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1. Introduction 
 

In structural analysis, the sandwich panels are composed 

of a core glued to two thin and rigid skins presenting the 

delaminating problems at the bonding interfaces due to the 

sudden change of the properties of the materials between 

the layers. To overcome this problem, sandwich structures 

of material with gradients of properties (FG) have been 

proposed in which the core or two skins can be made from 

materials with gradient properties (FGM).Functionally 

g r a d e d  ma t e r i a l s  ( F G M )  a r e  mi c r o s c o p i ca l ly 

inhomogeneous composites produced by a gradual variation 

in the volume fractions of constituents (Koizumi 1997).The 

properties of materials vary progressively from one surface 

to another, thus eliminating the stress concentration of 

laminated composites. These special features make them 

preferable to conventional delaminating composite  
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materials for applications in various structures, e.g., ships, 

submarines, aerospace vehicles, marine and civil structures 

(Wang and Shen 2013, Shen and Yang 2014, Madani et al. 

2016, Li and Yang 2016, Ahmed et al. 2019, Avcar 2019), 

which are subject to various types such as bending, 

vibration, axial compression and thermal gradients, the 

static, dynamic and thermal responses of FGM plates that 

have been the subject of numerous research activities. The 

introduction of a FGM core combined with ceramic and 

metal protective sheets reduces the deformations of 

sandwich structures. Because of the wide range of 

applications of FGM in different engineering structures, it is 

very important to study the flanking behavior of FGM 

structures for proper analysis and design. 

The remarkable advantages of the FGM thus accelerated 

the incorporation of these FGM into sandwich structures. 

Due to the widespread use of FGM sandwich structures in 

engineering, many studies have been developed to study 

buckling behavior which is considered to be one of the 

critical design factors of compression plates. Therefore, it is 

important to elucidate the buckling characteristics of FGM 

sandwich plates for optimal use in accurate and reliable 
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Abstract.  In this work, the buckling analysis of material sandwich plates based on a two-parameter elastic foundation under 

various boundary conditions is investigated on the basis of a new theory of refined trigonometric shear deformation. This theory 

includes indeterminate integral variables and contains only four unknowns in which any shear correction factor not used, with 

even less than the conventional theory of first shear strain (FSDT). Applying the principle of virtual displacements, the 

governing equations and boundary conditions are obtained. To solve the buckling problem for different boundary conditions, 

Galerkin’s approach is utilized for symmetric EGM sandwich plates with six different boundary conditions. A detailed 

numerical study is carried out to examine the influence of plate aspect ratio, elastic foundation coefficients, ratio, side-to-

thickness ratio and boundary conditions on the buckling response of FGM sandwich plates. A good agreement between the 

results obtained and the available solutions of existing shear deformation theories that have a greater number of unknowns 

proves to demonstrate the precision of the proposed theory. 
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design. 

A number of analytical and numerical analyzes were 

performed to study the responses to isotropic and sandwich 

FGM plates. Zenkour (2005) investigated the buckling and 

free vibration of the functionally supported sinusoidal shear 

deformation plate theory (SSDPT). Matsunaga (2008) 

presented the free vibration and stability of plates 

functionally classified according to a 2D higher order 

deformation theory. Zhao et al. (2009) studied the 

mechanical and thermal buckling analysis of FGM plates. 

Das et al. (2006) presented a new triangular finite element 

based on a monolayer theory for modeling thick sandwich 

panels with or without calibrated core functionally 

subjected to thermomechanical loading. Anderson (2003) 

presented a three-dimensional elastic solution analytical 

method for a sandwich composite with a functional level 

core, subjected to transverse loading by a rigid spherical 

indenter. An exact thermoelasticity solution for a two-

dimensional sandwich structure with a functional level 

coating was presented by Shodja et al. (2007). Xiang et al. 

(2011) has developed an order n model for free vibratory 

analysis of composite and sandwich plates. Neves and his 

co-workers (Neves et al. 2012a, b, c, d and 2013) presented 

static, free vibration and buckling analyzes of isotropic and 

sandwiched plates with different models of higher order 

shear deformation theories. Yaghoobi and Yaghoobi (2013) 

presented analytical solutions for the buckling of symmetric 

sandwich plates with FGM face sheets resting on an elastic 

foundation based on the first-order shear deformation plate 

theory (FSDPT) and submitted to mechanical, thermal, and 

thermo-mechanical loads. The prediction of nonlinear 

eigenfrequency of laminated curved sandwich structure 

using higher-order equivalent single-layer model has been 

presented by Katariya et al. (2017). Recently, several higher 

order shear deformation theories are proposed to examine 

the different behaviors of structures such as (Kolahchi and 

Moniri Bidgoli 2016, Kolahchi et al. 2017a, Kolahchi and 

Cheraghbak 2017, Hajmohammad et al. 2017 and 2018a, b, 

c, Kolahchi 2017, Golabchi et al. 2018, Fakhar and 

Kolahchi 2018, Hosseini and Kolahchi 2018, Belkacem et 

al. 2018, Hamidi et al. 2018, Ebrahimi and Barati 2018 and 

2019, Abdelmalek et al. 2019, Safa et al. 2019, Sahouane et 

al. 2019, Zouatnia et al. 2019, Hadji et al. 2019, Kolahchi 

et al. 2019, Ebrahimi et al. 2019, Hajmohammad et al. 

