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1. Introduction 
 

The estimation of foundation settlement is a 
fundamental and critical subject matter of foundation 

engineering and is a standard procedure carried out by 

geotechnical engineers. The settlement of shallow 
foundations can be classified into three categories: 
immediate settlement, primary consolidation, and secondary 
consolidation settlement. The primary consolidation 
settlement is the result of a volume change in saturated 

cohesive soils because of the expulsion of the water that 

occupies the void spaces. In contrast, the secondary 

consolidation settlement is caused by the plastic adjustment 

of soil particles. Once the load applies, the immediate 

settlement is induced by the elastic deformation of dry soil, 

moist and saturated soils without any change in moisture 

content. Therefore, it can be computed using elastic theory 

and applied for all fine-grained soils, including sandy soil. 

In the past, some simple equations were proposed by Harr 

(1966) for estimating the immediate settlement for a 

flexible and rigid foundation, which depicted in Fig. 1. 

However, due to the heterogeneous nature of the soil, the 

process of predicting settlement is tedious and complicated. 

In general, sandy soil has a higher differential settlement  
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compared to cohesive soils since the former is less 

homogeneous than the latter. Moreover, the deformation 

behavior of shallow foundations obtaining their support 

from granular soils (i.e., sands, gravels) mainly governs the 

final design of structures that are built on these soil types. 

Therefore, predicting settlement is a crucial issue and is one 

of the most significant concerns in foundation design codes. 

In the last five decades, numerous studies have been 

published to examine the correlation between expected 

settlements and the measured settlement of shallow 

foundations on cohesionless soils. Some suggested new 

methods for settlement estimation (Terzaghi and Peck 1968, 

Schmertmann 1970, Shahin and Jaksa 2006), while others 

sought to compare various methods to assess whether or not 

any particular approach offered higher-level accuracy than 

others (Elton 1987, Maugeri et al. 1998, Abate et al. 2008). 

The reliability of settlement estimation for shallow 

foundations on sandy soils also received substantial 

attention in recent years (Tan and Duncan 1991, Shahin et 

al. 2005). Das and Shivakugan (2007) provided an 

overview and reported that Shivakugan and Johnson’s 

(2004) probabilistic design chart approach can be used to 

estimate the likelihood of the actual settlement in the field 

may exceed 25 mm. 

Because of the difficulty of collecting undisturbed 

samples, the majority of the available methods for the 

settlement prediction of shallow foundations on sandy soils 

are based on in-situ tests, such as the pressuremeter test, 

plate load test, dilatometer test, drive cone test, cone 

penetration test (CPT) and standard penetration test (SPT) 

(Meyerhof 1956, 1964, 1974). The obtained results were 

either utilized: to determine an elastic moduli of soil for 

elastic deformation analysis; to directly predict settlement  
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Fig. 1 A rectangular shallow foundation and its 

immediate settlement on sandy soil (Das et al. 2002). B, 

L – width and length of foundation, respectively; qnet – 

net applied pressure; Df – embedment depth; H – the 

distance of footing base to rock surface 

 

 

based on an empirical relationship; or to estimate other soil 

properties (i.e., over consolidation ratio, relative density) 

for settlement estimation. However, most of these 

approaches attempted to simplify the problem by assuming 

a linear response between load and deformation and related 

it to the factors that could affect the settlement value. 

Therefore, the previous methods failed to find a successful 

solution for accurately predicting the settlement. In these 

analysis studies, no specific method was superior to the 

others in all cases, and the calculated results of the 

settlement were inconsistent (Alpan 1964, Arnold 1980, 

Jeyepalan and Boehm 1986, Shahin and Jaksa 2006). 

Consequently, there remains a need for a more efficient 

method which can provide settlement prediction results 

with higher accuracy. To meet this goal, a new approach 

using the advantage of artificial intelligence (AI) technique 

was used in this study. 

In the last two decades, there have been several 

applications of AI techniques in predicting settlement of 

shallow foundation on cohesionless soil, e.g., artificial 

neural network (ANN) (Shahin et al. 2002), support vector 

machines (SVM) (Samui and Sitharam 2008), etc. 

However, their application has some limitations, such as 

predicting with moderate accuracy, not showing the relative 

importance of the input variables, and/or not providing an 

explicit predictable formula. This paper thus utilizes the 

Multivariate Adaptive Regression Splines (MARS) model 

to improve the accuracy of predicting settlement of shallow 

foundation on sandy soil as well as to propose a new 

practical equation. 

MARS, which was first proposed by Friedman (1991), 

is capable of fitting non-linear, complex relationships 

between a set of predictors and dependent variables. The 

predictors’ space is divided into multiple knots in order to 

fit a spline function between these knots. Some of the main 

advantages of MARS are the ability to capture the 

complicated data mapping in high-dimensional patterns and 

to produce more straightforward, more accurate and faster 

simulations, and easier-to-elucidate models for both 

classification and regression problems. Some previous 

applications of MARS in geotechnical and structural 

engineering can be found in several available literatures 

(Samui 2011, Zhang and Goh 2014, Xiang et al. 2018, 

Zhang et al. 2018, 2019, Luat et al. 2020b). However, 

predictive models derived from the MARS algorithm, as 

well as the other machine learning techniques, have never 

been implemented for shallow foundation settlement 

problems. 

In order to implement a MARS model, users need to 

select tuning hyperparameters which include the maximum 

number of terms Mmax, maximum interaction between 

variables Imax, and penalty d. These hyperparameters are 

considered as essential features governing MARS model 

complexity and generalization. Therefore, obtaining an 

optimal model is essential to achieve MARS prediction 

accuracy. Friedman’s recommendations for selecting 

hyperparameters have large value ranges, with actual hand-

picked values reliant on the dataset we are dealing with. 

Due to this drawback, other searching engines have been 

developed to solve the optimization problem.  

A survey of the published literature shows that a number 

of nature-inspired algorithm have been increasingly 

developed to optimize hyperparameters of machine learning 

models such as Artificial bee colony (ABC) (Cheng and 

Cao 2014), Balancing composite motion optimization (Le-

Duc et al. 2020), Firefly algorithm (FA) (Bui et al. 2018), 

and Genetic algorithm (GA) (Gomes et al. 2019), etc. In 

this study, the Genetic Algorithm (GA) was utilized as an 

evolutional search engine to obtain optimal MARS 

hyperparameter values. This combination was considered as 

a hybrid intelligent technique, namely GA-MARS. GA was 

first popularized by Holland (1975) and further developed 

by Goldberg (1989). Notably, GA is a powerful technique to 

find global optima values in complex search space (multi-

modal, multi-objective, non-linear, discontinuous, and 

highly constrained space). Because of this capability, GA 

has gained popularity in several engineering fields (Gesoğlu 

and Güneyisi 2007, Gandomi et al. 2010, Nehdi and 

Nikopour 2011, Golafshani et al. 2015, Tiachacht et al. 

