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1. Introduction 
 

In recent years, there has been increasing concern about 

the face-stability of tunnels. Previous research mainly 

focused on the failure mechanism (Yang and Huang 2011, 

Senent et al. 2013, Senent and Jimenez 2015, Pan and Dias 

2018 Li and Yang, 2019a), the support pressure (Kim and 

Tonon 2010, Anagnostou and Perazzelli 2013, Cui et al. 

2015), the reinforcement measures, and related parameters 

(Juneja et al. 2010, Bobet and Einstein 2011, Bin et al. 2012, 

Pinyol and Alonso, 2012; Perazzelli and Anagnostou, 2017). 

The face-stability of a tunnel can be assessed with a so-

called stability ratio N, which is defined as 𝑁 = (𝜎𝑠 +
𝛾𝐻 − 𝜎𝑡)/𝑐𝑢, where 𝜎𝑠 denotes the surcharge loading on 

the ground surface, 𝛾𝐻 denotes the vertical stress, 𝜎𝑡 

denotes the uniformly-distributed pressure applied on a 

tunnel face, and 𝑐𝑢 is the undrained shear strength of soil 

(Davis et al. 1980, Mollon et al. 2012, Klar and Klein 2014, 

Ukritchon et al. 2017, Yao et al. 2019, 2020). The  

applicability of this load factor is limited to tunnels that  
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were driven in the purely cohesive soil. Sloan (2013) 

presented three methods that have been commonly used in 

geotechnical stability analysis, including limit equilibrium, 

limit analysis, and the displacement finite-element method. 

Of these methods, limit equilibrium needs presuppose the 

failure surface for a geotechnical problem. The wedge and 

prism mechanism was developed to analyze the equilibrium 

of the failure body. The method of slices was also included 

to determine the minimal support pressure (Perazzelli and 

Anagnostou 2013, Perazzelli et al. 2014). Limit analysis 

consists of the lower- and upper-bound theorems, which are 

based on the principle of statically admissible stress field 

and kinematically admissible velocity field, respectively 

(Klar et al. 2007, Yang et al. 2014, Lee 2016, Khezri et al. 

2016, Xiang and Song 2017, Zhang et al. 2017, Yu, 2018). 

Leca and Dormieux (1990) firstly developed a two-block 

failure mechanism for the stability analysis of a tunnel face, 

which was then adopted frequently by researchers to 

investigate issues associated with the tunnel face stability 

(Tang et al. 2014, Liu et al. 2017). Mollon et al. (2009) 

extended the two-block mechanism to a multi-block 

mechanism, which was then improved to be a 3D rotational 

face collapse mechanism (Mollon et al. 2011), and was 

applied to a variety areas in tunnel engineering (Oreste and 

Dias 2012, Senent et al. 2013, Senent and Jimenez 2015, 

Pan and Dias 2016, Qin et al. 2017).  

The failure surface of a tunnel is too complicated to be 

exactly identified. This is why the existing limit equilibrium 

and limit analysis methods were developed based on  
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various assumed failure surfaces, which may differ from the 

real situation to some extent. It has been proven that 

different failure surfaces will lead to different solutions to 

the limit support pressure (Mollon et al. 2013). Thus, 

numerical methods may give relatively accurate solutions as 

the failure surface is developed automatically in the 

simulation rather than assumed in advance. However, 

numerical methods involve the strategy of updating the 

support pressure and the way of identifying the critical 

point before collapse (Mollon et al. 2009). It is still 

challenging and very time-consuming to tackle these issues. 

As a result, this paper provides a more simple and efficient 

way of determining the limit support pressure by extending 

the use of the load multiplier that is embedded within the 

software OptumG2 and OptumG3. The limit support 

pressure can be easily and directly determined by setting 

traction in the opposite direction for the purpose of 

triggering active failure. On the other hand, this method can 

give relatively accurate solutions when compared with the 

existing analytical methods as it makes no assumption on 

the failure surface. 
Beyond that, reliability-based design in geotechnical 

problems becomes popular in recent years (Phoon 2014, Liu 
and Low 2018). A few studies have been carried out to 
evaluate the tunnel face stability (Mollon et al. 2013, Pan 
and Dias 2017a) or to estimate the failure probability with 
given conditions like support pressure (Lü and Low 2011, 
Napa-García et al. 2017). However, in practical engineering, 
it is more desirable to solve the inverse problem: 
determination of the support pressure with a given 
reliability index. As a result, this study incorporates the 
response surface method into the bisection algorithm, with 
the aim of converging to the required support pressure. The 
list of symbols used in this study is provided in Appendix. 
 

 

2. Description of the proposed methods 
 

2.1 Deterministic necessary support pressure 
 

First, a deterministic method is developed by extending 

the use of the unique variable named “load multiplier”, 

which is embedded within the software OptumG2/G3. This 

variable was developed with the intention of determining 

the maximum load that can be supported by a system 

(Krabbenhoft et al. 2015). Fig. 1(a) shows a two- 

 

 

dimensional plane strain body with volume 𝑉  and 

boundary 𝑆 = 𝑆𝑢 ∪ 𝑆𝜎  subjected to a set of body forces 𝐛. 