2019, Azmi et al. 2019, Akbas 2019a, b, Fenjan et al. 2019, 

Al-Maliki et al. 2019, Alasadi et al. 2019, Keshtegar et al. 

2020a, b, Farrokhian and Kolahchi 2020, Eltaher and 

Mohamed 2020, Hamed et al. 2020, Barati and Shahverdi 

2020). 
Plates based on elastic foundations have been widely 

adopted by many researchers to model various engineering 
problems in recent decades. To describe the interactions of 
the plate and the foundation in the most appropriate way 
possible, scientists have proposed different types of 
foundation models. Winkler's elastic foundation model, 
which comprises an infinite number of separate springs 
without coupling effects between them, which leads to the 
disadvantage of a discontinuous deflection on the 
interacting surface of the plate, is a one-parameter model 
that is widely used in practice. This was later improved by 
Pasternak who took into account the interactions between 

the separate springs in the Winkler model by introducing a 
new dependent parameter. From that moment, the Pasternak 
model has been widely used to describe the mechanical 
behavior of structure-foundation interactions (Omurtag et 
al. 1997, Matsunaga 2000, Filipich and Rosales 2002, Zhou 
et al. 2004, Behravan Rad 2012). 

This work aims to develop an efficient and simple 

theory of refined shear deformation for elastic base EGM 

sandwich plate buckling analyzes, taking into account 

various types of boundary conditions. The proposed 

theories contain four unknowns and motion equations than 

first-order shear deformation theory, but satisfy the 

equilibrium conditions at the upper and lower surfaces of 

the plate without the use of shear correction factors. The 

displacement field of the proposed theory is chosen as a 

function of the nonlinear variation of displacements in the 

plane through the thickness. It is assumed that the material 

properties of the faces of the sandwich plates vary in 

thickness direction only according to a new exponential 

distribution law in terms of volume fractions of the 

constituents. The central layer is always homogeneous and 

consists of an isotropic material. The analytical equations of 

the plate are obtained using Galerkin’s method for different 

boundary conditions. The accuracy of the solutions obtained 

is verified by comparing the current results with those 

predicted by the solutions available in the literature. 
 

 

2. Theoretical formulation 
 

2.1 Modeling of functionally graded material 
 

Consider a composite structure made of three isotropic 

layers of arbitrary thickness h, length a and width b. The 

FGM sandwich plate is supported at four edges defined in 

the (x,y,z) coordinate system with x- and y-axes located in 

the middle plane (z=0) and its origin placed at the corner of 

the plate. The vertical positions of the two interfaces 

between the core and faces layers are denoted, respectively, 

by h1 and h2. The sandwich core is a ceramic material and 

skins are composed of a functionally graded material across 

the thickness direction. The bottom skin varies from a 

metal-rich surface  0 2z h h     to a ceramic-rich 

surface while the top skin face varies from a ceramic-rich 

surface to a metal-rich surface  3 2z h h  . It is assumed 

to be rested on a Winkler–Pasternak type elastic foundation 

with the Winkler stiffness of kw and shear stiffness of ks as 

illustrated in Fig. 1. The volume fraction of the ceramic 

phase is obtained from a simple rule of mixtures as: 

 

(1) 

where ( )nV , (n =1, 2, 3), denotes the volume fraction 

function of layer n; p is the volume fraction index  
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Fig. 1 Sandwich with isotropic core and FGM skins 

resting on elastic foundations 

 

 

Fig. 2 Rectangular plate subjected to in-plane forces 

(Neves et al. 2012e) 

 

 

, which dictates the material variation profile 

through the thickness. Note that the core of the present 

sandwich and any isotropic material can be obtained as a 

particular case of the power-law function by setting p=0. 

The volume fraction for the metal phase is given as 

Vm=1−Vc. 

The mechanical properties of functionally graded 

materials are often being represented in the exponentially 

graded form and power law variations one (Sobhy 2013). 

Based on an exponential law distribution, the Young’s 

modulus E(n)(z) of the E-FGM is determined as: 

, , 

 

(2) 

Poisson’s ratio v is assumed to be a constant value 

through the sandwich plate thickness. 

The sandwich plate is subjected to compressive in-plane 

forces acting on the mid-plane of the plate. xxN and yyN

denote the in-plane loads perpendicular to the edges x = 0 

and y = 0 respectively, and xyN  denotes the distributed 

shear force parallel to the edges x = 0 and y = 0 respectively 

(see Fig. 2). 

