of Eq. 

(29) also can be expressed by means of a polynomial series 

as:  
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(32) 

where ktb=kt−kb, with kt and kb are the thermal conductivity 

of the top and bottom faces of the plate, respectively. 
 

 

4. Close form solution for simply supported FG Plate 
 

Rectangular plates are generally classified according to 

the type of support used. This paper is concerned with the 

exact solutions of Eqs. (28a)-(28d) for a simply supported 

FG plate. The following boundary conditions are imposed 

at the edges: 

 

 

(33) 

Following the Navier solution procedure, the authors 

assume the following solution from for u0, v0, w0, and θ that 

satisfies the boundary conditions given in: 

 

(34) 

where Umn, Vmn, Wmn and Xmn and are arbitrary parameters to 

be determined and λ, μ are defined as: 

 and  
(35) 

The transverse load q is also expanded in the double-

Fourier sine series as 

 
(36) 

The analytical solutions can be obtained from: 

 

(37) 

in which: 
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5. Numerical results and discussion 
 

In this section, thermal bending response of FG plate 
resting on variable elastic foundation is investigated based 
on a quasi 3D solution. The FG plate is subjected to thermo-
mechanical loading. 

This section will be divided into three parts: validation 
of results, parametric study and effect of micromechanical 
models on the response of FG plates on variable 
foundations. 

The FGM plate is taken to be made of Titanium alloy 

(Ti-6Al-4V) and Zirconia (ZrO2). Temperature-dependent 

coefficients of Young’s modulus E, thermal expansion α 

and thermal conductivity k are given in Table 1. While the 

Poisson’s ratio is assumed to be a constant υ=0.3. 

The following dimensionless expressions are used in the 

present analysis: 
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Table 1 Material properties used in the FG plate 

 P0 P−1 P1 P2 P3 

ZrO2 (Ceramic) 

E 244.27 e+9 0 -1.371 e–3 1.214 e–6 –3.681e–10 

α 12.766 e-6 0 -1.491 e–3 1.006 e–5 –6.778e–11 

k 1.8 0 0 0 0 

 0.3 0 0 0 0 

Ti–4V–6Al (Metal) 

E 122.56e+9 0 -4.586e-4 0 0 

α 7.5788e–6 0 6.638e–4 –3.147e–6 0 

k 7.82 0 0 0 0 
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Table 2 The deflection 𝑤̅ of FGM square and rectangular plate simply supported and resting on elastic foundations 

(ΔT=300, p=1) 

m n Theory Square plate Rectangular plate (b/a=2) 

1 

1 

SPT – Sobhy (2015) 2D 1.57312 3.11472 

Attia  et al. (2018)  2D 1.58118 3.14664 

Present 3D 1.58019 3.14943 

3 

SPT - Sobhy (2015) 2D -0.10770 -0.72382 

Attia et al. (2018) 2D -0.10770 -0.72551 

Present 3D -0.10578 -0.72290 

2 

1 

SPT - Sobhy (2015) 2D 0.00000 0.00000 

Attia et al. (2018) 2D 0.00000 0.00000 

Present 3D 0.00000 0.00000 

3 

SPT - Sobhy (2015) 2D 0.00000 0.00000 

Attia et al. (2018) 2D 0.00000 0.00000 

Present 3D 0.00000 0.00000 

3 

1 

SPT - Sobhy (2015) 2D -0.10765 -0.12701 

Attia et al. 2018 -0.10773 -0.12296 

Present 3D -0.10578 -0.12091 

3 

SPT - Sobhy (2015) 2D 0.04059 0.08825 

Attia et al. (2018) 2D 0.04060 0.08831 

Present 3D 0.03936 0.08651 

4 

1 

SPT - Sobhy (2015) 2D 0.00000 0.00000 

Attia et al. (2018) 2D 0.00000 0.00000 

Present 3D 0.00000 0.00000 

3 

SPT - Sobhy (2015) 2D 0.00000 0.00000 

Attia et al. (2018) 2D 0.00000 0.00000 

Present 3D 0.00000 0.00000 

Table 3 The deflection 𝑤̅ of FGM square plates without or resting on elastic foundations (ΔT=300, p=1, ξ =0) 

J1 J2 Theory 
a/h 

5 10 15 20 25 30 50 

0 0 

FPT - Sobhy (2015) 2D 0.72464 2.50034 5.45984 9.60314 14.93025 21.44115 59.32280 

HPT - Sobhy (2015) 2D 0.72413 2.50010 5.45965 9.60296 14.93007 21.44098 59.32257 

SPT - Sobhy (2015) 2D 0.72385 2.49988 5.45944 9.60276 14.92988 21.44079 59.32241 

Attia et al. (2018) 2D 0.72382 2.49972 5.45916 9.60237 14.92936 21.44014 59.32124 

