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1. Introduction 
 

The behavior of micron-scale structures has been proven 

experimentally to be size dependent. Therefore, the 

classical continuum theory is inadequate to predict their 

response at nano and micro scale. Couple-stress theory is an 

extended continuum theory that includes the effects of a 

couple per unit area on a material volume, in addition to the 

classical direct and shear forces per unit area. The classical 

couple stress elasticity proposed by Toupin(1962), 

Mindlin(1964) and Koiter (1964). This theory contains four 

material constants two classical and two additional for 

isotropic elastic materials, which are very difficult to 

determine by experiments. Yang et al. (2202) modified the 

classical couple stress theory and proposed a modified 

couple-stress model, in which the couple stress tensor is 

symmetrical and only one material length scale parameter is 

needed to capture the size effect which is caused by micro-

structure. This theory suffers from some inconsistencies. 

So, Hadjesfandiari et al. (2011) offered consistent couple 

stress theory (C-CST) with the skew-symmetric couple-

stresses. This theory was not applicable to anisotropic 

materials. Therefore, Chen et al. (2014) introduced the new 

modified couple stress theory (NM-CST) for anisotropic 

materials containing three length scale parameters. Lata and 

Kaur (2019,2019a) also established new modified couple 

stress model using the theory presented by Chen and Li 

(2014). Kumar et al. (2019) studied the thermoelastic thin 

beam in a modified couple stress with three-phase lag  
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thermoelastic diffusion model subjected to thermal and 

chemical potential sources. Vibration analysis of 

functionally graded rectangular nano-/micro-plates was 

studied based on modified nonlinear coupled stress 

exponential and trigono-metric shear deformation plate 

theories by Khorshidi et al. (2017). Hendou and 

Mohammadi (2014), used an Euler–Bernoulli model for 

vibration analysis of micro-beams with large transverse 

deflection where thermoelastic damping is considered to be 

the main damping mechanism and displayed as imaginary 

stiffness into the equation of motion by evaluating the 

temperature profile as a function of lateral displacement. 

Free vibration and buckling of microbeams with the 

temperature change effect is presented by Ke et al. (2011). 

He et al. (2015) developed a new, size-dependent model for 

FG microplates by using the modified couple stress theory. 

Based on the strain gradient elasticity theory and a refined 

shear deformation theory, Zhang et al. (2015) developed an 

efficient, size-dependent plate model to analyze the 

bending, buckling, and free vibration problems of FG 

microplates resting on an elastic foundation. Lou et al. 

(2015) proposed a unified higher-order plate theory for FG 

microplates by adopting the modified couple stress theory 

to capture size effects and using a generalized shape 

function to characterize the transverse shear deformation. 

Thai and Kim (2013) developed a size-dependent model of 

the bending and free vibration of an FG Reddy plate. Ajri et 

al. (2018) analysed the non-stationary free vibration and 

nonlinear dynamics of the viscoelastic nano-plates in the 

context of consistent couple stress theory.  Ghasemi, and 

Mohandes (2017) studied the effect of finite strain on 

bending of the geometrically nonlinear of micro laminated 

composite Euler-Bernoulli beam based on Modified Couple 

Stress Theory (MCST) in thermal environment. The couple 

stress and strain gradient theories are applied for the micro-
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scale structures by Salamat-talab et al. (2012), Wang et al. 

(2013), Kahrobaiyan et al. (2014), Shaat et al. (2014), 

Farokhi et al. (2015), Mohammadimehr et al.(2015). Abbas 

and Youssef discussed the two-temperature generalized 

thermoelasticity under ramp-type heating by finite element 

method. Despite of this several researchers worked on 

similar theory of thermoelasticity as Hassan et al. (2018), 

Marin and Nicaise (2016), Marin et al. (2019, 2016) Marin 

(1994, 2009, 2016), Abbas (2009, 2014, 2016), Abbas 

(2014a, b), Abbas and Youssef (2012), Abbas and Othman 

(2012), Abbas and Zenkour (2014), Othman and Marin 

(2017), Abbas and Marin (2017), Kumar et al. (2016), Lata 

and Kaur (2019), Ezzat et al.(2016), Sharma et al. (2015), 

Kumar et al. (2016), Lata (2018a, b), Othman et al. (2013), 

Arif et al.(2018), Fahsi et al. (2017). 

