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1. Introduction 
 

Piles have been used extensively to stabilise potentially 

unstable soil slopes or to increase the stability of slopes. 

Some successful cases of slope stabilisation using piles 

have been reported by Ito and Matsui (1975), Poulos 

(1995), Smethurst and Powrie (2007), Yu et al. (2014) and 

Zhou et al. (2014). One of the performance criteria in the 

design of pile-slope system is that the factor of safety (FS) 

of the system should be more than a specified target factor 

of safety (FSt). The limit equilibrium (LE) methods have 

been widely used for the computation of the FS of the pile-

slope system by modifying the LE equations to incorporate 

the resistance offered by the piles. The approach of Ito and 

Matsui (1975) has been used extensively to compute the 

resistance provided by the piles (Ito and Matsui 1981, 

Hassiotis et al. 1997, Shin et al. 2006, Li et al. 2015). An 

extension of the Ito and Matsui (1975) approach was 

proposed by He et al. (2015) considering the soil arching 

between two neighbouring piles. The LE methods have also 

been used by Lee et al. (1995) and Poulos (1995), wherein  

the pile response was analysed based on boundary element 

method. Another approach that has been in use to analyse  
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the stability of pile-slope systems is the limit analysis 

method (Ausilio et al. 2001, Nian et al. 2008, Li et al. 2012, 

Xu et al. 2018). The location of the slip circle has to be 

assumed usually in all these approaches. Moreover, the 

stability analysis of the slope and analysis of the pile 

response are uncoupled in the LE and limit analysis 

methods. Both the pile response and stability of the slope 

are analysed simultaneously using the numerical methods 

like the finite element method (FEM) or finite difference 

method (FDM). The continuum-based numerical 

approaches are also attractive as they can explicitly take 

into account the material nonlinearity, the variation in 

stiffness of both the pile and the soil and the soil 

stratigraphy (Ni et al. 2018c). The FS of the pile-slope 

system is computed using the strength reduction method 

(SRM) when numerical analyses are used. The FEM (Cai 

and Ugai 2000, Ho 2015, 2017) and FDM (Won et al. 2005, 

Wei and Cheng 2009, Ellis et al. 2010, Li et al. 2011) based 

analyses are increasingly being used to evaluate the stability 

of pile-slope systems. 

The methods of analysis mentioned above are all 

deterministic and do not consider the uncertainties 

associated with the soil and pile parameters involved in the 

stability of pile-slope systems. The reliability or probability 

of failure (Pf) of systems varies with the variation in the 

degree of uncertainties involved in the analysis (Zhang et 

al. 2017). It is noted from Ruiz (1984) that the reliability of 

piles subjected to random static lateral loads designed in 

accordance with the accepted regulations vary across 
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different sites and is also not uniform. Notwithstanding the 

degree of the uncertainties and the effects thereof on the 

performance of the system, the reliability of slopes 

stabilised with piles has not been rigorously studied, except 

by Li and Liang (2014) and Zhang et al. (2017). Li and 

Liang (2014) modified the LE method to incorporate a load 

transfer factor as a measure of the arching between the 

piles. The load transfer factor as proposed by Joorabchi 

(2011) is used. This formed the deterministic model for the 

study which was coded into a computer program 

UASLOPE. Monte Carlo simulation (MCS) technique is 

used to compute the Pf. Zhang et al. (2017) used the 

modified form of the simplified Bishop method to 

incorporate the restoring moment offered by the piles to 

assess the FS of the pile-slope system. The resistance 

offered by the pile is computed based on the Ito and Matsui 

(1975) approach. The reliability analyses are carried out by 

approximating the implicit performance function for the FS 

of the system using the response surface method (RSM). 

The Pf is computed using the MCS technique. Both these 

studies use the LE methods as deterministic models 

combined with the MCS as the basis for the reliability 

analysis. Though the MCS technique has been used 

extensively in geotechnical and structural engineering 

(GuhaRay and Baidya 2014, Mangalathu et al. 2018, Ni et 

al. 2018a, Yang and Liu 2018, Ni et al. 2020), its use is 

computationally costlier, especially when the coupled 

analysis of the three-dimensional (3D) systems are 

performed using the FEM or FDM. The first-order 

reliability method (FORM) based on the Hasofer-Lind (H-

L) approach (Hasofer and Lind 1974) is an effective 

alternative to the MCS technique. The H-L method is 

widely used in the reliability analysis of geotechnical and 

structural problems (Babu and Singh 2010, Sayed et al. 

2010, Mandali et al. 2011, Yang and Li 2017). However, its 

application to the reliability analysis of pile-slope systems 

has not been explored effectively in the literature. 

In the present study, the FEM is used as the 

deterministic model considering the coupled behaviour of 

the pile-slope system into the reliability analyses. This 

avoids the need for assuming the potential slip surfaces in 

advance and searching for the critical slip surface. The 

prospect of using FORM based on the H-L approach is 

investigated in this study. The performance function for the 

FS of the system is approximated using the RSM which is 

an efficient approach to approximate the implicit 

performance functions and has been used in the reliability 

analysis of geotechnical systems (Chan and Low 2012, Li et 

al. 2016, Hamrouni et al. 2018, Zhu and Yang 2018, Zhang 

et al. 2020). The face-centered cube design (FCD) as well 

as the 2k factorial design augmented with a centre run are 

used to generate the data required for approximating the 

performance function. The order of the polynomial model 

used to approximate the performance function is decided 

based on suitable hypothesis tests on regression coefficients 

as well as the assessment of the model summary statistics. 