 

2.2 A new four-unknown shear deformation theory 
 

2.2.1 Kinematics and constitutive equations 
In this study, further simplifying supposition are made to 

the conventional HSDT so that the number of unknowns is 

reduced. The displacement field of the conventional HSDT 

is given by: 

 

(3) 

0u , 0v , 0w , x , y  are the five unknown displacement of 

the mid-plane of the plate. By considering that 

1 ( , ) x k x y dx   and 2 ( , ) y k x y dy   . The displacement 

fields mentioned above can be written as follows: 

 

(4) 

The constants k1 and k2 depends on the geometry. The 

shape functions f(z) are chosen to satisfy the stress-free 

boundary conditions on the top and bottom surfaces of the 

plate, thus a shear correction factor is not required. In this 

study, the shape function is considered.      

 

(5) 

The nonzero linear strains are  

,  

(6) 

where 

,  

(7a) 

  

(7b) 

and g(z) is given as follows 

 
(8) 

The integrals defined in the above equations shall be 

resolved by considering the following relations 
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Table 1 Values of A', B', k1 and k2 for different boundary 

conditions 

Boundary 

conditions 
A' k1 B' k2 

SSSS 
 

λ2  
 

μ2  

CSSS 
 

3λ2 

 

μ2 

CSCS 
 

3λ2 
 

3μ2 

CCSS 
 

4λ2 
 

μ2 

CCCC 
 

4λ2 
 

4μ2 

FFCC 
 

8λ2 
 

4μ2 

where λ and μ are defined in section 3 
 

 

; ;   

;  

(9) 

where the coefficients A' and B' are expressed according to 

the type of solution used, in this case for Exact solutions for 

sandwich plates for different boundary conditions. 

Therefore, A', B', k1 and k2 are expressed in Table 1.  

For elastic and isotropic FGMs, the constitutive 

relations can be written as: 

and

 

(10) 

where ( x , y y , xy , yz , yx ) and ( x , y , xy , 

yz , yx ) are the stress and strain components, 

respectively. Using the material properties defined in Eq. 

(1), stiffness coefficients, Qij, can be expressed as 

 
(11a) 

 
(11b) 

 
(11c) 

The stress and moment resultants of the FGM sandwich 

plate can be obtained by integrating Eq. (10) over the 

thickness, and are written as 

 

(12a) 

 

(12b) 

where 
nh  and 

1nh 
are the top and bottom z-coordinates 

of the nth layer. 

Using Eq. (10) in Eqs. (12), the stress resultants of a 

sandwich plate made up of three layers can be related to the 

total strains by   
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where Aij, Bij, etc., are the plate stiffness, defined by 
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(15a) 

and 

,  

 

(15b) 

 

(15c) 

 

2.3 Governing equations  
 

The principle of virtual work is employed for buckling 

problem of FG sandwich plate. The principle can be 

expressed in analytical from as   

 (16) 

where δU is the virtual strain energy, δUF additional strain 

energy induced by the elastic foundations and δV is the 

virtual work done by applied forces. 

The virtual strain energy is expressed by 

 

(17) 

where A is the top surface. 

The strain energy induced by elastic foundations can be 

defined as 

 

(18) 

where A is the area of top surface and fe is the density of 

reaction force of foundation. For the Pasternak foundation 

model 

 

(19) 

where kw is the modulus of subgrade reaction (elastic 

coefficient of the foundation) and ksx and ksy are the shear 

moduli of the subgrade (shear layer foundation stiffness). If 

foundation is homogeneous and isotropic, we will get

sx sy sk k k  . If the shear layer foundation stiffness is 

neglected, Pasternak foundation becomes a Winkler 

foundation. If the shear layer foundation stiffness is 

neglected, Pasternak foundation becomes a Winkler 

foundation. 

The external virtual work due to in-plane forces and 

shear forces applied to the plate is given as:  

 

(20) 

Being xxN  and yyN
 

the in-plane loads perpendicular 

to the edges x=0 and y=0, respectively, and xyN and yxN

the distributed shear forces parallel to the edges x=0 and 

y=0, respectively. 

Substituting Eqs. (18), (19) and (20) into Eq. (16) and 

integrating by parts, and collecting the coefficients of

 0 0 0, , ,u v w    , the following equations of motion are 

obtained 

 

(21) 

 

2.4 Equations of motion in terms of displacements 
 

Substituting Eqs. (7), (13) into Eq. (20), the equations of 

motion can be expressed in terms of generalized 

displacements  0 0 0, , ,u v w     as 

 

(22) 

where the operator Li are given by  

, , ,

 

(22a) 

,   
(22b) 

 

(22c) 
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3. Exact solutions for FGMs sandwich plates 
 

In this section, exact solutions of the governing 

equations for buckling analysis of a EGMs sandwich plate 

with simply supported (S), clamped (C) or free (F) edges 

are presented. These boundary conditions are defined as 

follow: 

Simply supported (S) 

 

(24) 