The vector 𝐧  represents the outward normal to the 

boundary. The displacements and the tractions α𝐭  are 

prescribed on the boundaries 𝑆𝑢  and 𝑆𝜎 , respectively, 

where 𝐭 is the applied unit traction and α denotes the 

relating load multiplier.  
When conducting the built-in limit analysis, the load 

multiplier can be solved automatically to achieve a limit 
state of the system. Then, the maximum load that can be 
supported by this body is determined as  α𝐭 . To avoid 
infinite displacement when a structure is at collapse, the 
software defines a scaling of the velocities:   

∫ 𝐭T�̇�𝑑𝑆 = 1
.

𝑺𝝈

 (1) 

where 𝐮 ̇ denotes the vector of velocities on the boundary. 

This equation not only scales the rate of work done by the 

tractions (𝐭) to unity but also implies a high degree of 

consistency of the directions between the applied tractions 

and the induced displacement. In other words, the direction 

of collapse relies on that of the applied traction.  

As mentioned above, the load multiplier was developed 

to solve problems that are initially stable, with the purpose 

of identifying the maximum magnitude of tractions than can 

be supported by the system. This paper extends the use of 

the load multiplier for a completely different purpose, to 

determine the limit support pressure for tunnel face which is 

initially unstable. To achieve this, the unit traction 𝐭 is 

applied in the direction of the outward normal to the tunnel 

face, as shown in Fig. 1(b). The aim is to cause active 

failure (i.e., face collapse) rather than passive failure. The 

simulated load multiplier α corresponding to the limit state 

is also called the collapse multiplier, which makes α𝐭 be in 

equilibrium with the initially unstable tunnel face. The most 

important thing is that the simulated collapse multiplier is 

negative, indicating that α𝐭 is in the opposite direction of 𝐭. 

As a result, α𝐭  can be accordingly taken as the limit 

support pressure to ensure face stability. In practical 

engineering, this type of support can be implemented by a 

TBM (Mollon et al. 2010, 2012) or a number of face bolts 

(Yoo 2002, Lunardi 2008, Bin et al. 2012, Li et al. 2015).  

On the other hand, if the tractions vector 𝐭 is applied in 

accordance with the intended direction of the support 

pressure, a positive collapse multiplier will be computed,  

  
(a) Two-dimensional plane strain body (b) Tunnel face stability 

Fig. 1 Application of load multiplier 
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but in this case, α𝐭  represents the maximum external 

pressure that corresponds to a so-called blow-out failure 

(Mollon et al. 2011) which occurs in response to the 

induced passive earth pressure. The effects on the directions 

of the applied tractions and the resulting failure types will 

be discussed in detail in the application section.     

 

2.2 Reliability-based support pressure 
 

In the existing literature, the reliability-based necessary 

support pressure may be obtained based on the previously 

determined design chart (Mollon et al. 2009). This study 

provides an alternative method by incorporating the 

Response Surface Method (RSM) and the advanced first-

order second-moment reliability method (AFOSM) into the 

bisection method. Fig. 2 illustrates the flowchart of the 

proposed method.  

First, RSM is used to generate an approximation of the 

performance function concerning tunnel face stability, i.e.,  

𝑍 = 𝑔(𝑥) = 𝑨(𝒙)𝒂 (2) 

where 𝑨(𝒙) and 𝒂 denote the matrix form of variables  

 

 

and unknown coefficients, respectively.  

Consider two random variables, cohesion ( 𝑐 ) and 

friction angle (𝜑) of soil, a commonly used approximation 

of the performance function can be given as: 

𝑍 = 𝑔(𝑥) = 𝑎0 + 𝑎1𝑐 + 𝑎2𝜑 + 𝑎3𝑐2 + 𝑎4𝜑2 (3) 

in which 𝑎0, 𝑎1, 𝑎2, 𝑎3 and  𝑎4  denote five unknown 

coefficients to be identified. To solve this function, the 

central composite design (CCD) is utilized to choose five 

samples. The value of 𝑍 for each sample is determined 

according to strength reduction analysis: 

𝑍 = 𝐹𝑠(𝑥) − 1 (4) 

where 𝐹(𝑥) is the simulated strength reduction factor: 

𝐹𝑠(𝑥) =
𝑐0

𝑐𝑐𝑟

=
tan 𝜑0

tan 𝜑𝑐𝑟

 (5) 

in which 𝑐0 and 𝜑0 denote the initial value of cohesion 

and friction angle, whereas 𝑐𝑐𝑟  and 𝜑𝑐𝑟 denote the critical 

values that correspond to a limit state. With the solved 

performance function, the reliability index  (𝛽) of the 

 

Fig. 2 Flowchart of the proposed method 
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tunnel face stability can be computed using AFOSM. If the 

reliability index 𝛽 is less than a user-defined target value 

𝛽𝑡, the stability of the tunnel face needs to be improved. 