2018, Wang et al. 2018). 

The primary purpose of this research was to develop and 

verify a hybrid model, GA-MARS. This novel proposed 

model operates automatically and accurately predicts the 

settlement of shallow foundation on sandy soil in relation to 

the bread of foundation (B), length to width (L/B), the 

embedment ratio Df/B, the net-applied load pressure at 

footing base (qnet), and the average SPT blow count (N). 

The second objective is to propose an explicit prediction 

formula interms of the above variables. To do these things, 

a database contained 180 experimental data reported by 

Luat et al. (2020a) was used for training and testing model. 

The GA-MARS performance were then compared against 

some traditional methods and an ANN model developed by 

Shahin et al. (2002). 
 

 

2. Overview of empirical methods and ANN model 
 

A review of related researches is given in this section for 

the sake of comparison with this study. Three empirical 
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methods performed by Schultze and Sherif (1973), 

Meyerhof (1974), Anagnostopoulos et al. (1991) and an 

ANN model developed by Shahin et al. (2002) were chosen 

to compare and assess the reliability of the GA-MARS’ 

performance. These method were chosen since all of which 

used data from SPT, and the GA-MARS model had similar 

input variables.  
 

2.1 Schultze and Sherif (1973) 
 

From the results of measured settlement at 48 sites with 

SPT, Schultze and Sherif (1973) suggested an analytical 

method for estimating settlement of shallow foundations on 

sand. This settlement can be predicted from: 

𝑆𝑐 =
𝑞𝑛𝑒𝑡𝐹𝑐

𝑁0.87 (1 + 0.4
𝐷𝑓

𝐵
)

 
(1) 

 

2.2 Meyerhof (1974) 
 

Meyerholf’s most recent expressions for settlement were 

further modifications of his previous methods (Meyerhof 

1974) and were generally considered to be conservative. In 

this case, when the base embedment was considered, the 

settlement was as follows: 

𝑆𝑐 =
1.33𝑞𝑛𝑒𝑡

𝑁
(1 −

𝐷𝑓

𝐵
)  for B ≤ 1.22 m (2) 

𝑆𝑐 =
0.53𝑞𝑛𝑒𝑡

𝑁
(

2𝐵

𝐵 + 0.3
)

2

(1 −
𝐷𝑓

4𝐵
)  for B > 1.22 m (3) 

 

2.3 Anagnostopoulus (1991) 
 

Anagnostopoulus et al. (1991) suggested another 

empirical method for grouping estimates according to 

stiffness, e.g., loose, medium, or dense sand, as well as 

small versus large footings. This approach was based on a 

statistical evaluation of measured settlements and multiple 

case history analyzes obtained primarily from Schultze and 

Sherif (1973) and Burland and Burbidge (1985). 

Appropriate expression for both SPT blow count range and 

footing width would presubably be used to estimate 

settlement. Then, on average, these two results give a single 

estimate of settlement. Such predicting settlement formulae 

can be expressed as: 

𝑆𝑐 = (0.57𝑞0.94𝐵0.90) 𝑁0.87⁄ for 0 < N ≤ 10 (4) 

𝑆𝑐 = (0.35𝑞1.01𝐵0.69) 𝑁0.94⁄ for 10 < N ≤ 30 (5) 

𝑆𝑐 = (604𝑞0.90𝐵0.76) 𝑁2.82⁄ for N > 30 (6) 

𝑆𝑐 = (1.90𝑞0.77𝐵0.45) 𝑁1.08⁄ for B ≤ 3 m (7) 

𝑆𝑐 = (1.64𝑞1.02𝐵0.59) 𝑁1.37⁄ for 𝐵 > 3 m (8) 

 

2.4 ANN model 
 

Shahin et al. (2002) successfully applied ANN for 

settlement prediction of shallow foundations on granular 

soils. The optimal ANN structure was found to be 5-2-1 

(five input variables, one hidden layer with two neurons, 

and an output neuron). In a further development, a design 

formula was derived as follows: 

𝑆𝑐 = 0.6 +
120.4

1 + 𝑒(0.312−0.725 tanh 𝑥1+2.984 tanh 𝑥2)
 (9) 

and 

𝑥1 = 0.1 + 10−3 [3.8𝐵 + 0.7𝑞 + 4.1𝑁 − 1.8
𝐿

𝐵
+ 19

𝐷𝑓

𝐵
] (9a) 

𝑥2 = 10−3 [0.7 − 41𝐵 − 1.6𝑞 + 75𝑁 − 52
𝐿

𝐵
+ 740

𝐷𝑓

𝐵
] (9b) 

where, in Eq. (1-9), Sc = settlement (mm); qnet = net applied 

pressure (kPa); B = footing width (m); Df = depth of 

embedment (m); N = the blow count from SPT, were not 

corrected for overburden stress; σc
’  = pre-consolidation 

pressure (kPa); and Fc = settlement coefficient (obtained 

from design chart). 

 

 

3. Methodology 
 

3.1 Multivariate adaptive regression splines (MARS) 
 

Multivariate adaptive regression splines was first 

introduced by Friedman (1991), as a procedure for adaptive 

nonlinear and nonparametric regression that makes no 

assumption about the underlying functional relationship 

between the predictors and the target outputs. The general 

expression of nonparametric regression can be represented 

as: 

𝑦𝑖 = 𝑓(𝑥𝑖1, 𝑥𝑖2 , … 𝑥𝑖𝑗  ) = 𝑓(𝑋) + 𝜀𝑖 (10) 

in which X = (xi1, xi2,…,xij) is an i×j matrix of j input 

features and i samples and ei is the error distribution of the 

ith sample, also called noise. The main goal of this 

regression is to estimate the general function of high 

dimensional arguments f(xi1, xi2,…,xij) directly, rather than 

to estimate parameters. For this purpose, it is assumed that 

f(X) is a smooth, and continuous function. 

A MARS model is established by applying basis 

functions (known as terms) to approximate the function  

 

 

 

Fig. 2 A simple example of linear splines and knots 
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f(X). Basis functions are splines (also called smooth 

polynomials), which have pieces, including piece-wise 

linear and piece-wise cubic functions that connect smoothly 

together. However, only the piece-wise linear function is 

expressed for simplicity. The interface points between the 

linear piece-wises are called knots illustrated as solid 

markers in Fig. 2 and denoted t. The knot location separates 

the spline basis function into two-sided truncated functions, 

is expressed formally as 

𝑏𝑞
−(𝑥 − 𝑡) = [−(𝑥 − 𝑡)]+

𝑞
= {

(𝑡 − 𝑥)𝑞   if 𝑥 < 𝑡

0             otherwise
 (11) 

𝑏𝑞
+(𝑥 − 𝑡) = [+(𝑥 − 𝑡)]+

𝑞
= {

(𝑥 − 𝑞)𝑞   if 𝑥 > 𝑡

0             otherwise
 (12) 

where t is the knot location, bq
-
(x-t) and bq

+
(x-t) are the 

spline functions, the []+ ensures these values are positive, 

and the power q equals to 1 for simplicity as mentioned 

above. 