Clamped (C): 

 
(25) 

Free (F): 

 

 

 
(26) 

The following representation for the displacement 

quantities, that satisfy the above boundary conditions, is 

appropriate in the case of our problem: 

 

(27) 

where Umn, Vmn, Wmn and Zmn are arbitrary coefficients to be 

determined. The functions Xm(x) and Yn(y) are suggested 

here to satisfy at least the geometric boundary conditions 

given in Eqs. (24)-(26) and represent approximate shapes of 

the deflected surface of the plate. These functions, for the 

different cases of boundary conditions, are listed in Table 2 

noting that m a  , n b  .The plate is subjected to an 

in-plane forces sin two directions x crN N , y crN N
 

i.e., y xN N  and 0xyN  .  

Substituting expressions (27) into the governing Eq. 

(22) and multiplying each equation by the corresponding 

eigenfunction then integrating over the domain of solution, 

we can obtain, after some mathematical manipulations, the 

following equations: 
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Table 2 The admissible functions Xm(x) and Yn(y)  

Boundary conditions The functions Xm(x) and Yn(y) 

SSSS 
    000  mm XX  
    0 aXaX mm  

    000  nn YY  

    0 bYbY nn
 sin(λx) sin(μy) 

CSSS 
    000  mm XX  

    0 aXaX mm
 

    000  nn YY  
    0 bYbY nn

 sin(λx)[cos(λx)] −1 sin(μy) 

CSCS 
    000  mm XX  

    0 aXaX mm
 

    000  nn YY  

    0 bYbY nn
 sin(λx)[cos(λx)] −1 sin(μy)[cos(μy)] −1 

CCSS 
    000  mm XX  

    0 aXaX mm
 

    000  nn YY  

    0 bYbY nn
 

sin2(λx) sin(μy) 

CCCC 
    000  mm XX  

    0 aXaX mm
 

    000  nn YY  

    0 bYbY nn
 

sin2(λx) sin2(μy) 

FFCC 
    000  mm XX  

    0 aXaX mm
 

    000  nn YY  

    0 bYbY nn
 

cos2(λx)[sin2(λx)] −1 sin2(μy) 

( )' denotes the derivative with respect to the corresponding coordinates 
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4. Numerical results and discussions 
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Fig. 3 Variation of the Young’s modulus through plate thickness of symmetric sandwich plates for various values of the 

power-law index p: (a) The (1-0-1) EGM sandwich plate, (b) The (1-1-1) EGM sandwich plate, (c) The (1-2-1) EGM 

sandwich plate, (d) The (1-3-1) EGM sandwich plate and (e) The (2-1-2) EGM sandwich plate. 
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In this section, the accuracy of the presented plate 

theory for the buckling analysis of symmetric rectangular 

EGM sandwich plates resting on two-parameter elastic 

foundations with various cases of the boundary conditions 

is demonstrated by comparing the analytical solution with 

those of other available results in the literature. 

The combination of materials consists of aluminum and 

alumina with the following material properties: 

• Ceramic (alumina, Al2O3): 3.0,380  cc GPaE  

• Metal (aluminum, Al): 3.0,70  mm GPaE  

In the following, we note that several kinds of sandwich 

plates are used: 

• The (1-0-1) FG sandwich plate: The plate is symmetric 

and made of only two equal-thickness FG layers, i.e., there 

is no core layer. Thus, we have, 0hh 21   

• The (1-1-1) FG sandwich plate: Here, the plate is 

symmetric and made of three equal-thickness layers. In this 

case, we have, 6hh,6hh 21   

• The (1-2-1) FG sandwich plate: The plate is symmetric 

and we have: 4hh,4hh 21   

• The (1-3-1) FG sandwich plate: The plate is symmetric 

and we have: 10h3h,10h3h 21   

• The (2-1-2) FG sandwich plate, we have: 

10hh,10hh 21 
. 

 

 

 

Fig. 3 shows the through-the-thickness variation of the 

of Young’s modulus for p=0.01, 0.2, 0.5, 2, 5 and 10. 

For convenience, the following non-dimensional forms are 

used: 

 

Many examples have been solved numerically using the 

following fixed data (unless otherwise stated) 

10, 1, 100, 1.w sa h m n K K      
 

The accuracy of a new four-unknown refined plate 

theory is validated by comparing the results with those 

available in the literature. The non-dimensionalized uniaxial  

buckling load for a simply supported thin homogeneous 

square plate without or resting on elastic foundations has 

been obtained. The results are presented in Table 3  and 

compared with those available in the literature (Sobhi 

2013). It is seen that the results are in good agreement. 

Table 4 shows the validation of the present outlined 

theory by comparing the present results of uniaxial critical 

buckling load for various values of the ratios a/b and a/h. It 

can be seen that the mean response values given by the 

present theory are almost same. 