This can be achieved by applying support pressure on the 

tunnel face.  

Stage 1 in the flowchart aims to identify a pair of 

brackets, within which the support pressure that fulfills the 

user-defined  𝛽𝑡  can be determined according to the 

bisection algorithm. Initially, the lower and upper brackets 

are specified as 𝑝1
1 and 𝑝2

1. Then, 𝑝2
1 is applied on the 

tunnel face as support pressure. If the resulting reliability 

index 𝛽1 is still less than the target value, the required 

support pressure should be larger than the upper bracket. 

Under this circumstance, the brackets are updated as 𝑝1
2 =

𝑝2
1  and  𝑝2

2 = 𝑝2
1 + ∆𝑝 , respectively, in which ∆𝑝 

represents an increment that is used to increase the upper 

bracket. This process will be repeated until the computed 

reliability index is larger than the user-defined value in the 

𝑖𝑡ℎ iteration. Then, the brackets used in iterations based on 

the bisection method is identified as 𝑣1
𝑖 = 𝑝1

𝑖  and 𝑣2
𝑖 = 𝑝2

𝑖 , 

respectively. 

Thereafter, Stage 2 starts and the midway between the 

lower and upper brackets is used as the support pressure to 

obtain the corresponding reliability index. If the computed 

reliability index 𝛽𝑖  is less than 𝛽𝑡, the brackets will be 

updated as 𝑣1
𝑖 = (𝑣1

𝑖−1 + 𝑣2
𝑖−1)/2  and 𝑣2

𝑖 = 𝑣2
𝑖−1 , 

respectively. Otherwise, the brackets will be updated as 

𝑣1
𝑖 = 𝑣1

𝑖−1  and 𝑣2
𝑖 = (𝑣1

𝑖−1 + 𝑣2
𝑖−1)/2 , respectively. The 

iteration will be continued until the convergence 

condition  |𝛽𝑖 − 𝛽𝑡| ≤ ε is satisfied, in which ε represents 

a specified tolerance (e.g., 0.01). At the end, the applied 

support pressure  𝑝𝑟𝑒
𝑖  that corresponds to the reliability 

index 𝛽𝑖  is then output as the required support pressure. 
 

 

3. Example applications 
 

3.1 Problem statement 
 

Two examples are presented in this section to illustrate 

the applications of the proposed method. A circular tunnel 

with diameter 𝐷 = 10 m  and cover 𝐶 = 15 m  is 

considered to be driven in a soil that is modeled as a Mohr-

Coulomb material. The unit weight of the soil is assumed to 

be 𝛾 = 20 kN/m3, whereas the statistical parameters of 𝑐 

and 𝜑 are given in Table 1. In the following, the mean 

values of the strength parameters (𝑐 = 10 kPa, 𝜑 = 20°) 

will be used to perform both 2D and 3D deterministic 

analyses. The surcharge and the groundwater are not taken 

into account in the application examples. It should be 

emphasized that the surcharge can be applied in both 2D 

and 3D limit analysis, whereas the groundwater condition 

can not be applied in the 3D limit analysis because this 

feature is not yet provided in OptumG3. As a result, the 3D 

negative collapse multiplier is still not available for tunnels 

under the groundwater table. This is the main limitation of 

the proposed negative collapse multiplier method. 
 

3.2 Two-dimensional deterministic analysis 
 

The software OptumG2 was employed to perform 2D  

Table 1 Material parameters 

Parameter Mean value 
Standard 

deviation 

𝑐 (kPa) 10 3 

𝜑 (°) 20 4 

𝛾 (kN/m3) 20 / 

 

 

Fig. 3 Numerical model used in OptumG2 

 

 

deterministic analyses. Fig. 3 gives the 2D computational 

model and boundary conditions. The size of the numerical 

model is 100 m in the x-direction and 60 m in the y-

direction. Full fixities are applied to the bottom boundary to 

constrain the displacements in all directions, while normal 

fixities are applied to the vertical boundaries to constrain 

the displacements in the direction normal to the boundaries. 

In the following 2D and 3D simulations, the heading and 

invert are supported by applying normal fixities. This 

simplification may be conservative for the safety of the 

surrounding soil but will have almost no effect on tunnel 

face stability. The traction 𝐭 = −1 kPa was applied to the 

tunnel face to perform a limit analysis, as seen in Fig. 4(a), 

where the negative value means that the applied traction, as 

well as the induced displacement, are in accordance with 

the outward normal to the tunnel face (i.e., in the negative 

x-direction).  

Choosing 2000 Upper elements, the computed collapse 

multiplier is 𝛼 = −65.6, which implies that the tunnel face 

was initially unstable, and the upper-bound solution to the 

necessary support pressure can be identified as 𝑃𝑟𝑒
min =

𝛼𝐭 = −65.6 × −1 kPa = 65.6 kPa. In other words, a limit 

state of the tunnel face can be achieved when this support 

pressure is acting on the tunnel face. Fig. 4 (b) shows the 

adaptive mesh of 2000 Upper elements and the induced 

displacements scaled by a factor of 10. 