The results of the H-L method are compared with the results 

of the MCS technique implemented using the developed 

performance function. 

 

2. Numerical analysis of the pile-slope system 
 

The 3D finite element (FE) analysis of the pile-slope 

system is performed using the FE program, ABAQUS. The 

Mohr-Coulomb plasticity model is used in the analysis for 

modelling the stress-strain behaviour of the soil, wherein 

the elastic part of the response is modelled using linear 

elasticity and the plastic part of the response is modelled 

using the Mohr-Coulomb failure criterion. The pile is 

modelled using the linear elastic model. The 8-node linear 

brick, reduced integration elements with hourglass control 

(C3D8R) are used for meshing the soil as well as the pile. 

The C3D8R is a very popular element used for the 

modelling of pile-soil systems (Ho 2015, Ho 2017, Ni et al. 

2017). Fixed boundary conditions are applied at the base of 

the model. The coordinate system used in the present study 

is shown in Fig. 1. Vertical rollers are used as the boundary 

condition for the sides of the model, formed by the x-

planes. The displacements in the y-direction are restrained 

on the boundaries corresponding to the y-planes. The 

analyses are carried out considering only free-head piles. 

The FS of the system is computed using SRM. 

The SRM works by gradually reducing the shear 

strength parameters, cohesion (c) and angle of internal 

friction (ϕ) of the soil by the strength reduction factor (SRF) 

until the pile-slope system fails. At the ith value of the SRF 

(Fi), the values of cohesion (ci) and angle of internal friction 

(ϕi) of the soil used in the analysis are expressed as 

i
i

i

c
c

F

tan
tan

F








 

(1) 

The FS of the pile-slope system is the value of the SRF 

at failure. Failure of the slope is defined by the non-

convergence of the FE solution and the occurrence of 

significant increase in the nodal displacements within the 

FE mesh (Zienkiewicz et al. 1975, Ni et al. 2016, Tu et al. 

2016, Ni et al. 2018b). 

 

2.1 Validation of the numerical model 
 

The accuracy of the FE model in predicting the FS of 

slopes using SRM is verified by analysing two slopes 

studied by Griffiths and Lane (1999), viz. a homogenous 

slope (Slope 1) and a non-homogenous clayey slope with a 

weak thin layer (Slope 2). These two slope problems are 

analysed using ABAQUS in the present study. The results 

thus obtained are compared with those reported by Griffiths 

and Lane (1999). Further, the results of FE modelling of the 

soil-pile interaction are validated using the field results of 

the slope stabilised with piles reported by Carrubba et al. 

(1989).  

Griffiths and Lane (1999) analysed the stability of the 

homogenous slope with an inclination of 26.57˚. The 

geometry of the slope is shown in Fig. 1. The soil properties 

of the slope are selected to satisfy c’/γH = 0.05, where c’ is 

the effective cohesion and γ is the unit weight of the soil. 

Ho (2014) performed the two-dimensional (2D) and 3D FE  
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Fig. 1 Geometry of Slope 1 (Griffiths and Lane 1999) 

 

Table 1 Soil properties of Slope 1 

Unit weight, γs 
(kN/m3) 

Young’s 

modulus, Es 

(MN/m2) 

Poisson’s 
ratio, νs 

Cohesion, c’ 
(kN/m2) 

Friction angle, 
ϕ’ (˚) 

20 100 0.3 40 20 

 

 

Fig. 2 Displacement versus SRF for Slope 1 

 

Table 2 Comparison of FS of Slope 1 

Method ABAQUS 3D 
Griffiths and 
Lane (1999) 

Bishop 
Morgenstern-

Price 

FS 1.380 1.400 1.378 1.376 

 

 

Fig. 3 Geometry of Slope 2 (Griffiths and Lane 1999) 

 

Table 3 Soil properties of Slope 2 

Unit weight, γs 

(kN/m3) 

Young’s 
modulus, Es 

(MN/m2) 

Poisson’s 

ratio, νs 

Cohesion, cu1    

(kN/m2) 

Friction angle, 
ϕ          

(˚) 

20 100 0.4 100 0.001 

 

 

analyses of this slope considering 40 m height of the slope  

 

Fig. 4 FS versus cu2 / cu1 for Slope 2 

 

 

(H). The corresponding soil properties are given in Table 1. 

The 3D FE analysis of the slope is carried out using 

ABAQUS in this study considering the width of the slope 

(dimension in the y direction) as 10 m. The plot of 

displacement versus the SRF is shown in Fig. 2. The FS of 

the slope is also computed by Bishop and Morgenstern-

Price methods using SLOPE/W program. The results 

corresponding to the above are given in Table 2. It is 

observed that the FS obtained in the study is slightly lower 

than the FS reported by Griffiths and Lane (1999). However 

the results are in good agreement with those of the LE 

methods. 

Another example of the non-homogenous slope 

consisting of clayey soil with a weak thin layer was also 

presented by Griffiths and Lane (1999). The geometry of 

the slope is depicted in Fig. 3. The values of FS were 

reported for a range of values of the undrained shear 

strength of the weak layer (cu2) while maintaining the 

strength of the remaining soil as cu1 /γH = 0.25. In the 

present study, this slope is analysed using ABAQUS 

considering a height (H) of 20 m for the slope and a width 

of 10 m. The soil properties as suggested by Griffiths and 

Lane (1999) are used in the present study and are given in 

Table 3. A small value of 0.001° for friction angle has been 

adopted to avoid numerical instability of the mesh. 