2 4

3

22 3

2

, ,
100

,
12(1 )

cr w
cr w

sysx c
s

N a k a
N K

Dh

k ak a E h
K D

D D 

 

  


Table 3 Comparison of critical buckling load [Ncra2/(Dπ2)] of a simply supported thin homogeneous square plate 

(a/h=1000, p=0) resting on Pasternak’s elastic foundations (n=1, χ=0) 

m Kw Ks Sobhi (2013) Present 

1 0 0 3.99998 3.999977554 

2 0 100 18.91506 18.91506029 

1 100 0 5.02658 5.026575782 

2 100 100 19.17171 19.17170985 

Table 4 Comparison of critical buckling load [Ncrb2/D] of a simply supported homogeneous plate (p=0) resting on    

Pasternak’s elastic foundations (n=1, χ=0) 

  (Kw, Ks) 

a/b a/h Sobhi(2013) Present 

  (0,0) (100,10) (1000,100) (0,0) (100,10) (1000,100) 

0.5 

1000 61.68481 152.2131 704.5892 61.68481 152.21331 704.58882 

100 61.66331 152.1921 704.3782 61.66341 152.19191 704.37862 

10 59.58871 150.1171 685.5672 59.59651 150.12501 685.63632 

5 54.08591 144.6141 641.3803 54.11351 144.64191 641.99173 

1 

1000 39.47821 69.61031 212.0142 39.47821 69.61031 212.01442 

100 39.45621 69.58831 211.9282 39.45631 69.58841 211.92892 

10 37.37531 67.50741 204.4162 37.38311 67.51521 204.44382 

5 32.23981 54.61162 174.3913 32.26561 54.68622 174.57533 

2 

1000 39.47752 45.11082 85.25623 39.47752 45.11082 85.25623 

100 39.38972 45.02292 85.08893 39.39002 45.02332 85.08963 

10 32.23982 37.85813 72.41174 32.26562 37.90103 72.48634 

5 19.04003 22.67784 52.22764 19.12553 22.80604 52.35584 

Mode shape (m) is denoted by the superscript numbers 
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Table 5 Effects of elastic foundation stiffnesses kw and ks and side-to-thickness ratio a/h on the critical buckling crN of 

various types of simply supported sandwich square plates (p = 0.5) 