If the traction is applied in the x-direction, another limit 

state involving the so-called blow-out failure will be 

achieved, as shown in Fig. 5. Under this circumstance, the 

simulated load multiplier is 𝛼 = 1242, which determines 

the maximum support pressure as 𝑃𝑟𝑒
max = 𝛼𝐭 = 1242 kN. 

Consequently, the support pressure should be kept within an 

appropriate range to avoid both face collapse and blow-out 

failure, as given in Eq. (6). 

65.6 kN ≤ 𝑃𝑟𝑒 ≤ 1242 kN (6) 

A limit state of the tunnel face implies that the safety 

factor with respect to tunnel face stability should be equal to  
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1.0. As a result, the determined necessary support pressure 

was applied to the tunnel face to perform a strength 

reduction analysis, as shown in Fig. 6. The simulated safety 

factor 𝐹𝑠 = 1.001 implies that the tunnel face is very close 

to the limit state. This can be regarded as a validation of the 

determined necessary support pressure and the proposed 

negative collapse multiplier method. 

In addition to the upper-bound necessary support 

pressure, the lower-bound solution to the necessary support 

pressure 𝛼𝑡 = 72.4 kPa  was similarly determined by 

choosing 2000 Lower elements. Then the exact necessary 

support pressure may be expressed as: 

65.6 kPa ≤ 𝑝𝑟𝑒
𝑚𝑖𝑛 ≤ 72.4 kPa (7) 

or:  

𝑝𝑟𝑒
𝑚𝑖𝑛 = 69.0 kPa ± 4.9% (8) 

Common practice is to narrow the gap between the 

lower and upper bounds by increasing the number of 

elements (Krabbenhoft et al. 2015). The average value of  

 

 

 

 

the lower and upper bounds may be taken as the exact 

solution when the difference between the lower and upper 

bounds is less than 2%. Fig. 7 presents the lower and upper 

bound solutions, as well as their differences versus numbers 

of elements. As can be seen, the difference between the 

lower and upper bounds decrease to 1.9% when the number 

of elements increases to 20000. The exact necessary support 

pressure then becomes: 

𝑝𝑟𝑒
𝑚𝑖𝑛 = 68.8 kPa ± 0.9% (9) 

Fig. 8 compares the limit support pressures determined 

by a presupposed 2D failure mechanism (Mollon et al. 2010) 

to those simulated by the load multiplier. The geometry and 

material parameters used in the analyses are 𝐷 =
10 m, 𝐶 = 10 m, 𝛾 = 18 kN/m3 ,  and 𝑐 = 0 kPa , 

respectively. The friction angle that ranges from 𝜑 = 30°to 

𝜑 = 45° is used to perform limit analyses with 30000 

adaptive Lower and Upper elements, respectively. A total of 

32 simulations are completed. The obtained lower and  

  
(a) Applied traction (b) Adaptive mesh refinement of face collapse 

Fig. 4 Limit analysis 

  
(a) Applied traction (b) Adaptive mesh refinement of blow-out failure 

Fig. 5 Limit analysis 

  

(a) Applied support pressure (b) Adaptive mesh refinement of face collapse 

Fig. 6 Strength reduction analysis 
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upper bound solutions to the limit support pressure agree 

well with those in the existing literature, indicating the 

feasibility of the proposed negative collapse multiplier 

method. 

 

3.3 Three-dimensional deterministic analysis 
 

In practice, three-dimensional analyses are usually 

required because tunnel face stability is a three-dimensional 

problem. As a result, OptumG3 was employed to build a 

three-dimensional numerical model, as shown in Fig. 9,  

 

 

 

 

where the geometry parameters and boundary conditions 

are included. The size of the numerical model is 40 m in the 

x-direction, 70 m in the y-direction, and 60 m in the z-

direction. The green points represent normal fixities that 

constrain the displacements in the direction normal to the 

faces. Full fixities were applied to the bottom face to 

constrain the displacements in all directions. 

Instead of Upper or Lower elements, this simulation 

adopts Mixed elements that are based on the mixed 

principles (Zouain et al. 1993), in which both stress and 

displacements are taken as primary variables, making the 

 

Fig. 7 Differences between lower and upper bound solutions versus numbers of elements 

 
Fig. 8 Comparison of the limit support pressure 

  

(a) Numerical model and boundary conditions (b) Simulated collapse multiplier and support pressure 

Fig. 9 Three-dimensional analysis of tunnel face stability using OptumG3 
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solution closer to the exact value (Krabbenhoft et al. 2015).  

The determination process of the necessary support 

pressure is almost the same as that performed in OptumG2, 

except that a three-dimensional problem requires more time 

to build the numerical model and to compute the collapse 

multiplier as well. Even so, the three-dimensional problem  

 

 

 

 

was solved within half an hour, obtaining a collapse 

multiplier, 𝛼 = −29.0 , which determines the necessary 

support pressure as 𝑝𝑟𝑒
𝑚𝑖𝑛 = 𝛼𝐭 = 29.0 kPa.   