In the present investigation, our objective is to study the 

deformation in a homogeneous isotropic modified couple 

stress thermoelastic medium with two temperatures and 

with and without energy dissipation. The medium is 

employed to the thermal and mechanical sources. Laplace 

and Fourier transform technique is applied to obtain the 

solutions of the governing equations. The displacement 

components, stress components, conductive temperature 

and couple stress are obtained in the transformed domain 

and are presented graphically for different values of 

displacement. The effect of two temperature and GN theory 

of type II and type III on the resulting quantities is depicted 

graphically.  
 

 

2. Basic equations 
 

Following Devi et al. (2017), and Kumar et al. (2015) 

and the field equations for isotropic modified couple stress 

thermoelastic medium with and without energy dissipation 

and with two temperature in the absence of body forces, 

body couples are given by  

(a) Constitutive relationships 

𝑡𝑖𝑗 = 𝜆𝑒𝑘𝑘𝛿𝑖𝑗 + 2𝜇𝑒𝑖𝑗 −
1

2
𝑒𝑘𝑖𝑗𝑚𝑙𝑘,𝑙 − 𝛽1𝑇𝛿𝑖𝑗 , (1) 

𝑚𝑖𝑗 = 2𝛼𝜒𝑖𝑗 , (2) 

𝜒𝑖𝑗 =
1

2
(𝜔𝑖,𝑗 + 𝜔𝑗,𝑖), (3) 

𝜔𝑖 =
1

2
𝑒𝑖𝑗𝑘𝑢𝑘,𝑗. (4) 

(b) Equation of motion 

(𝜆 + 𝜇 +
𝛼

4
∆)𝛻(𝛻. 𝑢⃗ ) + (𝜇 −

𝛼

4
∆)𝛻2𝑢⃗ − 𝛽1𝛻𝑇 = 𝜌𝑢⃗ ̈, (5) 

(c) Equation of heat conduction 

𝐾𝛻2𝜑 + 𝐾∗𝛻2𝜑̇ = 𝜌𝐶∗𝑇̈ + 𝛽1𝑇0∇. 𝑢,⃗⃗⃗  ̈ (6) 

where 

𝑇 = (1 − 𝛼1𝛻
2)𝜑. (7) 

Here 𝑢 = (𝑢, 𝑣, 𝑤) is the components of displacement 

vector, 𝜎𝑖𝑗 are the components of stress tensor, 𝜀𝑖𝑗 are the 

components of strain tensor,𝑒𝑖𝑗𝑘 is alternate tensor, 𝑚𝑖𝑗are 

the components of couple-stress,  𝛼1  is the two 

temperature parameter,, 𝑇  is the thermodynamical 

temperature,  𝜑 is the conductive temperature, 𝐾∗ is the 

coefficient of thermal conductivity, 𝜒𝑖𝑗  is curvature, 𝜔𝑖 is 

the rotational vector,  is the density, 𝐾  isthe 

materialistic constant, 𝐶∗ is the specific heat at constant 

strain, 𝑇0is the reference temperature assumed to be such 

that𝑇 𝑇0
⁄ ≪ 1 ,𝐺𝑖  are the elasticity constants and, 𝛽1 =

(3𝜆 + 2𝜇)𝛼𝑡. Here 𝛼𝑡is the coefficients of linear thermal 

expansion and diffusion expansion respectively, 𝛼 is the 

couple stress parameter, ∆ is the Laplacian operator, 𝛻 is 

del operator, 𝛿𝑖𝑗 is Kronecker’s delta. 
 