Present 3D 0.70872 2.48344 5.44116 9.58200 14.90590 21.41292 59.27192 

103 0 

FPT - Sobhy (2015) 2D 0.56180 2.00022 4.39367 7.74398 12.05137 17.31589 47.94570 

HPT - Sobhy (2015) 2D 0.56149 2.00006 4.39355 7.74386 12.05126 17.31578 47.94558 

SPT - Sobhy (2015) 2D 0.56132 1.99992 4.39367 7.74373 12.05113 17.31566 47.94544 

Attia et al. (2018) 2D 0.56130 1.99982 4.39323 7.74347 12.0508 17.31526 47.94468 

Present 3D 0.55604 1.99318 4.38539 7.73404 12.03934 17.30132 47.91632 

103 103 

FPT - Sobhy (2015) 2D 0.10335 0.40422 0.90506 1.60613 2.50748 3.60913 10.01867 

HPT - Sobhy (2015) 2D 0.10334 0.40421 0.90505 1.60612 2.50748 3.60912 10.01865 

SPT - Sobhy (2015) 2D 0.10333 0.40421 0.90505 1.60612 2.50747 3.60912 10.01865 

Attia et al. (2018) 2D 0.10333 0.40420 0.90504 1.60612 2.50746 3.60910 10.01862 

Present 3D 0.10586 0.40704 0.90793 1.60897 2.51026 3.61180 10.02070 
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Unless otherwise specified the following values will be 

used: a/h=10, J1=J2=100, b/a=1, m=n=1, q0=105, ξ =10. 

It is also recalled that the Voigt model is used in the 

different calculations unless otherwise indicated. 

 

5.1 Validation of results 
 
First, numerical tests are performed to confirm the 

accuracy of the proposed model. For verification purpose, 

the obtained results are compared with those of the 2D 

solutions of Attia et al. (2018) and Sobhy (2015). 

Table 2 examines the non-dimensional central deflection 

in terms of mod numbers (m,n) for FG plate type ZrO2/Ti–

6Al–4V resting on elastic foundations with a parabolic 

Winkler modulus. It can be seen from this results, that there 

is a good agreement between our findings for the thermal 

bending of FGM plates and the findings of Attia et al. 

(2018) and Sobhy (2015) and this for both cases of 

rectangular and square plate. 

Another example is performed in table 3 for a FG plate with 

or without elastic foundation for different values of the 

side-to-thickness ratio a/h. The results of the non-

dimensional central deflection for the present method are 

compared with those of Sobhy (2015) for different HSDT 

theories and those of Attia et al. (2018). The comparison 

shows that there is a good agreement. The small difference 

that exists is that the present theory is 3D and that by its 

nature takes into account the stretching effect in its 

formulation. This effect is neglected in the other 2D 

theories. 

Table 4 shows a further comparison of the results of the 

present formulation with those of the literature. The 

variation of the shear stresses xz  as a function of the a/h 

ratio for different configurations of the FG plate with or 

without elastic foundation is exposed. 

 

 

There is good agreement between our results and those 

of Sobhy (2015) (HPT and SPT) and Attia et al. (2018). The 

slight difference that exists for small a/h values where the 

plate is considered to be thick can be explained by the fact 

that HSDTs neglect the effect of stretching thing that is 

taken into consideration by the present 3D solution. 

This difference becomes less important when a/h 

increases i.e., when we tend towards thin plates. Regarding 

the difference that exists with Sobhy’s SPT (2015), the 

latter requires a shear correction factor and the distribution 

of shear stresses is not as accurate as the others. 

After these comparisons, it can be concluded that the 

present quasi 3D solution with only four unknowns is not 

only accurate but also efficient in predicting the thermo-

mechanical responses of FG plates resting on elastic 

foundation. 

 

5.2 Parametric study 
 
After confirming the validity of the current theory and 

formulation, some results are exposed to show the effects of 

the power law index, elastic foundation, plate geometry, and 

temperature field on the thermal bending of FG plates.  

Fig. 2(a) and 2(b) displays the variation of deflection 

w  versus the side-to-thickness ratio a/h for different power 

law index for FG plate resting on parabolic elastic 

foundations.  

Two cases are studied: FG plate under mechanical 

loading and thermo-mechanical loading. It is noted that 

deflection w  increases as the ratio a/h increases whatever 

the loading applied and the type of plate (isotropic or FG).  

Also, the deflection of the FG plate is between those of 

the two isotropic plates (rich metal and rich ceramic). 