The first method used for validation was developed by 

Mollon G who provides an open-source MATLAB code to  

  
(a) Numerical model and geometry parameters (b) Layout of the monitoring point 

Fig. 10 Three-dimensional analysis using FLAC3D 

 

Fig. 11 Determination and comparison of the limit support pressure 

 

Fig. 12 Determination and comparison of the limit support pressure 
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compute the necessary support pressure based on a 

presupposed rotational failure mechanism. Under the same 

conditions, the computed necessary support pressure is 26.4 

kPa (denoted as 𝑝𝑟𝑒
𝑎𝑛𝑎 ), which is approximately 9% 

smaller than that determined using OptumG3.   

The second validation method determines the necessary 

support pressure according to the stress-displacement curve 

of the point located at the center of the tunnel face (Li et al. 

2015). FLAC3D was employed to build a three-dimensional 

numerical model, as shown in Fig. 10. The geometry 

parameters and boundary conditions are exactly the same as 

those used in OptumG3. 

Fig. 11 gives the stress-displacement curve of the 

monitoring point (0, 30, 0), which can be visually divided 

into three stages. At the 1st stage, the longitudinal 

displacement increases gradually and approximately  

 

 

 

 

linearly with the decrease of the stress, which implies a 

stable state. The elastic limit is roughly 80 kPa, beyond 

which the gradient of the stress-displacement curve 

increases and the tunnel face enters a temporary stable state 

(at the 2nd stage ). At the 3rd stage, the displacement 

increases substantially with the decrease of the stress, 

indicating that the tunnel face is unstable.  

As can be seen, the relationships between the stresses 

and displacements at the 1st and 3rd stages are approximately 

linear. Consequently, the linear regression functions of the 

data at these stages were determined as follows: 

𝑦 = −14.014𝑥 + 473.27 (10) 

𝑦 = −0.313𝑥 + 85.10 (11) 

The necessary support pressure (denoted by 𝑝𝑟𝑒
𝑐−𝑐 ) 

 

Fig. 13 Determination and comparison of the limit support pressure 

  
(a) 200 samples (b) 400 samples 

Fig. 14 Scatterplot of cohesive strength and friction angle 

Table 2 Iterations of target reliability index 

Iteration 

step 
𝑃𝑟𝑒/kPa 

𝐹𝑠 

𝛽 𝑐 = 10 kPa 

𝜑 = 20° 

10 kPa 

24° 

10 kPa 

16° 

13 kPa 

20° 

7 kPa 

20° 

1 100 1.243 1.481 1.019 1.299 1.190 1.055 

2 150 1.662 1.991 1.352 1.722 1.601 2.167 

3 125 1.442 1.722 1.182 1.504 1.385 1.699 

4 137.5 1.548 1.850 1.260 1.611 1.491 1.903 

5 143.8 1.611 1.918 1.311 1.664 1.544 2.015 

6 140.6 1.584 1.887 1.290 1.637 1.517 1.969 

7 142.2 1.590 1.903 1.294 1.657 1.532 2.006 
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was approximately obtained by equating Eq. (10) to Eq. 

(11). The coordinates of the intersection point of the two 

trend lines were accordingly solved as: 

𝑥 = 28.3 (kPa); 𝑦 = 76.2(mm) (12) 

which means that the allowable longitudinal displacement is 

76.2 mm, and at least 28.3 kPa support pressure should be 

applied to prevent tunnel face collapse. The comparison of 

the solutions reveals that 3D solutions agree well with each 

other. The differences between the solution determined by 

the collapse multiplier and those derived from the other 

methods are 8.9% and 2.4%, respectively, which validates 

the proposed method.  

For further validation, the limit support pressures 

presented in the existing literature are used for comparison 

with those simulated by the collapse multiplier. The 

conditions are exactly the same as those used in the existing 

study (Mollon et al., 2013). Two sets of material parameters 

were used for simulations, as shown in Fig. 12. The results 

demonstrate that the limit support pressures determined by 

the negative collapse multiplier agree well with the previous 

solutions. The limit support pressures identified by the 

negative collapse multiplier are slightly larger than those 

determined in FLAC3D. This is mainly due to the fact that 

limit analysis is under the assumption of small deformation, 

whereas calculations in FLAC3D allows large deformation, 

which corresponds to relatively small stress. 

Note that both the construction of a two-dimensional 

numerical model and the simulation of a collapse multiplier 

can complete within several minutes, allowing one to 

estimate the necessary support pressure to prevent face 

collapse with great efficiency. Three-dimensional 

simulation of a collapse multiplier is relatively time-

consuming when compared with two-dimensional analysis. 

But it can give more accurate solutions. 
 

3.4 Reliability-based design of support pressure 
 

This section presents an application example to perform 

the reliability-based design of support pressure with a user-

defined reliability index 𝛽𝑡, which is assumed to be 2.000. 