The slope is analysed for different strength ratios (cu2 / 

cu1) viz. 0.2, 0.3, 0.4, 0.5, 0.6, 0.8 and 1.0. The results of the 

analysis are shown in Fig. 4. The results are found to be in 

good agreement with those of Griffiths and Lane (1999). 

The validity of the FE model in simulating the soil-pile 

interaction is assessed by analysing a case study reported by 

Carrubba et al. (1989). Chen and Poulos (1997) and Guo 

and Ghee (2004) have reproduced the results of the well 

instrumented full scale field test of Carrubba et al. (1989) 

on a reinforced concrete pile used to stabilise the sliding 

slope. The test pile had a length of 22 m and was 1.2 m in 

diameter. The sliding surface was at a depth of 9.5 m from 

the ground surface with a transition layer of 2 m width. The 

undrained shear strength of the soil was estimated to be 30 

kPa for both the sliding soil and the stable soil. The values 

of the other parameters for the soil and the pile are as 

follows: 

• The Young’s modulus of the soil, Es is taken as 15 

MPa, uniform over the depth. 
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Table 4 Soil properties of the pile stabilised slope-system 

Unit weight, γs 

(kN/m3) 

Young’s 
modulus, Es 

(MN/m2) 

Poisson’s 

ratio, νs 

Cohesion, c 

(kN/m2) 

Friction angle, 

ϕ (˚) 

18 100 0.33 30 15 

 

 

Fig. 6 Geometry of the pile stabilised slope 

 

 

Fig. 7 FE mesh of the pile stabilised slope 

 

 

• The Young’s modulus of the pile, Ec is taken as 20,000 

MPa. 

• The soil movement profile is considered uniform from 

the ground surface to the surface of the transition layer with 

a displacement of 95 mm. 

 

 

Fig. 8 Variation of FS with S/D ratio 

 

 

Fig. 9 Effect of location of row of piles on FS 
 

 

In the present study, the above pile-slope system is 

modelled using ABAQUS for the purpose of validation of 

the FE model. A lateral extent of 10 pile diameters, 

measured from the centre of the pile is sufficient for 

limiting the influence of the boundary (McGann et al. 

2012). Hence a domain of 25 m × 25 m is used and 

discretised for the FE analysis. The ABAQUS results are 

presented in Fig. 5, together with the measured values 

(Carrubba et al. 1989). The bending moment and shear 

force profiles are in good agreement with the measured 

values. 

  
(a) Bending moment along the pile (b) Shear force along the pile 

Fig. 5 Results of ABAQUS and measured pile response 
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2.2 Stability analysis of a pile stabilised slope 
 

In the present study, the FE based stability analysis of a 

pile stabilised homogenous soil slope-system is carried out.  

Non-homogenous slopes are not considered in the 

present study to avoid modelling complications and to 

reduce the computational effort required for the subsequent 

computationally costly reliability analyses. The slope is 

underlain by a hard stratum to ensure that only the slope 

failure should take place. The geometry of the slope is 

shown in Fig. 6. The height of the soil slope is 20 m and the 

inclination of the slope is 25˚ to the horizontal. The material 

properties of the slope are given in Table 4. The Young’s 

modulus and Poisson’s ratio of the hard stratum are taken as 

50 GPa and 0.2 respectively. A row of reinforced concrete 

piles with a pile diameter (D) of 1.2 m is used in the 

analysis. The Young’s modulus of the piles (Ec) is 31 GPa 

and the Poisson’s ratio (νc) is 0.2. The analyses are carried 

out for different locations of the row of piles, denoted by 

the dimensionless ratio Xp/X, where Xp is the horizontal 

distance between the row of piles and the toe of the slope 

and X is the horizontal distance between the crest and toe of 

the slope. The Xp/X values of 0.25, 0.50, and 0.75 are 

considered in the study. The piles are embedded into the 

hard stratum for a length of 3.6 m (i.e., 3D) for all the 

locations of the row of piles. The length of the piles, 

consequently, depends on the location of the piles along the 

slope. The stability analyses are performed for different 

spacing of the piles in the row, denoted by S/D, where S is 

the centre-to-centre distance between the piles in the row. 

The S/D ratio of 3.0, 4.5 and 6.0 are considered in the 

analysis. The soil is modelled using Mohr-Coulomb 

plasticity model whereas the pile and hard stratum are 

modelled using linear elastic behaviour. The FE mesh of the 

pile-slope system is discretised using C3D8R elements as 

depicted in Fig. 7. 

The influence of spacing of piles in the row on the FS of 

the slope is shown in Fig. 8. It is evident that the FS of the 

pile-slope system increases with decrease in the pile spacing 

for all the pile locations. It is also found that the rate of 

increase in the FS increases with the decrease in the pile 

spacing. These observations are consistent with the findings 

of Cai and Ugai (2000), Won et al. (2005), Ho (2015) and 

Ho (2017). This can be attributed to the fact that the number 

of piles in the row increases with decrease in the spacing of 

piles, leading to higher resistance being offered per unit 

width of the slope to the sliding mass. 
The variation of FS with location of the row of piles 

from the toe of the slope is shown in Fig. 9. It is observed 
that the row of piles should be located at the middle portion 
of the slope (Xp/X = 0.5) to obtain the maximum FS for the 
pile-slope system. This is also consistent with the results of 
Cai and Ugai (2000), Won et al. (2005), Ho (2015) and Ho 
(2017). The unsupported slope length is minimum when the 
piles are placed at the middle of the slope compared to the 
cases where the piles are placed either near the toe or crest 
of the slope. 
 