Scheme Theory 
kw=ks=0 kw=100, ks=0 kw=100, ks=100 

a/h=5
 

10 20 a/h=5
 

10 20 a/h=5
 

10 20 

1-0-1 

FPT(a) 2.5154 2.7987 2.8797 4.2783 4.5616 4.6427 39.0768 39.3601 39.4412 

TPT(a) 2.5592 2.8119 2.8832 4.3220 4.5748 4.6461 39.1206 39.3734 39.4447 

SPT(a) 2.5618 2.8127 2.8834 4.3247 4.5756 4.6463 39.1232 39.3741 39.4449 

EPT(a) 2.5652 2.8137 2.8837 4.3281 4.5766 4.6466 39.1266 39.3752 39.4451 

HPT(a) 2.5834 2.8193 2.8852 4.3463 4.5822 4.6481 39.1448 39.3808 39.4466 

Present 2.5647 2.8136 2.8837 4.3276 4.5765 4.6466 39.1261 39.3750 39.4451 

1-1-1 

FPT(a) 3.0560 3.4014 3.5003 4.8189 5.1643 5.2632 39.6175 39.9628 40.0617 

TPT(a) 3.1014 3.4151 3.5039 4.8643 5.1781 5.2668 39.6629 39.9766 40.0653 

SPT(a) 3.1030 3.4156 3.5040 4.8659 5.1785 5.2669 39.6644 39.9770 40.0655 

EPT(a) 3.1054 3.4163 3.5042 4.8683 5.1792 5.2671 39.6668 39.9777 40.0656 

HPT(a) 3.1399 3.4269 3.5070 4.9029 5.1898 5.2699 39.7014 39.9883 40.0684 

Present 3.1051 3.4162 3.5042 4.8680 5.1791 5.2671 39.6665 39.9777 40.0656 

1-2-1 

FPT(a) 3.4772 3.8906 4.0097 5.2401 5.6535 5.7726 40.0386 40.4520 40.5712 

TPT(a) 3.5165 3.9026 4.0129 5.2795 5.6655 5.7758 40.0780 40.4541 40.5744 

SPT(a) 3.5165 3.9026 4.0129 5.2795 5.6655 5.7758 40.0780 40.4640 40.5744 

EPT(a) 3.5176 3.9028 4.0130 5.2805 5.6657 5.7759 40.0790 40.4643 40.5744 

HPT(a) 3.5799 3.9220 4.0180 5.3429 5.6850 5.7810 40.1414 40.4835 40.5795 

Present 3.5174 3.9028 4.0130 5.2804 5.6657 5.7759 40.0789 40.4643 40.5745 

1-3-1 

FPT(a) 3.7922 4.2636 4.4004 5.5551 6.0265 6.1633 40.3537 40.8251 40.9618 

TPT(a) 3.8253 4.2738 4.4031 5.5882 6.0367 6.1660 40.3867 40.8353 40.9645 

SPT(a) 3.8243 4.2734 4.4030 5.5872 6.0364 6.1659 40.3857 40.8349 40.9644 

EPT(a) 3.8245 4.2735 4.4030 5.5875 6.0364 6.1659 40.3860 40.8349 40.9644 

HPT(a) 3.9214 4.3004 4.4101 5.6743 6.0634 6.1730 40.4728 40.8619 40.9716 

Present 3.8245 4.2735 4.4030 5.5874 6.0364 6.1659 40.3860 40.8349 40.9645 

(a) Sobhy (2013). EPT: exponential shear deformation plate theory; FPT: first-order shear deformation plate theory; HPT: 

hyperbolic shear deformation plate theory; SPT: sinusoidal shear deformation plate theory; TPT: third-order shear 

deformation plate theory 

  

Fig. 4 Critical buckling versus the ratio a/h for various values of the inhomogeneity parameter p and various              

types of simply-supported EGM sandwich square plates resting on elastic foundations(kw=ks=10, χ=1) 
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Fig. 4 Continued 

Table 6 Effects of inhomogeneity parameter p and side-to-thickness ratio a/h on the critical buckling  of (1-1-1) 

EGM sandwich plate (b/a=2, kw=ks=10) 

B.C Theory 
p=0 p=0.5 p=3.5 

a/h=5 10 20 a/h=5 10 20 a/h=5 10 20 

FFCC 

FPTa 15.2693 204469 22.5889 10.5119 12.7398 13.5537 7.5375 8.449 8.7524 

TPTa 15.3100 20.4524 22.5893 10.7685 12.8483 13.5856 7.5375 8.5326 8.7755 

SPTa 15.3262 20.4573 22.5906 10.7791 12.8519 13.5866 7.7767 8.5375 8.7769 

EPTa 15.3581 20.4701 22.5943 10.7947 12.8576 13.5882 7.7922 8.5427 8.7783 

HPTa 16.4396 21.0333 22.7718 10.9820 12.9404 13.6126 7.7130 8.5156 8.7709 

Present 15.2450 20.3388 22.5465 10.7129 12.8071 13.5722 7.7507 8.5248 8.7731 

CCCC 

FPTa 12.9480 15.8035 16.8213 8.9602 10.1273 10.5061 6.5737 7.0322 7.1710 

TPTa 12.9640 15.8053 16.8214 9.1032 10.1789 10.5205 6.6922 7.0708 7.1813 

SPTa 12.9719 15.8075 16.8220 9.1086 10.1806 10.5209 6.6994 7.0730 7.1819 

EPTa 12.9892 15.8136 16.8237 9.1167 10.1833 10.5216 6.7073 7.0754 7.1826 

HPTa 13.6482 16.0906 16.9044 9.2238 10.2228 10.5326 6.6669 7.0629 7.1792 

Present 12.7312 15.6712 16.7793 8.9957 10.1326 10.5071 6.6584 7.0585 7.1780 

CSCS 

FPTa 10.8802 12.4597 12.9692 7.6668 8.2896 8.4768 5.8071 6.0450 6.1130 

TPTa 10.8866 12.4603 12.9692 7.7464 8.3154 8.4837 5.8704 6.0641 6.1180 

SPTa 10.8906 12.4613 12.9695 7.7493 8.3163 8.4840 5.8742 6.0652 6.1183 

EPTa 10.9001 12.4644 12.9703 7.7536 8.3176 8.4843 5.8783 6.0663 6.1186 

HPTa 11.2895 12.6060 13.0096 7.8139 8.3374 8.4896 5.8572 6.0602 6.1170 

Present 10.8985 12.4516 12.9659 7.7465 8.3127 8.4829 5.8740 6.0646 6.1181 

CCSS 

FPTa 12.7243 15.4988 16.4857 8.8365 9.9698 10.3370 6.5105 6.9555 7.0900 

TPTa 12.7293 15.5004 16.4858 8.9755 10.0199 10.3509 6.6256 6.9929 7.1000 

SPTa 12.7474 15.5026 16.4864 8.9808 10.0215 10.3514 6.6326 6.9950 7.1006 

EPTa 12.7642 15.5085 16.4880 8.9886 10.0241 10.3521 6.6402 6.9974 7.1012 

HPTa 13.4052 15.7773 16.5662 9.0927 10.0624 10.3627 6.6010 6.9853 7.0980 

Present 12.6595 15.4643 16.4752 8.9458 10.0089 10.3479 6.6239 6.9923 7.0999 

CSSS 

FPTa 10.6131 12.0668 12.5311 7.5143 8.0853 8.2557 5.7275 5.9451 6.0069 

TPTa 10.6189 12.0673 12.5311 7.5876 8.1089 8.2620 5.7856 5.9624 6.0114 

SPTa 10.6225 12.0683 12.5314 7.5902 8.1096 8.2622 5.7891 5.9634 6.0117 

EPTa 10.6312 12.0711 12.5321 7.5942 8.1108 8.2625 5.7928 5.9645 6.0120 
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Fig. 5 Critical buckling versus the side-to-thickness     

ratio a/h of the (2-1-2) EGM sandwich square plate      

resting on Winkler’s elastic foundation with various      

boundary conditions (kw=100, p=1, χ=1) 