 

3. Formulation and solution of the problem 
 

We consider a two dimensional homogeneous isotropic 

modified couple stress thermoelastic medium initially at 

uniform temperature 𝑇0 occupying the region of a half 

space 𝑧 ≥ 0. A  rectangular coordinate system (𝑥, 𝑦, 𝑧) 

having origin on the surface 𝑥3 = 0 has been taken. All the 

field quantities depend on (𝑥, 𝑧, 𝑡).The half surface is 

subjected to isothermal and insulated boundary conditions. 

𝑢 = 𝑢(𝑥, 𝑧, 𝑡), 

𝑤 = 𝑤(𝑥, 𝑧, 𝑡), 

𝜑 = 𝜑(𝑥, 𝑧, 𝑡). 

(8) 

The initial and regularity conditions are given by 

𝑢(𝑥, 𝑧, 0) =  0 =  𝑢̇(𝑥, 𝑧, 0), 

𝑣(𝑥, 𝑧, 0) =  0 = 𝑣̇(𝑥, 𝑧, 0), 

𝜑(𝑥, 𝑧, 0) =  0 = 𝜑̇(𝑥, 𝑧, 0)𝑓𝑜𝑟  𝑧 ≥ 0,−∞ < 𝑥 < ∞, 

𝜑(𝑥, 𝑧, 0) =  0 = 𝜑̇(𝑥, 𝑧, 0)𝑓𝑜𝑟  𝑧 ≥ 0,−∞ < 𝑥 < ∞, 

Using (8) in the Eqs. (1)-(7) yields 

(𝜆 + 𝜇)
𝜕𝑒

𝜕𝑥
+ 𝜇𝛻2𝑢 +

𝛼

4
𝛻2 (

𝜕𝑒

𝜕𝑥
− 𝛻2𝑢) − 𝛽1

𝜕𝑇

𝜕𝑥
= 𝜌

𝜕2𝑢

𝜕𝑡2 , (9) 

(𝜆 + 𝜇)
𝜕𝑒

𝜕𝑧
+ 𝜇𝛻2𝑤 +

𝛼

4
𝛻2 (

𝜕𝑒

𝜕𝑧
− 𝛻2𝑤) − 𝛽1

𝜕𝑇

𝜕𝑧
= 𝜌

𝜕2𝑤

𝜕𝑡2 , (10) 

𝐾𝛻2𝜑 + 𝐾∗𝛻2𝜑̇ = 𝜌𝐶∗(1 − 𝛼1𝛻
2)𝜑̈ + 𝛽1𝑇0

𝜕2𝑒

𝜕𝑡2 , 
(11) 

and  

𝑡33 = 𝜆 (
𝜕𝑤

𝜕𝑧
+

𝜕𝑢

𝜕𝑥
) + 2𝜇

𝜕𝑤

𝜕𝑥
− 𝛽1(1 − 𝛻2𝛼1)𝜑, (12) 

𝑡31 = 𝜇 (
𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
) −

𝛼

4
𝛻2 (−

𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
), (13) 

𝑚32 =
𝛼

2
(
𝜕2𝑢

𝜕𝑧2 −
𝜕2𝑤

𝜕𝑥𝜕𝑧
), (14) 

where 𝑒 =
𝜕𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑧
.  𝛻2 = 

𝜕2

𝜕𝑥2 +
𝜕2.

𝜕𝑧2 

To facilitate the solution,thedimensionless quantities are 

defined as 
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 𝑥′ =
𝜔∗

𝑐1

𝑥,   𝑧 ′ =
𝜔∗

𝑐1

𝑧,  𝑢′ =
𝜔∗

𝑐1

𝑢,  𝑤′ =
𝜔∗

𝑐1

𝑤,    

𝑡′ = 𝜔∗𝑡,   𝑡𝑖𝑗
′ =

𝑡𝑖𝑗

𝛽1𝑇0

 , 𝑚𝑖𝑗
′ =

𝑚𝑖𝑗

𝑐1𝛽1𝑇0

, 𝑇′ =
𝛽1𝑇

𝜌𝑐1
2 ,  

𝑐1
2 =

𝜆 + 2𝜇

𝜌
 ,    𝜑′ =

𝛽1𝜑 

𝜌𝑐1
2 , 𝜔∗2 =

𝜆

𝜇𝑡2 + 𝜌𝛼
. 