 

3. Sensitivity analysis 
 

It is important to conduct a screening experiment to  

Table 5 COV of the variables considered in the study 

Factor 
COV 

(%) 
Factor 

COV 

(%) 

Unit weight of soil (γs)
* 9 Unit weight of pile (γc)

# 5 

Young’s modulus of soil (Es)
* 15 Young’s modulus of pile (Ec)

 § 5 

Poisson’s ratio of soil (νs)
† 15 Poisson’s ratio of pile (νc)

† 5 

Cohesion of Soil (c)* 20   

Friction angle of soil (ϕ)* 10   

*Phoon and Kulhawy (1999), #Mandali et al. (2011)       

§Lee et al. (2017); †subjectively chosen 
 

 

Fig. 10 Spider plot of the sensitivity analysis 
 

 

understand the sensitivity of the FS of the pile-slope system 

to the uncertainties of the different parameters or factors 

involved in the stability of the pile-slope system. Such an 

experiment, also known as sensitivity analysis, helps in 

identifying the factors, the uncertainties of which may 

render the deterministic analysis of FS erratic. These factors 

need to be considered as random parameters and should be 

included in the reliability analysis of the pile-slope system. 

This also helps in reducing the number of factors to be 

considered as random variables in the reliability analysis 

and thereby reducing the number of ABAQUS runs, 

resulting in a more efficient reliability analysis. Owing to 

the simplicity, the ‘One at a Time’ method (Hamby 1994) is 

adopted in the present study. In the ‘One at a Time’ method, 

each of the factors have three factorial levels, the low level 

denoted by ‘-1’, the centre point denoted by ‘0’ and the high 

level denoted by ‘+1’. The factors are varied successively, 

one at a time, between the respective factorial levels, 

keeping the other factors at their centre points and the 

response of the system is evaluated. In the study, the mean 

value (µ) of the factors is considered as the centre point. 

The high level and the low level of the factors are 

considered as µ + 1.65 σ and µ - 1.65 σ respectively, where 

σ is the standard deviation of the respective parameter. 

These levels are based on the assumption that all the factors 

follow normal probability distribution. Hence, the high 

level has only 5% probability of being exceeded and the 

low level has 95% probability of being exceeded. This 

range, therefore takes into account 90% of the uncertainties 

associated with the factors. 

The sensitivity analysis for FS of the pile-slope system 

is carried out for the particular case of Xp/X = 0.5 and S/D 
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= 3. The stability of the pile-slope system is analysed using 

ABAQUS for each of the combinations of the ‘One at a 

Time’ design matrix. Table 5 gives the list of different 

factors considered in the study, along with their respective 

coefficient of variation (COV). The geometric parameters 

related to the piles such as the diameter and length, pile 

spacing and location of the piles along the slope are 

considered as deterministic. A better in-situ quality control 

during construction ensures the uncertainties in these 

geometric parameters negligible and hence these parameters 

are treated as deterministic. 

A simple and efficient graphic form to present and 

interpret the results of a sensitivity analysis is the spider 

plot (Eschenbach 1992, Loucks and Beek 2017). The spider 

plot facilitates the illustration of the effect of uncertainty of 

each factor on the FS on the same graph. This necessitates 

the use of a common metric as abscissa to represent the 

various factorial levels. The use of percent change from the 

mean values is a convenient metric and hence the same is 

used in the study. The results of the sensitivity analysis are 

presented as a spider plot in Fig. 10. It is observed from the 

spider plot that the FS of the pile-slope system is not 

sensitive to the uncertainties of the Young’s modulus and 

Poisson’s ratio of both the soil and pile as well as the unit 

weight of the pile. Therefore, only the unit weight, cohesion 

and angle of internal friction of the soil are considered as 

random variables in the reliability analyses. 
 

 

4. Reliability analysis 
 

Reliability of an engineered system is defined as the 

probability that the system satisfies the specified 

performance criterion. Probability of the complementary 

event in which the system does not meet the specified 

criterion is termed as the probability of failure. Failure can 

be mathematically expressed as 

0g R Q  
 (2) 

where R is the resistance or capacity offered by the system 

to meet the performance criterion and Q is the demand or 

load on the system. The performance function g is a 

function of several load and resistance variables and is 

expressed as 

1 2( , ,..., ) ( )kg X X X g X
 (3) 

where X is the k-dimensional vector of random variables X1, 

X2, ..., Xk, which involve the different load and resistance 

variables. The function g = 0 defines the limit state, which 

is the boundary between the safe domain (g > 0) and the 

failure domain (g < 0). The Pf is expressed in terms of the 

performance function as 

[ ( ) 0]fP P g X 
 

(4) 

If the variables R and Q are correlated, the Pf can be 

determined by the computation of the following integral: 

( , )

( ) 0
RQf r q dqdr

g X

P f



 
 

(5) 

 

Fig. 11 Performance space in reduced coordinates 

 

 

where fRQ is the joint probability density function of R and 

Q. If R and Q are statistically independent, marginal 

probability density functions of R and Q are used in Eq. (5) 

instead of fRQ. It is often very difficult to evaluate the 

multiple integral in Eq. (5) and hence analytical solutions 

are used to compute the Pf. A commonly used analytical 

method is the H-L method. The Pf can also be evaluated 

using simulation techniques like the MCS. 