 

 
Fig. 6 Critical buckling versus the aspect ratio b/a of 

simply-supported and clamped sandwich plate for 

different values of foundation stiffnesses kw and ks 

(a/h=10, p=0.5, χ=1) 

 

 

Table 5 give the effects of elastic foundation stiffnesses 

kw and ks and side-to-thickness ratio a/h on the critical 

buckling crN  of various types of simply supported 

sandwich square plates (p = 0.5). The results are compared  

 

 

with those obtained using various shear deformation plate 

theories (Sobhi 2013) such as the FPT, the third-order shear 

deformation plate theory, the sinusoidal shear deformation 

plate theory, the exponential shear deformation plate theory, 

and the hyperbolic shear deformation plate theory. Good 

agreement is achieved between the present solutions using a 

new four-unknown refined plate theory and the published 

ones. It can be observed from Table 5 that the increase of 

the core thickness of the EGM sandwich plates leads to the 

increase of the buckling load, except for the case of the 

plates resting on Pasternak’s foundations where the 

variation of them is reversed. In addition, the buckling load 

is increasing with the existence of the elastic foundations.  

The inclusion of the Pasternak’s foundation parameters 

gives results more than those with the inclusion of 

Winkler’s foundation parameter. 

Table 6 contains critical buckling load of the (1–1–1) 

EGM sandwich plate resting on two-parameter elastic 

foundations under various boundary conditions. The 

obtained results are compared with those reported by Sobhy 

(2013) for different values of the side-to-thickness ratio a/h 

and inhomogeneity parameter p. It can be seen that the 

results obtained in this study using a new four-unknown 

refined plate theory is in good agreement with the solutions 

given by Sobhy (2013). A decrement for the critical 

buckling load can be clearly observed with the increase of 

the parameter p. The results are maximum for the free-

clamped plates and minimum for the simply supported 

plates. 

The inclusion of the Pasternak’s foundation parameters 

gives results more than those with the inclusion of 

Winkler’s foundation parameter. 

Table 6 contains critical buckling load of the (1–1–1) 

EGM sandwich plate resting on two-parameter elastic 

foundations under various boundary conditions. The 

obtained results are compared with those reported by Sobhy 

(2013) for different values of the side-to-thickness ratio a/h 

and inhomogeneity parameter p. It can be seen that the 

results obtained in this study using a new four-unknown 

refined plate theory is in good agreement with the solutions 

given by Sobhy (2013). A decrement for the critical 

buckling load can be clearly observed with the increase of 

the parameter p. The results are maximum for the free-

clamped plates and minimum for the simply supported 

plates. 
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Table 6 Continued 

B.C Theory 
p=0 p=0.5 p=3.5 

a/h=5 10 20 a/h=5 10 20 a/h=5 10 20 

CSSS 
HPTa 10.9920 12.2004 12.5678 7.6497 8.1289 8.2674 5.7735 5.9589 6.0105 

Present 10.6225 12.0631 12.5296 7.5883 8.1080 8.2617 5.7899 5.9635 6.0117 

SSSS 

FPTa 7.5245 7.9088 8.0175 5.7741 5.9182 5.9575 4.8112 4.8643 4.8784 

TPTa 7.5252 7.9089 8.0175 5.7935 5.9237 5.9590 4.8259 4.8683 4.8795 

SPTa 7.5261 7.9091 8.0175 5.7942 5.9239 5.9590 4.8267 4.8685 4.8795 

EPTa 7.5284 7.9097 8.0177 5.7952 5.9242 5.9591 4.8277 4.8688 4.8796 

HPTa 7.6317 7.9407 8.0258 5.8101 5.9284 5.9602 4.8229 4.8675 4.8792 

Present 7.5281 7.9097 8.0177 5.7951 5.9242 5.9591 4.8276 4.8688 4.8796 
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Fig. 4 displays the variations of the critical buckling 

loads crN  versus the side-to-thickness ratio a/h for 

different values of the inhomogeneity parameter p. It can be 

seen that the buckling loads increase monotonically as p 

decreases. It is observed that the differences between curves 

are reduced as the core thickness increases. It is also shown 

that the critical buckling load decreases as the volume 

fraction index p increase. 

 

 

 

Fig. 5 present the critical buckling loads crN  of (2–1–

2) EGM sandwich square plate resting on Winkler’s elastic 

foundation with various boundary conditions. It is noted 

that crN increase gradually as the side-to-thickness ratio a/h 

increases. The results of the simply supported sandwich 

plate are less than that of the clamped-clamped and free-

clamped sandwich plate. 