The general form of the MARS model for predicting 

output ŷ can be expressed as 

𝑦̂ = 𝑓(𝑋) =  𝑐0 + ∑ 𝑐𝑚𝐵𝑚(𝑥)

𝑀

𝑚=1

 (13) 

where x is the input variable; c0 is a constant; Bm(x) is the 

mth basis function; and cm is the coefficient of Bm(x). 

In general, MARS contains the following three steps: (i) 

the constructive phase: a forward stepwise algorithm to 

select certain spline basis functions, (ii) the pruning phase: a 

backward stepwise algorithm to delete unnecessary basis 

functions until the “best” set is found, and (iii) optimum 

model selection. The constructive phase first starts on the 

training data with only the intercept, c0, and then several 

knots are created automatically. These knots are points at 

random locations within the range of each input variables to 

define a pair of basis functions. At each step, the model 

adopts the knot and its corresponding pair of basis function 

that produces the most significant decrease in the residual 

sum of squares error. Considering a current model with 

several basis functions (M), the next pairs are added to the 

model in the form 

𝑐𝑚+1𝐵𝑚(𝑋)[+(𝑥 − 𝑡)]+
𝑞

+ 𝑐𝑚+2𝐵𝑚(𝑋)[−(𝑥 − 𝑡)]+
𝑞

 (14) 

This process continues until the maximum number of 

terms Mmax is reached. The value of Mmax should be chosen 

larger than the optimal model size as referenced Friedman 

(1991). Typically, the basis functions addition leads to a 

very complicated and overfit model. In the second phase, a 

backward deletion is employed to overcome this problem. 

The aim of this phase is to find an optimal model by 

removing redundant basis functions and irrelevant variables 

as well. Friedman (1991) also recommended the generalized 

cross-validation (GCV) originally proposed by Craven and 

Wahba (1978) as a deletion criterion. The value of GCV is 

defined as follows: 

𝐺𝐶𝑉 =  
1

𝑛
×

∑ (𝑦𝑖 − 𝑦̂𝑖)
𝑀
𝑚=1

(1 − 𝐶(𝑀) 𝑛⁄ )2
 (15) 

where n is the number of data sets, yi is the response value  

 

Fig. 3 The flowchart of the MARS model 

 

 

of the ith data, ŷ
i
 is the predicted values obtained from the 

MARS model of the ith data, and C(M) is a penalty factor 

that increases with the number of terms that can be 

determined as 

𝐶(𝑀) = 𝑀 + 𝑑𝑀 (16) 

where d is a penalty factor for each basis function 

optimization and is a smoothing parameter. Friedman 

(1991) provided more details about the selection of d. At 

each backward step, a basis function is removed to 

minimize Eq. (15), until an adequately fitting model is 

found. Finally, in the third phase, the best MARS model is 

selected. The flowchart of the MARS model is shown in 

Fig. 3. 

An analysis of variance (ANOVA) decomposition of the 

MARS model can be used to assess the contributions from 

the input variables and the basis functions. This procedure 

groups together all the basis functions that involve one 

variable and another grouping of terms that involve 

pairwise interactions. ANOVA function for MARS model is 

given by the following expression: 

𝑓(𝑥) = 𝛽0 + ∑ 𝑓𝑖𝑥𝑖 + ∑ 𝑓𝑖𝑗𝑥𝑖𝑗 +

𝐵=2𝐵=1

∑ 𝑓𝑖𝑗𝑘𝑥𝑖𝑗𝑘 + ⋯

𝐵=3

 (17) 

where ∑ f
i
xiB=1  is the total basis functions that involve 

only a single variable, ∑ f
ij
xjiB=2  is total basis functions 

that involve exactly two variables and ∑ f
ijk

xjikB=3  

represents the contributions from three variables 

interactions (if present). 

 

3.2 Genetic algorithm (GA) 
 

In general, an individual is characterized by a set of  
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Fig. 5 The GA-MARS procedure 
 

 

parameters (variables), as called genes. Genes are joined 

into a string to form a chromosome. In GA, a chromosome 

has a fixed length that encodes genes to binary values (a 

string of 0s and 1s). The implementation of GA may be 

specified in the following steps: (i) population initialization; 

(ii) evaluate fitness function; (iii) selection; (iv) crossover 

and mutation; (v) termination.  

Commonly, the GA starts with a set of individuals is 

randomly generated, called initial population. Then, the 

adaptation of each individual is estimated by the fitness 

function, e.g., root mean square error (RMSE), which 

determines the ability of an individual to contend with the  

others. Each individual is given a fitness score as a basis of 

the selection for reproduction. The GA then selects two  

 

 

pairs of individuals (parents) according to their fitness score 

(the higher fitness score is, the more chance they are to be 

selected). Crossover is the most significant phase in GA, 

where the parents pass their genes to the next generation. A 

crossover point is randomly chosen to determine the range 

of genetic exchange between two parents. When the genetic 

exchange of parents among themselves reaches the 

crossover point, a new individual, as called child, is created 

and added to the population. The child returned can be 

expressed as: 

𝐶 = 𝑃2 + 𝑅𝑐𝑟 × (𝑃1 − 𝑃2)  (18) 

where Rcr is the ratio indicating how far the child (C) is 

from the better parent (P1, P2), and P1 – denotes the parent 

having better fitness value. In addition, the fraction of 

individuals in the next generation is represented by a 

parameter Fcr, which has a significant effect on GA 

performance. 

In some newly formed individuals, some of their genes 

may be mutated with low random probability, Pmut. 

Mutation adds to the diversity of a population and thereby 

increases the likelihood that GA generates better 

individuals. It occurs to maintain variety within the 

population and prevent premature convergence. Finally, the 

GA terminates if the stopping condition is satisfied, and the 

best solution is found in the current population. This 

condition can be based on the chromosome structure or the 

special meaning of the chromosome. The former governs 

the number of genes that are converging, whereas the latter 

examines the algorithm evolution after each generation. The 

GA finishes if the number of genes is equal or higher than 

an identical value, or its change is less than a constant. 

When the stopping conditions are not met, this process is 

repeated with the new population until creating the best 

generation. The executable GA is graphically illustrated in 

Fig. 4.  
 