 

4.1 Hasofer-Lind (H-L) method 
 

The H-L method is applicable only to uncorrelated 

normal random variables. The method involves the 

transformation of all the random variables (Xi) in X into a 

reduced form (Zi) defined as 

( 1,2,..., )i

i

i X
i

X

X
Z i k






 

 

(6) 

where 
iX and 

iX are the mean and standard deviation of 

the random variable Xi. The reduced variables have zero 

mean and unit standard deviation. The Zi coordinate system 

is called as the reduced coordinate system. The H-L 

reliability index (βHL) is defined as the minimum distance 

from the origin of the reduced coordinate system to the limit 

state function defined by g(Z) = 0 as depicted in Fig. 11. 

Here Z is the k-dimensional vector of the reduced form of 

the random variables. The point which is at the minimum 

distance from the origin of the reduced coordinate system is 

called the design point (Z*). The distance from the origin of 

the reduced variable space to any point on the limit state 

function is 

2 2 2
1 2 ... T

kD Z Z Z Z Z    
 

(7) 

Determination of the minimum value of D which is the 

value of βHL can now be treated as a constrained 

minimisation problem with the constraint being g(Z) = 0, 

where g(Z) is the performance function in the reduced 

coordinate system. The solution of this optimisation 

problem is sought by using the Lagrangian multiplier 

method. The Lagrangian is defined as 

( ) ( )TL D g Z Z Z g Z    
 

(8) 
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where λ is the Lagrangian multiplier. At the design point, λ 

is zero and hence the minimum of L and D is the same. At 

the minima of L, the partial derivatives of L with respect to 

the random variables must be zero. This leads to the 

following: 

T

T T

DG G Z
Z , D

G G G G

  

 

(9) 

where G is the gradient of g(Z). The minimum value of D 

with the constraint that g(Z) = 0 corresponds to βHL which is 

expressed in the form: 

*T *

HL
*T *

G Z

G G

 

 

(10) 

where G* is the value of G computed at the design point. At 

the outset of the evaluation of βHL, location of the design 

point is not known and the process proceeds in an iterative 

manner. The G is normalised into a unit vector α as follows: 

T

G

G G

 

 

(11) 

Then the coordinates of the design point are expressed 

as 

* *
i HLZ   

 
(12) 

Nowak and Collins (2013) described an algorithm for 

the evaluation of βHL, called the matrix procedure. It 

involves the following steps: 

• Formulating the limit state function as a function of X. 

• Obtaining an initial design point {xi
*} by assuming 

values for k - 1 of the random variables and then solving 

g(X) = 0 for the remaining random variable.  

• Determining the reduced variables Z* for the design 

point {xi
*}. 

• Determining the values of G. 

• Calculating estimates of βHL and α. 

• The new design point in the reduced variable space is 

then computed for k - 1 of the variables using Zi
* = -αiβHL. 

• The corresponding k - 1 values of the design point are 

calculated in original coordinates. The value of the 

remaining random variable is then computed by solving 

g(X) = 0. 

• Steps 3 to 6 are repeated until βHL and {xi
*} converge. 

It can be observed from the above that the computation 

of βHL needs an explicitly stated limit state function. But in 

the case of numerical analyses like FE analyses, such 

explicit limit state functions are not available. This 

necessitates the approximation of the limit state function. 

The RSM is one such approach of learning from data to 

approximate the limit state function. 
 

4.2 Response surface method 
 

Quite often than not, it becomes necessary to 

approximate the limit state function because it is difficult to 

derive a closed form solution for the same. In such cases, a 

convenient approach is to learn from data comprising of 

observations of the response of the system ‘g’ to a set of 

combinations of possible realisations of the factors affecting 

the said response. In general, the objective then is to arrive 

at a mapping from the input vector X to the response g, 

when N pairs of data {xi ,gi} are available, where i = 1, 2, . . 

., N and x denotes a particular realisation of X. The set of N 

realisations of X can be denoted in the matrix form as X 

which is therefore a N × k matrix and the observations on 

‘g’ constitute a N dimensional vector g. An approximation 

of the relationship between g and X can then be expressed 

as 

( )g f X  
 (13) 

where ε is the statistical error that represents sources of 

uncertainty not included in f. Multiple linear regression 

using a suitable method can be used to develop a 

satisfactory model for Eq. (13). Polynomial regression has 

been extensively used in the past for reliability analysis of 

slopes using the RSM (Ji and Low 2012, Zhang et al. 2013, 

Zhang et al. 2017). In particular, the widely used second-

order polynomial model (Myers et al. 2009) is given below: 

2
0

1 1

k k

j j jj j
j j

g X X   
 

    
 

(14) 

The β’s are called the partial regression coefficients and 

are the unknown parameters of the regression model. 
 

4.2.1 Design of experiments 
The use of a second-order polynomial model for the 

approximation of the limit state function requires the 

experimental design to have the following properties 

(Myers et al. 2009): 

• At least three levels of values are taken for each of the 

factors considered.  

• The number of unique design points is at least 1 + 2k + 

k(k - 1)/ 2.  

A very important factorial design is where each of the k 

factors have two levels: the high level, denoted by ‘+1’ and 

the low level denoted by ‘-1’. Such a design, called the 2k 

factorial design is often used to fit first-order polynomial 

models and necessitates 2k simulation runs. The 

combinations of the factorial levels for the simulation runs 

lie at the corner points of a k-dimensional hypercube 

centred on the combination of the centre points of all the 

factors. The design matrix of the 2k factorial design with 

three factors X1, X2 and X3 correspond to the runs 1-8 as 

given in Table 6.  