(15) 

Using the dimensionless quantities defined by (15) in 

the Eqs. (9)-(14), and after suppressing the primes yields 

𝑎5

𝜕𝑒

𝜕𝑥
+ 𝑎1𝛻

2𝑢 +
𝛼

4
𝑎2𝛻

2 (
𝜕𝑒

𝜕𝑥
− 𝛻2𝑢) −

𝜕𝑇

𝜕𝑥
=

𝜕2𝑢

𝜕𝑡2 , (16) 

𝑎5

𝜕𝑒

𝜕𝑧
+ 𝑎1𝛻

2𝑤 +
𝛼

4
𝑎2𝛻

2 (
𝜕𝑒

𝜕𝑧
− 𝛻2𝑤) −

𝜕𝑇

𝜕𝑧
=

𝜕2𝑤

𝜕𝑡2 , (17) 

∇2𝜑 + 𝑎6𝛻
2𝜑̇ = 𝑎3 (1 − 𝛼1 (

𝜔∗

𝑐1
 )

2

𝛻2) 𝜑̈ + 𝑎4

𝜕2𝑒

𝜕𝑡2
, (18) 

𝑡33 =
𝜆

𝛽1𝑇0

(
𝜕𝑤

𝜕𝑧
+

𝜕𝑢

𝜕𝑥
) +

2𝜇

𝛽1𝑇0

𝜕𝑤

𝜕𝑥
−

𝜌𝑐1
2

𝛽1𝑇0

(1 − 𝛼1 (
𝜔∗

𝑐1

 )
2

𝛻2)𝜑, (19) 

𝑡31 =
𝜇

𝛽1𝑇0
(
𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
) −

𝛼

4𝛽1𝑇0
(
𝜔∗

𝑐1
 )

2

𝛻2 (−
𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
) (20) 

𝑚32 =
𝛼𝜔∗

2𝛽1𝑇0𝑐1
2 (

𝜕2𝑢

𝜕𝑧2 −
𝜕2𝑤

𝜕𝑥𝜕𝑧
). (21) 

where 

𝑎1 =
𝜇

𝜌𝑐1
2 ,   𝑎2 =

𝜔∗2

𝜌𝑐1
4 ,   𝑎3 =

𝜌𝑐1
2𝐶∗

𝐾𝜔∗
, 𝑎4 =

𝛽1
2𝑇0

𝜌𝐾𝜔∗
,

𝑎5 =
(𝜆 + 𝜇)

𝜌𝑐1
2 , 𝑎6 =

𝐾∗

𝐾
, 

The displacement components 𝑢(𝑥, 𝑧, 𝑡) and 𝑤(𝑥, 𝑧, 𝑡) 

are related to the scalar potentials Φ(x, z, t)and Ψ(x, z, t) 

in dimensionless form as  

𝑢 =
𝜕𝛷

𝜕𝑥
−

𝜕𝛹

𝜕𝑧
, 𝑤 =

𝜕𝛷

𝜕𝑧
+

𝜕𝛹

𝜕𝑥
 (22) 

Using (22), in the Eqs. (16)-(18) , we obtain 

(𝛻2 −
𝜕2

𝜕𝑡2)Φ − 𝑇 = 0, (23) 

(𝑎1𝛻
2 +

𝛼

4
𝑎2𝛻

4 −
𝜕2

𝜕𝑡2)Ψ = 0, (24) 

𝑎4

𝜕2

𝜕𝑡2
𝛻2Φ + (−𝛻2 − 𝑎6

𝜕

𝜕𝑡
𝛻2 + 𝑎3 (1 − 𝛼1

𝜔∗

𝑐1

𝛻2)
𝜕2

𝜕𝑡2
)𝜑 = 0, (25) 

where 𝛷 =
𝑒

𝛻2  , 𝛹 =
𝜕𝑢

𝜕𝑧
−

𝜕𝑤

𝜕𝑥
 .    