The approximation of the performance function regarding 

tunnel face stability is given as follow: 

𝑍 = 𝑎0 + 𝑎1𝑐 + 𝑎2𝜑 + 𝑎3𝑐2 + 𝑎4𝜑2 (13) 

where 𝑎0, 𝑎1, 𝑎2, 𝑎3 and  𝑎4  denote five unknown 

coefficients to be identified. Based on the statistical 

parameters, five pairs of 𝑐 and 𝜑 (samples) are obtained 

using CCD as:  

(10, 20); (10, 24); (10, 16); (13, 20); (7, 20) (14) 

Initially, the lower and upper brackets are specified as 

𝑝1
1 = 0 and 𝑝2

1 = 100 (kPa), respectively. Then, the upper 

bracket 𝑝2
1 = 100 kPa is applied on the tunnel face as the 

support pressure ( 𝑝𝑟𝑒
1 ) to conduct 2D strength reduction 

analyses for the five samples. The simulated strength 

reduction factors are expressed in the matrix form as: 

𝑭𝒔 = (1.243, 1.481, 1.019, 1.299, 1.190)𝑇 (15) 

The performance function is: 

𝒁 = (0.243, 0.481, 0.019, 0.299, 0.190)𝑇 (16) 

with which the unknown coefficients are solved and the 

performance function is identified as: 

𝑍 = −0.902 + 0.0148𝑐 + 0.04025𝜑 + 1.67 × 10−4𝑐2

+ 4.38 × 10−4𝜑2 (17) 

Using AFOSM written in Python, the reliability index 

corresponding to 𝑝𝑟𝑒
1 = 100 kPa is computed to be 𝛽1 =

1.055, which is less than the target value 𝛽𝑡 = 2.000. This 

means that the required support pressure is larger than the 

initial upper bracket. As a result, an increment  ∆𝑝 =
50 kPa is specified and the brackets become 𝑝1

2 = 𝑝2
1 =

100 kPa and  𝑝2
2 = 𝑝2

1 + ∆𝑝 = 100 + 50 = 150 kPa . 

The above process is conducted again and the reliability 

index becomes 𝛽2 = 2.167, which is larger than the target 

value 𝛽𝑡 = 2.000 , indicating that the required support 

pressure is within the range of 100 kPa to 150 kPa. The 

brackets that will be used in the bisection method are 

accordingly identified as  𝑣1
2 = 100 kPa and  𝑣2

2 =
150 kPa. The initial values of the brackets 𝑝1

1 and 𝑝2
1 , 

and the increment ∆𝑝 are recommended by the authors. 

Different choices will make no difference to the final result 

but will change the iteration process.    

In Stage 2, the support pressure is updated within the 

identified brackets  𝑣1
2 = 100 kPa and  𝑣2

2 =
150 kPa using the bisection algorithm. Assuming that the 

tolerance is  ε = 0.01 , the convergence condition 

|𝛽𝑖 − 𝛽𝑡| ≤ ε is satisfied in 5 iterations. In combination 

with the iterations in Stage 1, a total of 7 iterations are taken 

to complete this task, as shown in Fig. 13. 

The computed reliability index that fulfills the 

requirement is 𝛽7 = 2.006, whereas the applied support 

pressure in this iteration is 𝑝𝑟𝑒
7 = 142.2 kPa. The detailed 

iteration process is depicted in Table 2, where the applied 

support pressure and the resulting strength reduction factors 

of the samples at each iteration step are included. The 

determined support pressure, 𝑃𝑟𝑒
𝛽=2

= 142.2 kPa , was 

checked according to Monte Carlo simulation (Li and Yang, 

2019b). A total of 400 sets of material parameters are 

sampled to perform strength reduction analysis. The 

scatterplots of cohesive strength and friction angle are 

shown in Fig. 14, where the red dashed rectangles represent 

the range of −𝜎 to +𝜎 (standard deviations of cohesive 

strength and friction angle), and the range of −2𝜎 to +2𝜎, 

respectively. Each set of material parameters was adapted to 

perform a strength reduction analysis with the determined 

support pressure 𝑃𝑟𝑒
7 = 142.2 kPa acting on the tunnel 

face. The reliability index can be calculated using the 

simulated safety factors as follow: 

𝛽𝑀𝐶
𝑛 =

𝜇𝑧
𝑛

𝜎𝑧
𝑛

=
𝜇𝐹

𝑛 − 1

𝜎𝐹
𝑛

 (18) 

where 𝑛 denotes the number of the samples used in the 

calculation. The validation results are presented in Fig. 15, 

in which the scatterplots denote the used number of samples 

(𝑛) vs the calculated reliability index (𝛽𝑀𝐶
𝑛

). The dashed 

and solid lines represent 5% and 10% error ranges of the 

target reliability index (𝛽𝑡 = 2.00), respectively. Based on  
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Eq. (18), different numbers of samples may result in 

different reliability indexes, which fluctuates 10% with 

respect to the target value when the number of samples 

varies from 50 to 400. Most of the reliability indexes fall 

within the error range of 5%. In the case of 200 and 400 

samples, the calculated reliability indexes are 2.14 and 2.04, 

which are 6.7% and 1.7% larger than  𝛽𝑖(2.006) , 

respectively. Generally, the fluctuation can be further 

reduced with increasing the number of samples simulated 

by MCS. It validates the reliability-based design of the 

support pressure, as well as the feasibility of the proposed 

method.  