The family of central composite designs (CCD’s) is the 

most commonly used experimental designs to fit second-

order polynomials (Myers et al. 2009). The experimental 

design in CCD’s consists of: (i) The 2 k factorial 

combinations in the 2k factorial design at the levels ±1, (ii) 

2k axial runs at levels ± α which is a one factor at a time 

array and (iii) the centre runs at the central levels of the 

factors denoted by ‘0’. Hence, the factors have five levels, 

viz. 0, ±1 and ± α. A particular case of the CCD is the FCD 

where α = 1. In this case, the factors have only three levels, 

which are 0 and ± 1. The combinations of the FCD lie at the 

corners as well as the centre of each of the faces of a k-

dimensional hypercube which is centred on the combination 

of the centre points of all the factors (i.e., variables). The  
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Table 6 Design matrix for FCD 

Run 
Factor 

Remarks 
X1 X2 X3 

1 +1 +1 +1 

The runs 1-8 correspond to the 
design matrix of the 2k factorial 

design. 

2 +1 +1 -1 

3 +1 -1 +1 

4 +1 -1 -1 

5 -1 +1 +1 

6 -1 +1 -1 

7 -1 -1 +1 

8 -1 -1 -1 

9 +1 0 0 

The runs 9-14 correspond to the 2k 
axial runs with α = 1. 

10 -1 0 0 

11 0 +1 0 

12 0 -1 0 

13 0 0 +1 

14 0 0 -1 

15 0 0 0 The centre run 

 
 

design matrix of the FCD with three factors X1, X2 and X3 is 

also given in Table 6.  
 

4.2.2 Multiple linear regression 
The method of least squares is often used to estimate the 

β’s and is adopted in the present study. The coefficient of 

multiple determination (R2), adjusted R2 (R2
adj), R2 for 

prediction (R2
pred) and the mean square error (MSE) are 

some of the criteria for evaluating the regression model. In 

addition, the adequacy of the model is checked by ensuring 

that the residuals follow a normal distribution, thereby 

satisfying the normality assumption of linear regression. 

The Kolmogorov-Smirnov (K-S) test (Kolmogorov 1933, 

Smirnov 1939) is used for this purpose. 
 

4.3 Monte carlo simulation (MCS) technique 
 

In the present study, the MCS technique is also applied 

on the g(X) approximated using the RSM to verify the 

accuracy of the H-L method. The MCS technique samples 

each of the random variables in the problem multiple times, 

according to the corresponding probabilistic characteristics. 

Each of these realisations of the random variables are then 

treated as separate realisations of the pile-slope system and 

the response of the system, g(X), for each of these 

realisations is evaluated. If n number of such realisations 

are simulated, and ‘nf’ events are observed with g(X) < 0, 

then the Pf can be computed as 

f
f

n
P

n


 
(15) 

provided n is sufficiently large. 
 

 

5. Results and discussion 
 

The results of sensitivity analysis (Fig. 10) show that the  

Table 7 Summary of fit for multiple linear regression 

Xp/X S/D Model R2 
2
adjR

 

2
predR

 
MSE 

0.25 

3.0 
FOP 0.9811 0.9759 0.9567 0.0020 

SOP 0.9813 0.9672 0.9382 0.0027 

4.5 
FOP 0.9680 0.9593 0.9224 0.0030 

SOP 0.9682 0.9443 0.9023 0.0040 

 

6.0 

 

FOP 0.9697 0.9615 0.9300 0.0025 

SOP 0.9729 0.9526 0.9123 0.0031 

0.50 

3.0 
FOP 0.9831 0.9785 0.9705 0.0031 

SOP 0.9903 0.9830 0.9628 0.0024 

4.5 
FOP 0.9922 0.9900 0.9827 0.0011 

SOP 0.9937 0.9890 0.9790 0.0012 

 
6.0 

 

FOP 0.9869 0.9833 0.9704 0.0017 

SOP 0.9883 0.9795 0.9620 0.0020 

0.75 

3.0 
FOP 0.9647 0.9550 0.9338 0.0047 

SOP 0.9687 0.9453 0.8773 0.0058 

4.5 
FOP 0.9836 0.9791 0.9683 0.0017 

SOP 0.9901 0.9827 0.9684 0.0014 

 

6.0 

 

FOP 0.9739 0.9667 0.9386 0.0023 

SOP 0.9769 0.9596 0.9299 0.0028 

 

 

FS is sensitive to the uncertainties in unit weight, cohesion 

and angle of internal friction of the soil. The performance 

function for the reliability analysis is approximated using 

polynomial basis expansion of these three random variables 

only. The performance function for the pile-slope system is 

expressed as 

( ) a tg X FS FS 
 (16) 

where FSa is the evaluated FS of the pile-slope system and 

X is the 3-dimensional vector [γs, c, ϕ]. 

 

5.1 Selection of the regression model 
 

The relationship between the FS and the soil strength 

parameters can be considered to be linear (Zhang et al. 