Applying Laplace and Fourier transformation defined by 

𝑓(𝑥1, 𝑥3,𝑠) = ∫ 𝑓
∞

0

(𝑥1, 𝑥3,𝑡)𝑒
−𝑠𝑡𝑑𝑡, (26) 

𝑓(𝜉, 𝑧, 𝑠) = ∫ 𝑓(𝑥, 𝑧, 𝑠)𝑒ἰ𝜉𝑥𝑑
∞

−∞

𝑥. (27) 

On the set of Eqs. (23)-(25), we obtain system of three 

homogeneous equations. These resulting equations have 

non trivial solution if the determinant of the coefficients of  

(Φ̂, Ψ̂, 𝜑̂, )  vanishes, which yields the following 

characteristic equation 

(𝑃𝐷8 + 𝑄𝐷6 + 𝑅𝐷4 + 𝑆𝐷2 + 𝑇) = 0, (28) 

where 

𝑃 =
𝛼

4
(− 𝑎11 + 𝑎4𝑠

2𝑎7𝑎2), 

𝑄 = −(𝜉2 + 𝑠2) ((𝑎10 (−𝑎1 +
𝛼

2
𝑎2𝜉

2) +
𝛼

4
𝑎11𝜉

2) −
𝛼

4
𝑎11)

+ 𝑎4𝑠
2 (−𝜉2𝑎7

𝛼

4
𝑎2 − (1 + 𝑎7𝜉

2)

− 𝑎7 (−𝑎1 +
𝛼

2
𝑎2𝜉

2)), 

𝑅 = −(𝜉2 + 𝑠2) (𝑎10 (−𝑎1 +
𝛼

2
𝑎2𝜉

2) +
𝛼

4
𝑎11𝜉

2) + (−
𝛼

4
𝑎2𝜉

4 − 𝑠2)𝑎10

+ (−𝑎1 +
𝛼

2
𝑎2𝜉

2)𝑎3𝑠
2 −

𝛼

2
𝑎2𝜉

2𝑎10)

+ 𝑎4𝑠
2 ((1 + 𝑎7𝜉

2) (−𝑎1 +
𝛼

2
𝑎2𝜉

2)

− 𝑎7 (𝑎1𝜉
2 −

𝛼

4
𝑎2𝜉

4 − 𝑠2)

+ 𝜉2 ((1 + 𝑎7𝜉
2) − 𝑎7 (−𝑎1 +

𝛼

2
𝑎2𝜉

2))), 

𝑆 = −(𝜉2 + 𝑠2) (−
𝛼

4
𝑎2𝜉

4 − 𝑠2)𝑎10 + (−𝑎1 +
𝛼

2
𝑎2𝜉

2)𝑎3𝑠
2

−
𝛼

2
𝑎2𝜉

2𝑎10) + (𝑎1𝜉
2 −

𝛼

4
𝑎2𝜉

4 − 𝑠2) (−𝑎10𝜉
2

+ 𝑎3𝑠
2)

+ 𝑎4𝑠
2 ((1 + 𝑎7𝜉

2) (𝑎1𝜉
2 −

𝛼

4
𝑎2𝜉

4 − 𝑠2)

− 𝜉2 ((1 + 𝑎7𝜉
2) (−𝑎1 +

𝛼

2
𝑎2𝜉

2)

− 𝑎7 (𝑎1𝜉
2 −

𝛼

4
𝑎2𝜉

4 − 𝑠2))), 

𝑇 = −(𝜉2 + 𝑠2) (𝑎1𝜉
2 −

𝛼

4
𝑎2𝜉

4 − 𝑠2) (−𝑎10𝜉
2 + 𝑎3𝑠

2)

− 𝑎4𝑠
2𝜉2(1 + 𝑎7𝜉

2) (𝑎1𝜉
2 −

𝛼

4
𝑎2𝜉

4 − 𝑠2). 