 

Fig. 4 The GA flowchart 
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3.3 Hybrid model 
 

In engineering applications, many kinds of researches 
have been carried out to finding the optimal values of 
hyperparameters of a machine learning model (Bui et al. 
2018, 2019, Qi and Tang 2018, Iyer et al. 2019, Pramanik 
and Maiti 2019). In this study, a hybrid system GA-MARS 
is implemented to predict the settlement of shallow 
foundation on sandy soil. In this proposed system, three 
hyperparameters of MARS, i.e., Mmax, Imax, and d, are 
considered and searched the global optima by GA. The root 
mean square error (RMSE) was adopted as the objective 
function for the optimization process. The GA-MARS 
model is depicted in Fig. 5. Further detail of 
implementation would be discussed later. 
 

 

4. Database description 
 

The experimental data used in this study consisting of  

 

Table 1 Summary of input settings and outputs 

Description Notation 
MARS 

Parameters 
Min. Max. Mean Std. 

Breadth of 

foundation 

(m) 

B X1 0.8 255 9.82 20.48 

Length to 
width 

 

L/B X2 1 10.6 2.19 1.8 

Embedment 

ratio 

 

Df/B X3 0 3.44 0.53 0.58 

Net-applied 

pressure 
(kPa) 

qnet X4 18.32 1532 194.31 157.35 

SPT blow 

count 
Nc X5 4 60 24.58 13.53 

Measured 
settlement 

(mm) 

Sc y 3.3 103.4 20.2 26.1 

 
 

180 SPT-based case histories reported in previous research 

  
(a) (b) 

 .  

(c) (d) 

  
(e) (f) 

Fig. 6 Histogram of dataset distribution. (a) Width of foundation, (b) Net-applied pressure, (c) SPT blow count, (d) Length 

to width ratio, (e) Embedment ratio and (f) Measured settlement 
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(Luat et al. 2020a). It should be noted that some outliers 

were removed before training. The input variables used to 

predict the settlement of shallow foundation consist of the 

breadth of the foundation (B), length to width (L/B), the 

embedment ratio (Df/B), the net-applied pressure at footing 

base (qnet), and the average SPT blow count (N). The 

measured settlement of a shallow foundation (Sc) is used as 

the output variable. The ranges of considered variables in 

this study are summarized in Table 1, and the distribution of 

each input variable is illustrated in Fig. 6. 

It is noteworthy that the uncorrected N-values were used 

in predicting settlement, however, if the sand was dense, 

saturated and very fine or silty, Terzaghi and Peck (1968) 

recommended that the blow count applied to any submerged 

case should be corrected according to: 

𝑁𝑐 = 15 + 0.5(𝑁 − 15) (19) 

If the soil was gravelly sand or sandy gravel, a 

correction for N was recommended by Burland and 

Burbidge (1985) as: 

𝑁𝑐 = 1.25𝑁 (20) 

 

 

5. Developed GA-MARS model 
 

5.1 Checking and preprocessing data 
 

The Pearson correlation coefficient between any two 

input variables was calculated, as shown in Fig. 7. The 

correlations between five input variables are not significant, 

with the maximum value of 0.4 between qnet and Nc, 

indicating that the input selection is reasonable. 

Due to the difference in dimensions and magnitude 

orders between the input and output variables, it is 

necessary to convert them to the same order of magnitude 

without dimension. Therefore, all of the original input 

parameters were normalized, making the data 0 mean and 1 

standard deviation before training. This rescaling was done 

to make training less sensitive to the scale of the input 

variables and to eliminate their dimensions. Moreover, 

normalization makes the problem better conditioned and 

improves the convergence rate of the gradient descent. In 

this research, all variables were normalized using the min-

max normalization method, which is expressed as follows: 

𝑥𝑛𝑜𝑟𝑚 =
𝑥 − min (𝑥)

max(𝑥) − min (𝑥)
 (21) 

where, x is the original value and xnorm is the normalized 

value. 
 

5.2 Hybrid model development 
 

The interpreted high-level programming language, 

Python, with its implementation called py-earth package, 

was used for the development of the MARS model. As 

mentioned above, one may construct a MARS model with a 

variety of hyperparameter options, including a maximum 

basis function (max terms) Mmax, maximum interaction (also 

called as product degree) Imax, and penalty parameter d. 

However, while setting the optimal parameters  

 

Fig. 7 Correlation matrix of five input 

 

 

simultaneously is difficult using MARS, such optimization 

significantly improves the prediction accuracy of MARS. A 

hybrid model GA-MARS was developed thus utilized to 

overcome this problem, illustrated in Fig. 5. The step 

involved are summarized below: 

i) Initializing and encoding 
Three MARS hyperparameters to be optimized were 

encoded in binary format to produce the chromosomes. 

Elements of the chromosome P defined by P{p1, p2, p3} 

represented (Mmax, Imax, d) where, p1 and p2 were integer 

values, and p3 was a continuous value. The k-fold cross- 

validation method was used in this research to reduce the 

over-fitting problem in the selected model. With 175 

experimental data (after removing outliers), the 10-fold was 

chosen for developing the hybrid model. Firstly, the whole 

data was divided into two partitions, namely training set 

with 140 cases (80%) and testing set with 35 cases (20%). 

To implement the cross-validated procedure, the training 

data were randomly selected and split into 10 distinct folds, 

which mean each fold contains 14 cases (10% of 140). For 

each iteration, MARS model was performed on a training 

subset (nine of ten folds) using a specific combination of 

(Mmax, Imax, d), while the remaining one dataset was used to 

validate model performance by calculating the fitness value 

from fitness function. The 10-fold cross-validation 

technique strategy is presented in Fig. 8. This procedure is 

repeated for each fold in the training set so that all folds 

were used once as the validation fold. In this case, the 

fitness function was the root mean square error (RMSE), 

defined below 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
× ∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

 (22) 

where n is the sample number in the training set, a 

chromosome with the lowest values of RMSE has the 

highest probability of surviving in the next generation. 

ii) GA operators 

The previous population was replaced by the offspring 

after completing the GA operators, i.e., selection, crossover, 

and mutation. The ratio Rcr, the crossover probability Fcr, 

and mutation probability Pmut, were chosen 1.2, 70%, and 

10%, respectively (Ren and Bai 2010, Koopialipoor et al.  
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Fig. 8 k -fold (10-fold) cross-validation scheme 

 

 

Fig. 9 The RMSE curve of GA-MARS model accordance 

with various population sizes 

 

 

Fig. 10 The 3-D surface of GA-MARS performance with 

various population sizes and generations (X = number of 

generations; Y = population size; Z = RMSE) 

 

 

2019), and defined at the first step. In this stage, GA 

searches the best combination of hyperparameters (Mmax, I-

max, d) in each generation. 

iii) Terminating criteria 

The optimization process is stopped once the 

termination criterion is satisfied. Before reaching this point, 

the GA-MARS model proceeds to the next generation. 