2017). The candidate polynomial models used to 

approximate the performance functions are given as 

1. First-order polynomial (FOP) model: 

0 1 2 3( ) s tg X c FS         
 (17) 

2. Second-order polynomial (SOP) model: 

2 2 2
0 1 2 3 4 5 6( ) s s

t

g X c c

FS

                


 

(18) 

In the above models, the last term FSt is specified by the 

performance requirement and is constant. The rest of the 

terms correspond to FSa. The pile-slope system shown in 

Fig. 6 is used to perform the reliability analysis. The FCD is 

used for the design of experiments. The factorial levels 

considered for the three variables in the reliability analysis 

are the same as in the case of sensitivity analysis. The  
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Table 8 K-S test and extra sum of squares test results 

Xp/X S/D 
KS 

F0 
FOP SOP 

0.25 

3.0 0.169 0.177 0.025 

4.5 0.080 0.089 0.017 

6.0 0.131 0.153 0.323 

0.50 

3.0 0.154 0.114 2.000 

4.5 0.158 0.233 0.667 

6.0 0.115 0.218 0.333 

0.75 

3.0 0.117 0.097 0.345 

4.5 0.085 0.135 1.738 

6.0 0.068 0.132 0.345 

 

 

corresponding values of FSa are computed using ABAQUS 

for all the combinations mentioned in Table 6. The 

summary of fit for both the FOP and SOP models for all the 

combinations of pile locations and spacing is presented in 

Table 7. It is observed that the FOP model has superior 

statistics compared to the SOP model, except for the cases 

of Xp/X = 0.5 with S/D = 3.0 and Xp/X = 0.75 with S/D = 

4.5, where the statistics are marginally better for the SOP 

model. However, even in these cases, the FOP model has 

very good R2
adj values (0.9785 and 0.9791). Therefore it can 

be inferred that the FOP model is better than the SOP model 

because there is lesser unexplained variability in the first-

order approximation compared to the second-order 

approximation. 

In order to confirm the above, hypothesis test on the 

group of coefficients corresponding to the second order 

terms is performed using the ‘extra sum of squares’ method. 

The appropriate hypotheses for this test are 

0

1 4 5 6

: 0

: 0 and / or 0 and / or 0

SH

H



  



  
 

(19) 

where βS = [β4, β5, β6] are the partial regression coefficients 

corresponding to the second order terms in Eq. (18). The 

partial regression coefficients corresponding to the first 

order terms in Eq. (18) are denoted by βF. The regression 

sum of squares (SSR) due to βS, given that βF is already 

included in the model is given by 

( | ) ( ) ( )R S F R R FSS SS SS    
 (20) 

where β is the vector of partial regression coefficients of 

Eq. (18). If MSE is the mean square error of the SOP model 

and ‘r’ is the number of second order terms (in this case r = 

3), then the null hypothesis H0 can be tested by using the 

statistic: 

0

( | ) /R S FSS r
F

MSE

 


 

(21) 

The H0 is accepted if F0 < Fα,r,N-p and the second order 

terms are deemed not contributing significantly to the 

model. Here, α is the significance level, ‘N’ is the sample 

size and ‘p’ is the number of regression coefficients in the 

SOP model. In the study, the hypothesis is tested for α =  

 

Fig. 12 Comparison of H-L method and MCS 

 

 

Fig. 13 Pf versus FSt for Xp/X = 0.25 

 

 

0.05, N = 15 for the FCD with three variables, considering 

only one central run and p is 7 as in Eq. (18). The 

corresponding value of F, i.e., F0.05,3,8 is equal to 4.066. The 

results of the hypothesis tests for all the combinations of 

pile locations and spacing are presented in Table 8. It is 

observed that the null hypothesis can be accepted for all the 

cases considered. Therefore it can be stated that the SOP 

model is not having superior predictive capability over the 

FOP model. Hence the response surface is approximated 

using the FOP model in the present study for reliability 

analysis. 

 The K-S test statistic (KS) is reported in Table 8. The 

critical value of the test statistic (KSα) for a significance 

level (α) of 0.05 is 0.340 for the sample size (N) of 15. It is 

observed that KS < KSα for all the combinations of Xp/X 

and S/D ratios. The maximum value of KS observed for the 

first order approximations is 0.169, for Xp/X = 0.25 and S/D 

= 3.0. Therefore it can be inferred that the residuals satisfy 

the normality assumption. 

 

5.2 Reliability analysis of the pile stabilised slope 
 

The reliability index computed using the H-L method 

(βHL) is used to find the Pf associated with the pile-slope  
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Fig. 14 Pf versus FSt for Xp/X = 0.50 

 

 

Fig. 15 Pf versus FSt for Xp/X = 0.75 

 

 

system as 

( )f HLP  
 

(22) 

where Ф represents the cumulative distribution function 

(CDF) of the standard normal variables. The MCS 

technique facilitates the evaluation of Pf in a direct way. 

The reliability analysis of the pile-slope system is carried 

out using both the methods. The results shown in Figs. 12-

18 are computed using performance functions approximated 

with the data generated based on FCD. Comparison of the 

results of the H-L method and the MCS technique (n = 1 

million) is shown in Fig. 12. For each of the combinations 

of Xp/X and S/D shown, the lower Pf corresponds to FSt of 

1.3 and the higher Pf corresponds to FSt of 1.5. It is 

observed from the figure that the results of H-L method and 

MCS technique closely follow the 45˚ line and hence the 

results are in very good agreement. 

The variation of Pf with FSt for the different pile 

locations from the toe of the slope is shown in Figs. 13-15. 

It is observed that the Pf increases drastically with the 

increase in FSt. This can be attributed to the fact that the Pf 

in this case is P(FSa < FSt). Since the FSa is approximated 

as a FOP function of the uncorrelated normal random 

variables γs, c and ϕ, the FSa is also a normal random 

variable and accordingly the Pf values are evaluated. The Pf 

values follow the sigmoid shape of the Gauss error function 

(erf). Therefore a judicious selection of the FSt is needed  

 

Fig. 16 Effect of location of row of piles on Pf 
 

 

Fig. 17 Effect of location of row of piles on βHL 
 

 

Fig. 18 Effect of pile spacing on Pf 

 

 

while designing the pile-slope systems. It is to be noted that 

a slight increase in the FSt may result in a drastic increase in 

the associated Pf of the pile-slope system. 