The roots of the Eq. (28) are ±𝜆𝑖(𝑖 =  1, 2, 3, 4, 5), using 

the radiation condition that Φ̂, Ψ̂,  𝜑 ̂ → 0 as 𝑧 → ∞, the 

solution of Eq. (30) may be written as 

(𝛷̃, 𝛹̃, 𝜑̃) = ∑(1, 𝑅𝑖 , 𝑆𝑖)𝐴𝑖𝑒
−𝜆𝑖𝑧

4

𝑖=1

, (29) 

where 

 

 

and 𝑎7 = 𝛼1 (
𝜔∗

𝑐1
 )

2

, 𝑎8 = 𝑎7𝑎3, 𝑎9 = 𝑎6 + 𝑎8, 𝑎10 = 1 −

𝑎9𝑠
2, 𝑎11 = 𝑎2𝑎10, 𝑎12 = 𝑎3 + 𝑎10. 

 
 

4. Boundary conditions 
 

The appropriate mechanical and thermal boundary 

conditions are defined by 
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𝑡33(𝑥, 𝑧, 𝑡) = −𝐹1𝜓1(𝑥)𝛿(𝑡), (30) 

𝑡31(𝑥, 𝑧, 𝑡) = 0, (31) 

𝑚32(𝑥, 𝑧, 𝑡) = 0, (32) 

ℎ1

𝜕𝜙

𝜕𝑧
(𝑥, 𝑧, 𝑡) + ℎ2𝜙(𝑥, 𝑧, 𝑡) = 0. (33) 

where 𝛿(𝑡) is the Dirac delta function, 𝐹1is the magnitude 

of the force applied,𝜓1(𝑥) specify the source distribution 

function along 𝑥-axis, ℎ1 → 0 corresponds to isothermal 

boundaries and  ℎ2 → 0  corresponds to insulated 

boundary. 

With the aid of Eqs. (8),(19)-(22), (26)-(27), (29) and 

the boundary conditions (30)-(33), the expressions for the 

components of displacements, stress, couple stress and 

conductive temperature are obtained in the transformed 

domain as 

𝑢̃ =
−𝐹1𝜓1̂(𝜉)

∆
∑(ἰ𝜉 + 𝜆𝑖𝑅𝑖)𝐵1𝑖

4

𝑖=1

𝑒−𝜆𝑖𝑧, (34) 

𝑤̃ =
−𝐹1𝜓1̂(𝜉)

∆
∑(−𝜆𝑖 + ἰ𝜉𝑅𝑖)𝐵1𝑖

4

𝑖=1

𝑒−𝜆𝑖𝑧 , (35) 

𝜑̃ =
−𝐹1𝜓1̂(𝜉)

∆
∑𝑆𝑖𝐵𝑖1

4

𝑖=1

𝑒−𝜆𝑖𝑧, (36) 

𝑡33̃ =
−𝐹1𝜓1̂(𝜉)

𝛽1𝑇0∆
∑𝜆(−𝜉2 + 𝜆𝑖

2) + 2𝜇𝜆𝑖(𝜆𝑖 − ἰ𝜉𝑅𝑖)

4

𝑖=1

− 𝜌𝑐1
2 ((1 − 𝛼1

𝜔∗

𝑐1

(−𝜉2 + 𝜆𝑖
2))𝑆𝑖)𝐵𝑖1 𝑒−𝜆𝑖𝑧, 

(37) 

𝑡31̃ =
−𝐹1𝜓1̂(𝜉)

𝛽1𝑇0∆
∑(𝜇(−2ἰ𝜉𝜆𝑖 − (−𝜉2 + 𝜆𝑖

2))

4

𝑖=1

−
𝛼

4
(
𝜔∗

𝑐1

 )
2

(−𝜉4 − 𝜆𝑖
4 + 2𝜉2𝜆𝑖

2)𝑅𝑖)𝐵𝑖1 𝑒−𝜆𝑖𝑧, 
(38) 

𝑚32̃ =
−𝐹1𝜓1̂(𝜉)𝛼𝜔∗

2𝛽1𝑇0𝑐1
2 ∑(𝜆𝑖

3 − 𝜉2𝜆𝑖)𝑅𝑖

4

𝑖=1

𝐵𝑖1𝑒
−𝜆𝑖𝑧. (39) 

where 

𝐵11 = ∆1/𝐴11, 

𝐵21 = −∆2/𝐴12, 

𝐵31 = ∆3/𝐴13, 

𝐵41 = −∆4/𝐴14, 

𝐴1𝑖 =
𝜆(−𝜉2 + 𝜆𝑖

2)