The variations of transverse shear stress xz  through 

the thickness of FG plate resting on parabolic elastic  

Table 4 The transverse shear stress 𝜏𝑥𝑧̅̅ ̅̅  in FGM square plates with or without elastic foundations (ΔT=300, p=1, ξ = 0) 

J1 J2 Theory 
a/h 

5 10 15 20 25 30 50 

0 0 

FPT - Sobhy (2015) 2D 1.91547 1.91547 1.91547 1.91547 1.91547 1.91547 1.91547 

HPT - Sobhy (2015) 2D 2.38438 2.38915 2.39004 2.39035 2.39049 2.39057 2.39069 

SPT - Sobhy (2015) 2D 2.45911 2.46518 2.46632 2.46671 2.46687 2.46700 2.46714 

Attia et al. (2018) 2D 2.45911 2.46517 2.46630 2.46669 2.46683 2.46698 2.46713 

Present 3D 2.24585 2.40065 2.45867 2.48368 2.49631 2.50348 2.51432 

103 0 

FPT - Sobhy (2015) 2D 1.48501 1.53232 1.54142 1.54462 1.54612 1.54694 1.54811 

HPT - Sobhy (2015) 2D 1.84885 1.91131 1.92334 1.92758 1.92956 1.93062 1.93220 

SPT - Sobhy (2015) 2D 1.90696 1.97216 1.98473 1.98918 1.99122 1.99235 1.99399 

Attia et al. (2018) 2D 1.90698 1.97219 1.98474 1.98918 1.99124 1.99236 1.99398 

Present 3D 1.76200 1.92674 1.98160 2.00469 2.01624 2.02278 2.03261 

103 103 

FPT - Sobhy (2015) 2D 0.27321 0.30969 0.31754 0.32037 0.32171 0.32243 0.32349 

HPT - Sobhy (2015) 2D 0.34029 0.38629 0.39624 0.39981 0.40149 0.40245 0.40379 

SPT - Sobhy (2015) 2D 0.35107 0.39860 0.40886 0.41257 0.41433 0.41525 0.41667 

Attia et al. (2018) 2D 0.35107 0.39862 0.40887 0.41258 0.41432 0.41527 0.41666 

Present 3D 0.33545 0.39347 0.41026 0.41705 0.42039 0.42227 0.42507 
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Fig. 4 The deflection 𝑤̅  of FG plate under 

thermomechanical load versus the side to thickness ratio 

a/h for various types of Winkler parameter. (p=1, ξ =20, 

ΔT=300) 

 

 

foundations for different power law index are shown 

graphically in Fig. 3. 

The results indicate that for the case of isotropic plate, 

the maximum of the shear stress appears in the center of the 

plate which is not the case for FG plates. This is obvious 

since that FG plate is heterogeneous. Also, the max of these 

stress decreases by increasing the values of the power 

index. 

Figs. 4 and 5 show respectively the variation of the 

deflection 𝑤̅ and shear stress 𝜏𝑦𝑧̅̅ ̅̅  of FG plates under  

 

 

 
Fig. 5 Variation of transverse shear stress 𝜏𝑦𝑧̅̅ ̅̅  of FG 

plate under thermomechanical load versus the side to 

thickness ratio a/h for various types of Winkler 

parameter. (p=1, ξ =20, ΔT=300) 

 

 

thermomechanical loading versus the side to thickness ratio 

a/h for the three cases of the Winkler parameter linear, 

parabolic and sinusoidal. The results reveal that the shear 

stresses are very strongly influenced by the Winkler 

parameter compared to the deflections. 

Fig. 6 plots the variation of the deflection 𝑤̅ of FG 

plate under thermomechanical loading versus the side to 

thickness ratio a/h for different values of the parabolic 

parameter ξ. 

The figure shows that increasing this parameter reduces  

  

Fig. 2 Variation of deflection 𝑤̅ versus the side-to-thickness ratio a/h for different power law index. (a) FG plate under 

mechanical loading and (b) FG plate under thermo-mechanical loading 

  

Fig. 3 Variation of transverse shear stress 𝜏𝑥𝑧̅̅ ̅̅  through the thickness of FG plate for different power law index. (a) FG plate 

under mechanical loading and (b) FG plate under thermo-mechanical loading (ΔT=200) 

74



 

Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation 

 
Fig. 6 Variation of the deflection 𝑤̅ of FG plate versus 

the side to thickness ratio a/h under thermomechanical 

loading for different values of the parabolic parameter ξ 

(J1 =1000,ΔT=300, p =1) 

 

 

Fig. 7 The deflection 𝑤̅ of the FGM plate against the 

power law index p for different micromechanical models 

resting on parabolic elastic foundations (ξ=10, 

J1=J2=100, ΔT=0) 
 

 

Fig. 8 Relative percentage difference between the 

micromechanical models of deflection 𝑤̅ of the FG plate 
 

 

the deflection. This can be explained by the fact that 

increasing this parameter increases the rigidity of the plate. 
 