Note that OptumG3 has not yet provided the built-in 

method of strength reduction analysis. This means that the 

reduction process of material parameters needs to be 

performed manually. It requires much more computational 

effort and time than 2D analyses. As an alternative, 3D 

strength reduction analyses are recommended to be 

performed using FLAC3D, which enables factor-of-safety 

calculations to be conducted by simply issuing the “SOLVE 

fos” command.      

For comparison, the geometry and material parameters 

are chosen to be exactly the same as those used in the 

existing literature. The line in Fig. 16 represents the  

 

 
 

relationship between the applied support pressure and the 

resulting reliability index provided by the existing study 

(Mollon et al. 2009, 2013). The process of determining the 

required support pressure is denoted by the scatterplots.  
It should be emphasized that the safety factors simulated 

in OptumG2 and FLAC3D are only accurate up to three and 
two decimal places, respectively. It is the main limiting 
factor of the accuracy of the required support pressure 
because a very slight change in the support pressure may 
not change the value of the safety factor, making the 
accuracy of the reliability index difficult to be further 
improved. As a result, this time the tolerance is specified as 
a relatively large value, ε = 0.02, which is 1% of the target 
reliability index. This level of accuracy may be acceptable 
since there may be many other uncertainties in practical 
engineering. 

As can be seen, the reliability index converged to 2.018 

in 8 iterations. The required support pressure was finally 

identified as 𝑃𝑟𝑒
8 = 41.4 kPa. Generally, the relationship 

between 𝑃𝑟𝑒
𝑖  and 𝛽𝑖 agrees well with the existing one. The 

difference may be attributed to two reasons. The first one is 

that the existing curve was determined based on the 

assumption of the 5-block failure mechanism, which differs 

to some extent from the real one developed in FLAC3D. The  

 

Fig. 15 Determination and comparison of the limit support pressure 

 

Fig. 16 Determination and comparison of the limit support pressure 
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second one is due to the different definitions of the safety 

factor. In the existing literature, it is taken as the ratio of the 

applied support pressure to the limit support pressure 

(Mollon et al. 2009). Using this definition, the safety factor 

is zero if no support pressure is applied. However, it should 

not be zero in any factor-of-safety calculation because of 

the presence of the inherent resistance of materials. 

 

3.5 Parametric study 
 

This section aims to investigate the influence of factors 

on the required support pressure. In each investigation, the 

geometry and material parameters are chosen to be the same 

as those used in the above section, except the study factor. 

The results of the comparison are given in Fig. 17, where 

the data pair of the application example is indicated by the 

dashed lines.  

First, different support pressures, ranging from 25 kPa 

to 250 kPa were successively applied on the tunnel face to 

simulate safety factors. The support pressure is expressed in 

non-dimensional form by using a load factor defined as 

𝑁𝜎 = 𝜎𝑇/𝛾𝐻𝑐 where 𝐻𝑐  is the depth of the tunnel axis. 

The relationship between the load factor 𝑁𝜎  and the 

resulting reliability index is shown in Fig. 17(a). The result 

demonstrates that the required support pressure increases 

substantially with the reliability index. A higher reliability 

index means greater safety but requires more stabilization 

efforts. In practical application, an appropriate reliability 

index may be needed to be specified in advance to ensure 

tunnel face stability at a reasonable cost.  

 

 

The embedment ratio vs the load factor 𝑁𝜎 is given in 

Fig. 17(b). The load factor reduces and the C/D − 𝑁𝜎  

curve becomes less steep with the increasing value of the 

embedment ratio. This is mainly because of the presence of 

the soil arching effect, which can reduce some of the 

vertical stress acting above the tunnel face. The influences 

of the mean of friction angle and cohesion on the load 

factor 𝑁𝜎 are shown in Fig. 17(c) and 17(d). Generally, 

higher shear strength ( 𝑐  or 𝜑 ) of soil requires lower 

support pressure to fulfill the specified reliability index. The 

curve in Fig. 17(c) is steeper than that in Fig. 17(d), 

indicating that the friction angle of soil is more influential 

than the cohesion in tunnel face stability. 
 