𝛽1𝑇0
+

2𝜇(𝜆𝑖 + ἰ𝜉𝑅𝑖)

𝛽1𝑇0

−
𝜌𝑐1

2

𝛽1𝑇0
((1 − 𝛼1

𝜔∗

𝑐1
(−𝜉2 + 𝜆𝑖

2)) 𝑆𝑖) 

𝐴2𝑖 =
1

𝛽1𝑇0
(𝜇(−2ἰ𝜉𝜆𝑖 − (−𝜉2 + 𝜆𝑖

2))

−
𝛼

4
(
𝜔∗

𝑐1
 )

2

(−𝜉4 − 𝜆𝑖
4 + 2𝜉2𝜆𝑖

2)𝑅𝑖), 

𝐴3𝑖 =
𝛼𝜔∗

2𝛽1𝑇0𝑐1
2 (𝜆𝑖

3 − 𝜉2𝜆𝑖)𝑅𝑖 , 

𝐴4𝑖 = (−ℎ1𝜆𝑖 + ℎ2)𝑆𝑖 , 

∆= ∆1 − ∆2 + ∆3 − ∆4, 
∆1= 𝐴11𝐴22(𝐴33𝐴44 − 𝐴43𝐴34) − 𝐴11𝐴23(𝐴32𝐴44 − 𝐴42𝐴34)

+ 𝐴11𝐴24(𝐴32𝐴43 − 𝐴42𝐴33), 
∆2= 𝐴12𝐴21(𝐴33𝐴44 − 𝐴43𝐴34) − 𝐴12𝐴23(𝐴31𝐴44 − 𝐴41𝐴34)

+ 𝐴24𝐴12(𝐴31𝐴43 − 𝐴41𝐴33), 
∆3= 𝐴13𝐴21(𝐴32𝐴44 − 𝐴42𝐴34) − 𝐴22𝐴13(𝐴31𝐴44 − 𝐴41𝐴34)

+ 𝐴13𝐴24(𝐴31𝐴42 − 𝐴41𝐴32), 
∆4= 𝐴14𝐴21(𝐴32𝐴43 − 𝐴42𝐴33) − 𝐴22𝐴14(𝐴31𝐴43 − 𝐴41𝐴33)

+ 𝐴14𝐴23(𝐴31𝐴42 − 𝐴41𝐴32), 

and 𝐴𝑖 = −
1

∆
𝐵𝑖1𝐹1𝜓1̂(𝜉). 

 

                                                                              

           

5. Particular cases 
 

(i)If  𝛼1 =  0 in the Eqs. (34)-(39), we obtain the 

components of displacements, stress, conductive 

temperature and couple stress with and without energy 

dissipation and without two temperature. 

(ii) If 𝐾∗ = 0 in the Eqs. (34)-(39), we obtain the 

components of displacements, stress, conductive 

temperature and couple stress for GN theory of type II. 

(iii) If 𝐾∗ ≠ 0 in the Eqs. (34)-(39), we obtain the 

components of displacements, stress, conductive 

temperature and couple stress for GN theory of type III. 

(iv) If 𝐾 = 0 in the Eqs. (34)-(39), we obtain the 

components of displacements, stress, conductive 

temperature and couple stress for classical coupled 

thermoelasticity. 
 

 

6. Inversion of the transformations 
 

To obtain the solution of the problem in physical 

domain, we must invert the transforms in Eqs. (34)-(39). 