5.3 Effect of the micromechanical models 
 
Most of the research in the literature employs the Voigt 

micromechanical scheme for multiscale simulation of the 

mechanical behavior of FG components. The aim of this 

parametric study is to discuss the influence of the 

micromechanical rules on the thermo-mechanical behavior  

 
Fig. 9 Variation of the transverse shear stress 𝜏𝑥𝑧̅̅ ̅̅  
through the thickness of FG plate for different 

micromechanical models resting on parabolic elastic 

foundations ( p=1, ξ =10, J1=J2=100, ΔT=0) 

 

 

Fig. 10 Variation of in plane longitudinal stress 𝜎𝑥̅̅ ̅ 

through the thickness of FG plate for different 

micromechanical models resting on parabolic elastic 

foundations ( p=1, ξ =10, J1=J2=100, ΔT=0) 
 

 

of FG plate resting on variable foundation. 

In Fig. 7, the variations of the deflection of FG plate 

resting on parabolic elastic foundation with the power law 

index p are given for different micromechanical models. 

It is seen from the figure that the increase of the power 

law index p produces a raise of the deflection values. In 

addition, all models give the same deflection value for the 

case of an isotropic plate (p = 0). The difference between 

the different models in terms of deflection increases 

imperceptibly with the increase in the power index values. 

The highest values are obtained by the Reuss model and the 

lowest by Voigt. The other models are in between the two 

above. However, the differences between the different 

models remain small. 

Relative Percentage difference of the deflection between 

micromechanical models versus power law index p is 

shown in Fig. 8. The discrepancy between the estimated 

deflection of FGMs by the Voigt, Reuss and other 

micromechanical models is not heavily dependent on the 

power law index p. The discrepancy between the Voigt 

model and other micro-mechanical models for the estimated 

values of the deflection reaches a maximum of 2% between 

Voigt and Reuss and it is 1,3% between Voigt and Mori-

Tanaka. While between Voigt and other model namely 
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Tamura it does not exceed 1,15 %. 

The second comparison shown in this figure is the 

discrepancy between the values of deflection between the 

Reuss model and other micromechanical models. The 

difference is insignificant between Reuss and Mori-Tanaka 

and it reached a maximum of 1,8 % between Reuss and 

LRVE. It should be noted that these differences max 

between micro-mechanical models are obtained for a value 

of p = 1. Exceeding the value of p = 2, all models keep a 

more or less constant difference not exceeding 1%. 

Fig. 9 shows the variation of the transverse shear stress 

for different micromechanical models through the thickness 

of FG plate resting on parabolic elastic foundation. The 

maximum values of the stress are obtained by the Voigt 

model and the lowest by the LRVE model. The other 

models give values between the first two. 

Fig. 10 plots the variation of the in plane longitudinal 

stress for different micromechanical models through the 

thickness. As can be seen from this figure, all 

micromechanical models give the same values stress. 

In overall, it is clear that the use of one micromechanical 

model or another for the determination of the effective 

properties of an FG plate resting on variable elastic 

foundation supporting a thermo-mechanical load does not 

strongly affect the response of this plate in terms of 

displacements and stress. 

 

 

6. Conclusions 
 

This paper has studied the behavior of temperature-

dependent FG plates resting on variable elastic foundation 

and being exposed to thermomechanical loading, based on a 

quasi 3D theory. Several micromechanical models have 

been employed to obtain the effective material properties of 

the FG plate. The governing equations have been solved by 

the Navier method for stability analysis of simply supported 

FG plates. The current study is compared to existing 

numerical results where a good agreement has been found. 

A detailed parametric study is presented to highlight the 

effects of all parameters influencing the thermomechanical 

behavior of FG plates resting on an elastic foundation. It 

was also found that the difference between the 

micromechanical models does not affect the response in 

terms of displacement and stress of FG plate on elastic 

foundation. Other works can be carried out in future by 

considering other types of materials and other models with 

shear deformation effect (Salamat and Sedighi 2017, 

Panjehpour et al. 2018, Othman and Fekry 2018, Fenjan et 

al. 2019b, Bohlooly and Fard 2019, Hamad et al. 2019, 

Medani et al. 2019, Selmi 2019, Alimirzaei et al. 2019, Al-

Maliki et al. 2019, Nikkhoo et al. 2019, Kossakowski and 

Uzarska 2019, Hussain et al. 2019 and 2020a, b, Semmah et 

al. 2019, Fládr et al. 2019, Bakhshi and Taheri-Behrooz 

2019, Karami et al. 2019a, b, Al-Basyouni et al. 2020, 

Bellal et al. 2020, Ouakad et al. 2020, Ghadimi 2020, 

Ghannadpour and Mehrparvar 2020, Matouk et al. 2020, 

Taj et al. 2020, Bousahla et al. 2020, Asghar et al. 2020,  

Bourada et al. 2020, Timesli 2020, Lee et al. 2020, 

Shokrieh and Kondori 2020, Kar and Panda 2020). 
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