 

4. Conclusions 
 

This study provides methods to obtain both 

deterministic and reliability-based necessary support 

pressures to prevent the collapse of a tunnel face. The 

deterministic method is developed in the framework of limit 

analysis and based on the utilization of the unique load 

multiplier embedded within OptumG2 and OptumG3, 

whereas the reliability-based design is achieved by 

incorporating strength reduction analysis, RSM and 

AFOSM into the bisection algorithm. Based on the 

presented results, several conclusions can be drawn: 

• The proposed deterministic method provides an 

efficient and easy-to-use alternative to determine both 2D 

and 3D necessary support pressures to prevent the collapse 

  

(a) Reliability index vs 𝑁𝜎 (b) Embedment ratio vs 𝑁𝜎 

  

(c) Mean of friction angle vs 𝑁𝜎 (d) Mean of cohesion vs 𝑁𝜎 

Fig. 17 Influence of factors on the load factor 𝑁𝜎 
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of a tunnel face. The construction of a 2D numerical model 

and the simulation of the collapse multiplier associated with 

the applied traction can be completed within several 

minutes, whereas a 3D problem may be solved within half 

an hour. Beyond that, this method may provide more 

accurate solutions as it makes no assumption on the failure 

surface.   

• The displacements of soil masses occur in response to 

the applied traction. This means that if the traction 𝐭 is 

applied in accordance with the direction of face collapse, a 

negative collapse multiplier may be computed when the 

tunnel face is initially unstable. The necessary support 

pressure can be identified as α𝐭, which is in the opposite 

direction of 𝐭 due to the negative α. On the contrary, if 𝐭 

is directly applied in the direction norm to the tunnel face, a 

different type of failure called blow-out failure will occur. 

The computed collapse multiplier is positive, and in this 

case, α𝐭 represents the maximum support pressure.    

• The results of comparisons demonstrate that both the 

2D and 3D deterministic limit support pressures identified 

by the negative collapse multiplier agree well with those 

derived from the existing methods. The 3D limit support 

pressures are slightly larger than those determined in 

FLAC3D because the limit analysis is based on the 

assumption of small deformation, whereas simulations in 

FLAC3D allows relatively large deformation, which will 

result in further unloading.    
• The determined 2D reliability-based necessary support 

pressure was checked using Monte Carlo simulations. The 
difference between the reliability index obtained from 
Monte Carlo simulations (using 400 samples) and that 
determined by the Python program is only 1.7%. It can be 
regarded as a verification of the computer program, and 
verification of the proposed method as well.  

• Generally, the data generated during the 3D reliability-

based process has a good agreement with the relationship 

between the applied support pressure and the resulting 

reliability index provided in the existing literature. The gap 

is mainly because of the different definitions of the safety 

factor. Moreover, the existing relationship is determined 

based on the presupposed 5-block failure mechanism, which 

differs to some extent from the real one developed in 

FLAC3D. 

• The safety factors simulated in OptumG2 and 

FLAC3D are only accurate up to three and two decimal 

places, respectively. It is the main limiting factor of the 

accuracy of the required support pressure because a very 

slight change in the support pressure may not change the 

value of the safety factor. The recommended values of the 

tolerance are 0.01 and 0.02 for 2D and 3D simulations, 

respectively. This level of accuracy may be acceptable since 

there may be many other uncertainties in practical 

engineering. 

• For the same reliability index, the non-dimensional 

load factor 𝑁𝜎  decreases with the increase of the mean of 

friction angle and cohesion. The friction angle is more 

influential than the cohesion in tunnel face stability. The 

load factor 𝑁𝜎  also decreases with the increase of the 

embedment ratio because of the presence of the soil arching 

effect. A higher reliability index means greater safety but 

requires more stabilization efforts. In practical application, 

an appropriate reliability index may be needed to be 

specified in advance to ensure tunnel face stability at a 

reasonable cost. 
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CC 
 

List of symbols 
 
V the volume of the collapse body 

S  the surface subjected to constrains and tractions 

b a set of body forces of the two-dimensional plane 

strain body 

n the outward normal to the boundary 

t the unit traction applied on the tunnel face 

α the collapse multiplier 

Pre
min the limit support pressure 

Z the performance function concerning tunnel face 

stability 

c the cohesion of soil 

φ the friction angle of soil 

γ the unit weight of soil 

μc the mean of the cohesion of soil 

μφ the mean of the friction angle of soil 

σc the standard deviation of the cohesion of soil 

σφ the standard deviation of the friction angle of soil 

pre
ana the limit support pressure determined by the 

rotational failure mechanism 

pre
c−c the limit support pressure determined by the 

convergence-confinement approach 

pre
a the limit support pressure determined by the 

collapse multiplier in 3D simulation  

Fs strength reduction factor 

βt the user-defined target reliability index 

βi the reliability index computed in the 𝑖𝑡ℎ 

iteration 

ε  the specified tolerance between the computed 

and user-defined reliability index 

p1
i, p2

i the 𝑖𝑡ℎ lower and upper brackets in Stage 1 

v1
i, v2

i the 𝑖𝑡ℎ lower and upper brackets in Stage 2 

Δp the increment for increasing the upper bracket  

Pre
i the applied support pressure in the 𝑖𝑡ℎ iteration 

n the number of samples used in Monte Carlo 

simulations 

βMC
n the reliability index calculated using Monte Carlo 

simulations 

μz
n the mean of the performance function  

μF
n the mean of the strength reduction factors 

σz
n the standard deviation of the performance 

function 

σF
n the standard deviation of the strength reduction 

factors 
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