Because GA was used as an evolutional search engine, the 

stopping criterion is often the maximum number of 

generations (Gmax) and the repetition of the optimum for a 

determined number of generations. If this occurs, it is 

assumed that the algorithm has already converged. 

iv) Estimating model and decoding parameters 
The best MARS model with optimal parameter settings  

Table 2 The hybrid GA-MARS model parameters 

Component Program parameter Setting 

MARS model 

Estimator type estimator earth() 

Evaluation scoring r2 

Maximum number of basis 
function (Mmax) 

max_term (1; 50) 

Maximum interaction of terms 

(Imax) 
max_degree (1; 9) 

Smoothing parameter (d) penalty (2; 4) 

Number of extreme data values of 
each feature not eligible as knot 

locations 

end_span  

Parameter controlling end_span endspan_alpha (0; 1) 

Parameter controlling 

endspan_alpha 
minspan_alpha (0; 1) 

Kind of feature importance feature_importance_type GCV 

Cross-validation method K-fold - 

Number of folds n_splits 10 

Training partition  80% 

Testing partition  20% 

Genetic algorithm 

Maximum generation Gmax 300 

Population size Ps 250 

Combinatorial variables 

- Mmax P1 integer 

- Imax P2 integer 

- d P3 float 

Differential ratio Rcr 1.2 

Crossover ratio Fcr 0.7 

Mutation ratio Pmut 0.1 

Fitness function RMSE - 

 

 

was obtained when the termination criterion was fulfilled. It 

means that GA-MARS has completed the training process 

and is active in predicting new input data (testing set). 

However, all the encoded parameters need to be decoded 

following: 

𝑋𝑑𝑒𝑐 = 𝑝 ∑ 𝑏𝑖𝑡 × 2𝑖
𝐿𝑐

𝑖=1
+ 𝑏𝑙𝑜𝑤𝑒𝑟  (23) 

where, Xdec – decoding value; p – precision is calculated as: 

p=
bupper-blower

2
Lc-1

, in which bupper and blower are upper bound and 

lower bound of parameter X, respectively; Lc is the 

chromosome length; bit is a binary value (0 or 1). 

A parametric study was employed for determining the 

maximum number of generation (Gmax) and population size 

(Ps), which affect significantly hybrid system performance. 

To obtain the best of Gmax, a value of 1000 generation was 

assigned as stopping criteria calculating RMSE. In further 

analysis, a series of hybrid GA-MARS models were 

investigated to determine the best population size (among 

values of 50, 100, 150, 200, 250, 300). Fig. 9 shows that the 

RMSE values are unchanged after generation 300th. With  
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further depiction in Fig. 10, it is clear that the population 

size of 250 can provide stable performance with gradually 

decreasing and lowest value of RMSE. Therefore, the 

optimal generation and population size chosen in this study 

were 300 and 250, respectively. 

Beside using RMSE as the fitness function, the 

performance of the proposed GA-MARS model was 

evaluated by other following criteria indices: 

• Coefficient of determination (R2): 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑖)
𝑛
𝑖=1

 (24) 

• Mean Absolute Error (MAE): 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 (25) 

where y is the actual values; ŷ
i
 is the predicted value; y

i̅
 is 

the mean of the actual values; and n is the number of 

samples. For a prediction model with high accuracy, R2 

should be close to 1, which is the maximum value. 

The selection of MARS model parameters were based 

on the following: 

Scoring evaluation was coefficient of determination 

(R2). 

• The training and testing partition size was 80% and 

20%, respectively. 

• The size of validation was 20% of training set. 

• The maximum number of basis function for training 

was in the range of 1 and 50. 

• The maximum interaction of terms was from 1 to 9. 

• The penalizing parameter was in the range of 2 and 4, 

with a default value of 3. 

• The number extreme data values of each feature not 

eligible as knot locations was a default value of -1. 

• The parameter controlling “endspan” was randomly 

chosen the range of 0 to 1. 

• The parameter controlling “mindspan” was randomly  

 

 

chosen in the range of 0 to 1. 

• The feature importance criterion was GCV. 

To sum up, all parameters for the proposed GA-MARS 

model are listed in Table 2. 

 

5.3 GA-MARS performance 
 

This study evaluated the model efficiency using the K-

fold method with a stratified 10-fold cross-validation. 

Random selection divided the 140 of training data into 10 

distinct folds. Each fold was employed in turn as validating 

data, with the remaining folds used as training data, 

ensuring that all cases in training set were applied in both 

the training and validating phases. 

Table 3 demonstrates the performance of the GA-MARS 

model in predicting the settlement of shallow foundations 

on sandy soils over 10 folds. As shown in this table, the 

GA-MARS model attains outstanding average R2 values 

(close to 1) for both training (R2 = 0.973) and testing data 

(R2 = 0.954), indicating that the model accurately estimates 

the underlying function of the settlement of shallow 

foundations. In terms of MSE and RMSE, the proposed 

model yielded small average values for both training and 

testing data. The MSE values obtained of 3.87 and 4.12 mm, 

for training and testing set, while the RMSE values were 

5.90 and 6.41 mm, respectively. The low standard deviation 

values between two sets (6.1% of MSE, and 7.8% of RMSE) 

illustrated stable model generalizability. 

The hyperparameter configuration of the GA-MARS 

model is also given in Table 3. Remarkably, the values of 

maximum basis function Mmax which varied in the 
range from 11 to 35, affect the accuracy of prediction 
significantly. Also, the number of interactions among input 

variables Imax alternated between 1 and 4. It was found that 

no fold had a default value of penalty parameter d within 

the referred range (Friedman 1991). Therefore, it can be 

concluded that simultaneously choosing suitable parameter 

values is a challenge for users. This statement coincides  

Table 3 Cross-validation GA-MARS training and testing results 

Fold 

Training Testing Hyperparameter 

MAE RMSE 
R2 

MAE RMSE 
R2 Mmax Imax d 

(mm) (mm) (mm) (mm) 