For the EGM sandwich plate with intermediate  

 

Fig. 7 Critical buckling versus the side-to-thickness ratio a/h of simply-supported sandwich square plate for different values 

of χ (kw=ks=10, p=0.5) 

  

  

Fig. 8 Effect of power law index p on dimensionless critical buckling load of simply-supported sandwich square plates 

under biaxial compression for different values of foundation stiffnesses kw and ks (χ=1, a = 10 h) 
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boundary conditions, the results take the corresponding 

intermediate values. 
Fig. 6 illustrates the variations of the buckling loads as 

functions of the aspect ratio b/a of the SSSS and CCCC 
plate for various values of the elastic foundation 
parameters. As it is well known, the clamped boundary 
condition always overpredicts the buckling loads 
magnitude. It can be noticed that the effect of the ratio b/a 
on the frequencies and the buckling loads is not the same. 
The buckling loads decrease rabidly and then increase very 
slowly as b/a increases. Obviously, the buckling loads are 
increasing with the increasing of the foundation stiffnesses. 

Finally, the influence of the parameter χ on the critical 

buckling loads crN is demonstrated in Fig. 7. As expected, 

the uniaxial buckling load (χ = 0) is greater than the biaxial 

one (χ >0) and that decreases as the parameter χ increases. 

The effects of the power law index p on critical buckling 

load of SSSS and CCCC FG sandwich square plates under 

biaxial compression for different values of foundation 

stiffnesses wk and sk are illustrated in Figs. 8 and 9, 

respectively. The thickness ratio of the plate is taken equal 

to 10.It can be seen that increasing the power law index p 

results in an increase a reduction of buckling load. This is 

due to the fact that higher power law index p corresponds to 

lower volume fraction of the ceramic phase. In other word, 

increasing the power law index will reduce the stiffness of  

the plate due to high portion of metal in comparison with  

 

 

the ceramic part, and consequently, leads to a reduction of 

buckling load. Obviously, both the buckling loads are 

increasing with the increasing of the foundation stiffnesses. 
 

 

5. Conclusions 
 

A new shear deformation theory for buckling response 

of various types of EGM sandwich plates with different 

cases of boundary conditions is proposed in this paper. It 

contains only four unknowns, accounts for a hyperbolic 

distribution of transverse shear stress and satisfies the 

traction free boundary conditions. The sandwiches plates 

are assumed to be leaned on two-parameter elastic 

foundations. The governing equations are obtained through 

the principle of virtual work. To solve the buckling problem 

for different boundary conditions, Galerkin’s approach is 

utilized for symmetric EGM sandwich plates with six 

different boundary conditions. Obtained results were 

presented in figures and tables and compared with 

references and these demonstrate the accuracy of present 

approach. Based on the results obtained, the following 

conclusions can be drawn from the present analysis: 

1. The present results are very agreement with those 

being in literature. 

2. The critical buckling loads increases as the side-to-

thickness ratio a/h increases. 

3. The critical buckling load of EGM sandwich plate 

  

  

Fig. 9 Effect of power law index p on dimensionless critical buckling load of clamped sandwich square plates under biaxial 

compression for different values of foundation stiffnesses kw and ks (kw, a = 10h) 
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increases as the plate aspect ratio a/b decreases. 

4. The foundation stiffness has a significant effect on the 

buckling load of sandwich plates. The effect of the ks on the 

critical buckling loads is more pronounced than ks. 

5. In Fig. 4 it is shown that the critical buckling load 

decreases as the volume fraction index p increases. 

6. The buckling loads for EGM sandwich plates are 

generally lower than the corresponding values for 

homogeneous ceramic plates. 

7. The buckling loads for simply-supported EGM 

sandwich plates are lower than those for free and clamped 

EGM sandwich plates. 

8. The critical buckling load for the plate under uniaxial 

compression is greater than the plate under biaxial 

compression. 
Finally, an improvement of the present formulation will 

be considered in the future work to consider other type of 
structures and materials (Sedighi et al. 2012, 2013 and 
2015, Arani and Kolahchi 2016, Bilouei et al. 2016, 
Kolahchi et al. 2016a, b, c and 2017b, Akbas  2017a, 
Motezaker and Kolahchi 2017a, b, Zarei et al. 2017, 
Zamanian et al. 2017, Amnieh et al. 2018, Behera and 
Kumari 2018, Panjehpour et al. 2018, Abdou et al. 2019, 
Hieu and Hai 2019, Malikan 2019, Selmi 2019, Othman et 
al. 2019, Jamali et al. 2019, Ayat et al. 2018, Eltaher and 
Wagih 2020, Amir Arbabi et al. 2020, Kolahchi et al. 
2020a, b, Motezaker and Eyvazian 2020a, b, Timesli 2020, 
Motezaker et al. 2020). 
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