The variation of Pf with the location of piles from the 

toe of the slope is shown in Fig. 16. The Pf values are 

shown for the FSt of 1.5. The Pf is least for the case of row 

of piles located at the middle portion of the slope, 

irrespective of the spacing between the piles. This is 

consistent with the observation from Fig. 9 wherein the 

maximum FS is obtained for the case of piles placed at the 

middle portion of the slope. It is also noted that the general 

trend of the Pf matches with the observations of the  
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Fig. 19 Comparison of 2k fact-centred design and FCD 
 

 

deterministic analyses. The conformity between the 

deterministic and probabilistic results is better understood 

by drawing parallels between the FS and the analogous 

reliability index (βHL). The variation of βHL with the location 

of piles from the toe of the slope is shown in Fig. 17, which 

closely follows the trend of Fig. 9. 

It is observed from Fig. 9 that all the pile configurations 

except for Xp/X = 0.75 with S/D ratios of 4.5 and 6.0, 

satisfy the performance criterion for FSt of 1.5. The other 

pile configurations satisfy the performance criterion if the 

FSt of 1.4 or lesser is chosen. However, it is seen from Fig. 

16 that the Pf for the same FSt differs for the different pile 

configurations. Hence it can be concluded that the 

reliability of the pile-slope system is not uniform and varies 

with the location of piles and spacing adopted, for the same 

FSt. This indicates that the performance criterion should be 

specified as a combination of FSt level and a stipulated 

minimum reliability index (or a maximum Pf). 

The variation of the Pf with pile spacing is shown in Fig. 

18 for the FSt of 1.5. It can be seen that the Pf decreases 

with reduction in the pile spacing as the number of piles in 

the row per unit width of the slope increases. The increased 

number of piles offer more resistance to the sliding mass. 

In the present study, it was decided to use the FCD, 

considering the possibility of curvature in the performance 

function, g(X), over the 3D factorial space of the state 

variables, X. This would have necessitated the use of SOP to 

approximate the g(X). However, it has been concluded that 

the g(X) is sufficiently linear and hence modelled by FOP 

for the reliability analysis. The 2k factorial design or 2k 

factorial design augmented with a centre run (i.e., 2k fact-

centred design), with lesser number of runs with respect to 

the FCD would be sufficient to fit the FOP for 

approximating the g(X). However a usual concern in this 

regard is the problem of possible lack of sufficient error 

degrees of freedom while performing the regression 

analysis. The error degrees of freedom must be sufficient 

enough for precise estimates of the partial regression 

coefficients β’s. The error degrees of freedom for the 2k 

fact-centred design, in the present study is 5 (N - k - 1), 

whereas for the FCD, it is 11. A trial is made in the study to 

understand the effect of lesser error degrees of freedom, if 

any, on the reliability analysis while using the 2k fact-

centred design. For this purpose, a comparison of the results 

of the Pf obtained from the reliability analyses using the 

data of 2k fact-centred design and FCD matrices is shown in 

Fig. 19, where the 2k fact-centred design is denoted by 2k 

design. For each of the combinations of Xp/X and S/D 

ratios selected, the lower Pf corresponds to FSt of 1.3 and 

the higher Pf corresponds to FSt of 1.5. It is observed that 

the results of the 2k fact-centred design closely match with 

that of the FCD and the discrepancy between them is too 

small to warrant the use of FCD in the reliability analysis. 
 
 

6. Conclusions 
 

Reliability analysis of the stability of a soil slope 

reinforced with piles is performed in this study using the H-

L method. Polynomial regression models are used to 

approximate the implicit performance function associated 

with the pile-slope system. The design matrices used for the 

multiple linear regression are based on the 2k
 factorial 

design augmented with a centre run (2k fact-centred design) 

and the FCD. The deterministic analyses are performed 

using 3D FEM for the generation of response data for the 

design matrix. The SRM is used along with FE analyses for 

the calculation of FS. The results of the reliability analyses 

are compared with the MCS technique involving 1 million 

simulations. The performance functions required in the 

MCS are approximated using the RSM. The following 

conclusions are made from the present study: 

• The Pf obtained using the H-L method is in good 

agreement with the results of the MCS technique. It is 

concluded that the reliability analyses of the pile-slope 

systems can be performed efficiently using the H-L method.  

• Both the 2k fact-centred design and the FCD are 

equally good in approximating the FOP using multiple 

linear regression. The 2k fact-centred design is sufficient for 

approximating the performance function using the FOP, 

provided the summary of fit data and the relevant 

hypothesis tests do not hint the possibility of curvature in 

the performance functions.  

• The selected FSt of the pile-slope system significantly 

affect the Pf associated with the system, especially at higher 

values of the FSt. Therefore, the FSt to be used in the design 

of pile-slope stabilisation system should be made based on 

the engineering judgement. 

• The Pf of the pile-slope system is minimum when the 

piles are placed at the middle portion of the slope, 

irrespective of the spacing between the piles in the row. 

This is consistent with the results of the deterministic 

analyses for which the maximum FS are obtained. It is also 

noted that the Pf decreases with decrease in the spacing 

between the piles irrespective of the location of the row of 

piles from the toe of the slope.  

• The different designs or pile configurations that satisfy 

the stability requirement of the pile-slope system with 

selected FSt do not ensure the same Pf. Hence it is 

advocated to specify the performance criterion for the pile-

slope system wherein one should select a minimum FSt with 

an acceptable level of Pf. 
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