1 3.32 5.15 0.985 3.51 6.12 0.966 23 2 4.01 

2 4.64 6.33 0.949 4.87 7.09 0.932 11 1 3.28 

3 4.78 6.54 0.954 4.97 6.95 0.937 18 4 2.02 

4 4.79 6.34 0.955 4.95 6.88 0.94 35 4 2.72 

5 3.18 5.06 0.991 3.34 5.59 0.971 13 4 2.17 

6 3.68 6.41 0.981 4.08 6.32 0.963 33 4 3.31 

7 4.2 6.12 0.968 4.46 6.62 0.949 24 3 2.4 

8 3.8 5.6 0.971 4.1 6.51 0.953 13 2 1.6 

9 3.06 4.83 0.99 3.46 5.65 0.97 19 2 2.76 

10 3.21 6.36 0.985 3.5 6.36 0.959 21 3 3.47 

Avg. 3.87 5.87 0.973 4.12 6.41 0.954 
   

Std. 0.65 0.61 0.015 0.62 0.49 0.013 
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Table 4 Basis function of the MARS model with the 

corresponding equation and coefficients 

Bm(x) Equation (cm) 

B0(x) 1 10.682 

B1(x) max (0,4 − 𝐵) 3.760 

B2(x) max (0, 𝐵 − 4) 0.286 

B3(x) max (0,12 − 𝑁𝑐) 3.642 

B4(x) 𝑞𝑛𝑒𝑡 × max (0,12 − 𝑁𝑐) 0.028 

B5(x) max (0, 𝐵 − 4) × max (0,116.8 − 𝑞𝑛𝑒𝑡) -0.025 

B6(x) max (0,4 − 𝐵) × max (0, 𝑁𝑐 − 18) -2.772 

B7(x) max (0,4 − 𝐵) × max (0, 18 − 𝑁𝑐) -1.652 

B8(x) max (0,4 − 𝐵) × max (0, 𝑁𝑐 − 20) 2.734 

B9(x) max (0, 𝐵 − 4) × max (0, 24 − 𝑁𝑐) 0.151 

B10(x) max (0, 𝐵 − 4) × max (0,0.13 − 𝐷𝑓 𝐵⁄ ) 8.211 

 

Table 5 Results of ANOVA decomposition 

Function GCV #Bm(x) Variable(x) 

1 188.41 2 B 

2 64.49 1 Nc 

3 220.92 4 B, Nc 

4 55.85 1 qnet, Nc 

5 54.18 1 B, qnet 

6 61.72 1 B, Df/B 

 

Table 6 Comparison of MARS model and available method 

Method 
MAE RMSE 

R2 
(mm) (mm) 

Schultze and Sherif (1973) 14.58 29.01 0.104 

Meyerhof (1974) 11.95 26.43 0.444 

Anagnostopoulos et al. (1991) 7.9 15 0.768 

ANN – Shahin et al. (2002) 8.78 11.04 0.819 

GA-MARS (This study) 4.12 6.41 0.954 

 

 

with Cheng and Cao’s investigation (Cheng and Cao 2014). 

However, it should be noted that the instance of these 

 

 

 

parameter values depends on user experience and may be 

beyond the suggested range. 

Fold 8 was chosen to derive the MARS formulation as 

its findings were close to the average values. Table 4 

presents the basis functions of the MARS model with 

corresponding equations and coefficients (cm). As four out 

of five input variables were used to approximate functions, 

the one-remaining variable was ignored without influencing 

the estimated results. It is noteworthy that all input 

parameters were normalized using Eq. (15). Hence, the 

variables of the basis functions in Table 4 were rescaled 

before deriving corresponding equations. Finally, the 

settlement of shallow foundation on sandy soil Sc was 

expressed by the MARS model as 

 

(26) 

Fig. 11 graphically shows the correlation between the 

predicted value and measured value for fold 8 and the 

correspondence test set. As seen in this figure, the 

MARSmodel performs reasonably well for both training  

  
(a) Training set (b) Testing set 

Fig. 11 The correlation between predicted and actual output performing on fold 8 

 

Fig. 12 The relative importance of input variables 
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and testing data, with almost scattering around the best fit 

line. 

As mentioned above, one of the most critical advantages 

of MARS is its ability to inspect the importance of the input 

variables based on ANOVA decomposition. Table 5 shows 

the ANOVA decomposition of the proposed MARS model 

for fold 8. The GCV column indicates the significance of 

the corresponding ANOVA functions via the GCV score for 

a model with all related basis functions to that specific 

ANOVA function eliminated. This GCV value is used to 

evaluate whether the ANOVA function contributes  

 

 

substantially to the model, or marginally increases the 

global GCV score. The #Bm(x) column indicates the number 

of basis functions in the ANOVA function, and the 

variable(s) column gives the particular input features related 

to the ANOVA function. 

The final model contained a total of 11 basis functions 

with a maximum of two degrees of interactions. Fig. 12 

indicates the relative importance of the input variables, 

evaluated by the increase in the GCV value. The two most 

important variables influencing the prediction were the 

breadth of foundation (B), and the corrected SPT blow  

  
(a) Width of foundation (b) Net-applied pressure 

  
(c) SPT blow count (d) Length to width ratio 

 
(e) Embedment ratio. 

Fig. 13 The ratio of predicted/measured results versus input variables 
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count (Nc) was followed sequentially by the net-applied 

pressure (qnet) and the depth to width ratio (Df/B). It is clear 

that the length to width (L/B) did not affect the MARS 

settlement prediction model. This study’s two most 

important variables were identified as highly significant in 

available studies (Meyerhof 1974), (Anagnostopoulos et al. 

1991, Anderson et al. 2007). Different from the present  

 

 

study, however, Shahin et al. (2002) indicated that the 

length to width (L/B) has the smallest effect on settlement 

among the five-mentioned input variables, with sensitivity 

analysis having an average relative important of 9.8. It is 

elucidated that if two variables are strongly correlated, 

MARS normally drops one when constructing a model, 

whereas the ANN model with the lack of theory was unable  

Table 7 Comparison between proposed formula and available formulae in terms of predicted to measured values 

(performing on testing set) 

No. 
B 

(m) 

qnet 

(kPa) 
NSPT L/B Df/B SEq.(1)/Sm SEq.(2-3)/Sm SEq.(4-8)/Sm SEq.(9)/Sm SGA-MARS/Sm 

1 25 70 6 1 0.04 9.2753 7.6190 1.2765 1.1821 1.0215 

2 4.9 188 20 1.59 0.47 1.4269 1.4852 1.1172 1.7082 1.3062 

3 2.5 158 21 5.24 0 1.1631 1.7882 2.0278 1.0178 1.4722 

4 1.5 77 13 1 0.8 0.3726 1.3158 0.5682 0.2669 1.3403 

5 6 190 7 1 0 2.3522 4.0473 1.0407 1.1517 1.1625 

6 27.4 154 17 1 0 8.4865 3.8343 2.5183 1.3848 1.0297 

7 2.5 245 16 1 0 0.5566 0.8261 0.9771 0.6149 0.9677 

8 6.4 71.8 18 1.45 0.23 1.3788 1.2617 0.9742 0.6711 0.843 

9 1.2 300 50 1 0.42 0.5853 1.3909 2.0735 0.6776 1.0408 

10 22.5 221 20 2.9 0.44 1.6822 0.8185 0.5018 0.7122 0.7733 

11 33.5 156 19 1 0 8.306 3.4434 2.237 1.1103 1.0856 

12 1.2 268 8 1 0.75 0.4179 1.5489 0.6819 0.6795 0.9138 

13 33 191 34 1 0.16 5.8281 2.5706 1.2781 3.4617 1.1242 

14 4.9 113 20 1.59 0.47 1.4086 1.4661 1.1114 1.1279 0.947 

15 1.4 230 25 1 2.1 0.4339 1.3714 0.8039 0.6181 0.7043 

16 4.4 93 10 5.5 0.57 0.8701 1.7391 0.4239 0.4041 0.8032 

17 1.6 250 25 7.9 0.25 0.748 1.4259 1.6458 0.9772 1.0411 

18 3.3 52 8 4.2 0.54 3.1725 7.1205 1.8159 1.0444 0.9005 

19 6.1 144.1 23 5 1.1 1.9325 1.8962 1.1685 1.7094 1.0086 

20 7 131.2 42 5.1 0.33 2.9474 2.8533 2.3533 1.8818 1.0313 

21 3.4 81.4 34 6.7 0 3.1398 4.4069 3.4259 1.644 1.1523 

22 4 97 20 1.6 0.5 1.136 1.3067 1.0121 0.8153 0.9128 

23 2.4 190 22 1.6 1.9 1.0244 2.2002 1.3386 1.3558 1.1035 

24 3 500 18 1 0.25 0.7555 1.0077 1.1709 1.0844 1.0228 

25 0.9 300 30 1 1.3 0.3999 1.1357 1.0072 0.6095 1.0137 

26 1.2 215 29 1 2.2 0.3386 1.2438 0.6948 0.3978 0.9237 

27 3.7 225 20 1.6 0.49 0.5922 0.7085 0.549 0.8351 0.9083 

28 14.5 253.5 26 1 0.24 1.4719 0.9378 0.6707 1.6577 1.0791 

29 41.2 104 36 1 0.24 2.6456 1.0431 0.505 0.8093 1.0725 

30 1.8 575 50 1.6 0.83 0.209 0.4015 0.5697 0.3717 0.8455 

31 1.2 150 28 1 0.5 0.2098 0.4603 0.4812 0.2026 0.7161 

32 6.1 161 20 1.6 0.49 1.1407 1.063 0.7734 1.1777 0.8126 

33 25.5 175 21 1 0.1 2.3336 1.1079 0.7391 0.6709 0.7844 

34 1 284 25 2.2 3 0.9462 6.7222 2.1754 1.6351 1.2006 

35 18.3 41 20 1 0.02 1.7765 1.0002 0.7237 0.2751 0.7915 

Mean 2.0418 2.1305 1.2123 1.0270 0.9959 

Standard deviation 2.3246 1.8196 0.7019 0.6171 0.1730 
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Fig. 14 Measured-to-predicted-settlement ratio of 

different methods 
 
 

to remove unnecessary input variables Shahin et al. (2002). 

For further evaluation, Fig. 13 graphically presents the 

interaction of input variables with the proposed model. The 

ratio of predicted value Sc and measured value (Sm) versus 

five predictors are plotted to illustrate their effectiveness. 

These plots indicate that even though there are 

accumulations of data at a specific range of each variable, 

the predicted values have various scatters that overestimate 

(above the red solid line), or underestimate (under the solid 

red line) the settlement. This proves that the generated GA-

MARS model does not depend exactly on a particular 

variable. Therefore, it can be stated that the used predictors 

are relatively effective in the proposed model, consistent 

with things shown in the correlation matrix (Fig. 7). It also 

can be seen in Fig. 13 that only about 25% of data points 

are outside the margin of ±30% line (dashed line). By 

observing Figs. 13(a), and 13(b), it is found that the 

proposed model can be well-suited for the foundation with 

more than 10 m widths and the SPT blow count less than 

40. 

 

5.4 Results comparison with available methods 
 

To evaluate the proposed MARS model performance, 

this study compared results with those of three traditional 

methods, which were introduced above accordance with 

Eqs. (1)-(9) (Schultze and Sherif 1973, Meyerhof 1974, 

Anagnostopoulus et al. 1991), and an ANN of Shahin et al. 

(2002). Table 6 presents the comparative results in terms of 

three criteria indices. In terms of MAE, the values for 

testing dataset by Eq. (1), Eq. (2) and (3), Eq. (4) and (8),  

 

 

ANN and MARS were 14.58, 11.95, 7.90, 8.78, and 4.12. 

The RMSE for the testing set was 29.01, 26.43, 15.00, 

11.04, and 6.41, respectively, for the same. Results show 

that MARS is the fittest model in terms of minimizing 

RMSE values, with a value of nearly 42% below the 

second-best model (ANN). The methods of Schultze and 

Sherif (1973), and Meyerhof (1974) achieved the largest 

RMSE values, returning values more than three times 

greater than the GA-MARS model. The same trend applied 

to MAE values. Moreover, in terms of coefficient of 

determination (R2) performance, the MARS model attained 

results that were very close to 1 for the testing set (0.954), 

while the values are given by Eq. (1), and Eq. (2) and (3) 

were tiny of 0.1 and 0.443, respectively. These 

performances prove the proposed model was well-trained 

for estimating settlement of shallow foundations. 

Furthermore, Table 7 shows the predictive performance 

for the testing set of all considered methods in terms of the 

ratio of the measured settlement to the predicted settlement. 

For visualization, this comparison is also depicted in Fig. 

14. Almost samples in testing set can be shown to have a 

variance below ±20% (points within the two dotted lines) 

demonstrating the predictability of GA-MARS is superior 

to the others. 

 

 

6. Numerical example 
 

A numerical is provided to better explain clearly the 

implementation of Eq. (26). A square foundation whose 

dimension is 14.5 × 14.5 m to be constructed overlayer of 

sand. Given Df = 1 m; the average SPT blow count is 

generally increasing with depth and its value in the depth of 

stress influence = 6. The net applied load on the foundation 

qnet is 100 kPa. 

Solution 

From given information, Df /B = 0.5, using Eq. (23) with 

11 basis function given in Table 4: 

◦ 𝐵1(𝑥) = max(0,4 − 𝐵) = max(0,4 − 14.5) = 0, 𝑐𝑚
1

= 3.760 

◦ 𝐵2(𝑥) = max(0, 𝐵 − 4) = max(0,14.5 − 4) = 10.5, 𝑐𝑚
2

= 0.286 

◦ 𝐵3(𝑥) = max(0,12 − 𝑁𝑐) = max(0,12 − 6) = 6, 𝑐𝑚
3

= 3.642 

◦ 𝐵4(𝑥) = 𝑞𝑛𝑒𝑡 × max(0,12 − 𝑁𝑐) = 100 × max(0,12 − 6)
= 600, 𝑐𝑚

4 = 0.028 

Table 8 Comparison between the measured settlement of filed tests and predicted settlement 

Experiment No. 
Variable Method 

N B L/B Df/B qnet Measured 
Eq. 

(1) 

Eq. 

(2)-(3) 

Eq. 

(4)-(8) 

Shahin et al. 

(2002) 
This study 

1 130 1.82 1.0 0.55 171 1.27 17.01 5.15 9.05 19.75 1.21 

2 13 3.0 1.0 0.55 400 11.94 37.17 14.29 24.07 40.63 11.15 

3 25 13.1 1.82 0.23 47.6 3.6 2.39 3.57 4.82 8.12 3.54 

4 18 14.0 1.61 0.18 18.3 4.2 1.24 2.00 2.79 13.55 4.98 
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◦ 𝐵5(𝑥) = max(0, 𝐵 − 4) × max (0,116.8 − 𝑞𝑛𝑒𝑡)
= max(14.5 − 4) × max(0,116.8 − 100)
= 176.4, 𝑐𝑚

5 = −0.025 

◦ 𝐵6(𝑥) = max(0,4 − 𝐵) × max (0, 𝑁𝑐 − 18)
= max(4 − 14.5)
× max(0,6 − 18) = 0 , 𝑐𝑚

6 = −2.772 

◦ 𝐵7(𝑥) = max(0,4 − 𝐵) × max (0, 18 − 𝑁𝑐)
= max(4 − 14.5)
× max(0,18 − 6) = 0 , 𝑐𝑚

7 = −1.652 

◦ 𝐵8(𝑥) = max(0,4 − 𝐵) × max (0, 𝑁𝑐 − 20)
= max(4 − 14.5)
× max(0,6 − 20) = 0 , 𝑐𝑚

8 = −2.734 

◦ 𝐵9(𝑥) = max(0, 𝐵 − 4) × max (0, 24 − 𝑁𝑐)
= max(14.5 − 4)
× max(0,24 − 6) = 189 , 𝑐𝑚

9 = 0.151 

◦ 𝐵10(𝑥) = max(0, 𝐵 − 4) × max (0, 0.13 − 𝐷𝑓 𝐵⁄ )

= max(14.5 − 4)
× max(0,0.13 − 0.07) = 0.63 , 𝑐𝑚

10

= −8.211 

Therefore, the settlement of given foundation can be 

predicted as: 

𝑆𝑐 = 10.682 + 0.286 × 𝐵2(𝑥) + 3.642 × 𝐵3(𝑥) + 0.028
× 𝐵4(𝑥) − 0.025 × 𝐵5(𝑥) + 0.151
× 𝐵9(𝑥) + 8.211 × 𝐵10(𝑥) 

𝑆𝑐 = 10.682 + 0.286 × 10.5 + 3.642 × 6 + 0.028 × 600
− 0.025 × 176.4 + 0.151 × 189
+ 8.211 × 0.63 

𝑆𝑐 = 81.6 mm 

The calculated settlement can be acceptable with an 

error of only 10.3% compared to the measured settlement of 

74 mm, which was reported by Burland and Burbidge 

(1985). 

To demonstrate the predictability of the proposed 

MARS model, four field tests were selected for verification 

of Eq. (23) by estimating and comparing settlement of 

shallow foundation. The two of 3×3 m (Exp No. 1) and 

1.82×1.82 (Exp No. 2) m footings were implemented at 

Riverside Campus of A & M Texas University by Briaud 

and Gibbens (1994), and Anderson et al. (2007), 

respectively. Two underlain shallow foundations of two 

buildings (D2 and E1 – Exp No.3 and 4) located in Mascali, 

Italy were examined by Maugeri et al. (1998). Table 8 gives 

a comparison between the measured settlements from these 

field tests with the predicted settlements. It is evident that 

this study’s proposed equation provides the best accurate 

results compared to other methods. The results of this study 

compared to those of tests performed good predictability for 

experiment No.1 to 4 with a small error of 5.1, 6.6, 1.6, and 

18.5%, respectively. 

 

 

7. Conclusions 
 

This study aimed to propose a novel model with an 

explicit formulation for predicting settlement of shallow 

foundations on sandy soils. This study combined a GA 

algorithm with MARS to develop a new hybrid model GA-

MARS. Further, a new prediction equation was derived for 

practical calculations. In order to propose the model, a 

database containing 180 shallow foundation tests with a 

total of five input variables was collected. Based on the 

discussion above and comparisons of the proposed model 

with available methods, some conclusions can be given, as 

follow: 

• It was found that the MARS model can be efficiently 

utilized to develop an empirical formulation for predicting 

the settlement of shallow foundations on sandy soils using 

standard penetration tests. Moreover, the derived 

formulation can be employed as a handy prediction tool 

with satisfactory predictability. However, since its 

expression is rather cumbersome and complex, it is better to 

transfer this model to a computer to save time and minimize 

errors. 

• Constructing a MARS model with various parameter 

choices is a complicated and challenging process. The three 

most important parameters must be considered, including 

the maximum basis function (max terms) Mmax, maximum 

interaction Imax, and penalty value d. To obtain the optimal 

model, a hybrid model should be used for finding the best 

combination of parameters. This paper illustrated that GA 

could perform successfully for determining optima value in 

a high dimensional search space.  

• The GA-MARS model is able to provide the relative 

importance of the input variables based on ANOVA 

decomposition. Among five-input variables, the two most 

significant variables were the bread of foundation (B) and 

the blow count of SPT (Nc). Conversely, the least important 

variable was the length to width (L/B), which was removed 

through ANOVA decomposition. 

• To assess the relative performance of the GA-MARS 

model in predicting settlement, this study compared MARS 

against three traditional methods and another artificial 

intelligent technique – ANN. Results illustrated that the 

GA-MARS has superior predictability providing a 

measured-to-predicted value ratio of close to 1 as well as 

very low values of MAE and RMSE. 

• It should be noted that since the developed GA-MARS 

model predicts based on the knot values and the basis 

function, thus interpolation between the knots of input 

variables are more accurate and reliable than extrapolations. 

Moreover, the range of applicability of the MARS’ derived 

equation is constrained by the data used in the model. 

Consequently, for cases in which the input variable values 

are beyond this range, the proposed GA-MARS model 

should be used with caution. To update the model and make 

it more robust in the future, it would be desirable to increase 

the number of data samples so that the model can be re-

trained. 
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