Here the displacement components, normal and tangential 

stresses ,conductive temperature and  couple stress are 

functions of 𝑧 , the parameters of Laplace and Fourier 

transforms 𝑠 and 𝜉 respectively and hence are of the form 

𝑓 (𝜉 , 𝑧, 𝑠).  To obtain the function 𝑓(𝑥, 𝑧, 𝑡)  in the 

physical domain, we first invert the Fourier transform using 

𝑓̅(𝑥, 𝑧, 𝑡) =
1

2𝜋
∫ 𝑒−ἰ𝜉𝑥𝑓̂(𝜉 , 𝑧 , 𝑠)

∞

−∞

𝑑𝜉

=
1

2𝜋
∫  |𝑐𝑜𝑠 (𝜉 𝑥)𝑓𝑒 −  𝑖𝑠𝑖𝑛(𝜉 𝑥)𝑓0|𝑑𝜉 

∞

−∞

.  
(40) 

where 𝑓𝑒and 𝑓0 are respectively the odd and even parts 

of𝑓(𝜉 , 𝑧 , 𝑠). Thus the expression (40) gives the Laplace 

transform 𝑓(̅ξ , 𝑧, s) of the function𝑓(𝑥, 𝑧, 𝑡). Following 

Honig and Hirdes (1984), the Laplace transform 

function𝑓(̅𝜉 , 𝑧, 𝑠) can be inverted to 𝑓(𝑥, 𝑧, 𝑡).  
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The last step is to calculate the integral in Eq. (41). The 

method for evaluating this integral is described in Press et 

al. (1986). It involves the use of Romberg’s integration with 

adaptive step size. This also uses the results from successive 

refinements of the extended trapezoidal rule followed by 

extrapolation of the results to the limit when the step size 

tends to zero. 

 

 
7. Numerical results and disscussions 
 

For numerical computations, following Sherief and 

Saleh (2005), we take the copper material as: 

𝜆 = 7.76 × 1010𝐾𝑔𝑚−1𝑠−1   , 𝜇 = 3.86 ×
1010𝐾𝑔𝑚−1𝑠−1,   𝑇0 = 293𝐾, 𝐶∗ = 3831 ×
103𝐽𝐾𝑔−1𝐾−1, 𝛼𝑡 = 1.78 × 10−5𝐾−1 , 𝜌 = 8.954 ×
103𝐾𝑔𝑚−3, 𝐾 = 1, , 𝛼 = .05𝐾𝑔𝑚𝑠−2 ,and 𝐹1 is the force 

of constant magnitude of 1N. 

Software GNU octave has been used to determine the 

components of displacements,conductive temperature, 

normal stress, tangential stress and couple stress  for 

homogeneous isotropic thermoelastic medium with distance 

𝑥  for two different values 𝐾∗ = 0 and 𝐾∗ = 2 𝑊 𝑚−1 

with  two temperature graphically. 

 

 

 

Fig. 1 Variation of displacement u with  the distance 

x(isothermal boundary) 

 

 
Fig. 2 Variation of displacement w with the distance 

x(isothermal boundary) 

 
Fig. 3 Variation of conductive temperature φ with the 

distance x (isothermal boundary) 

 

 
Fig. 4 Variation of normal stress t33 with the distance 

x (isothermal boundary) 

 

 
Fig. 5 Variation of tangential stress t31 with the distance 

x (isothermal boundary) 

 

 

(a) In Figs. 1-6, solid line with centre symbol square 

corresponds to GN theory of type- II, 𝛼1 =  0, solid line 

with centre symbol  circle corresponds to GN theory of 

type- II, 𝛼1 = 0.02,solid line with centre symbol triangle 

corresponds to GN theory of type-III, 𝛼1 =  0 and solid 

line with centre symbol  inverted triangle corresponds to 

GN theory of type-III, 𝛼1 = 0.02 for mechanical force  
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Fig. 6 Variation of couple stress m32 with the distance 

x (isothermal boundary) 

 

 
Fig. 7 Variation of displacement component  u   with   

the distance x (isothermal boundary) 

 

 
Fig. 8 Variation of displacement component w with the 

distance x(isothermal boundary) 

 

 

with isothermal boundaries. 

(b) In Figs. 7-12, solid line with centre symbol square 

corresponds to GN theory of type-II, 𝛼1 =  0, solid line 

with centre symbol  circle corresponds to GN theory of 

type-II , 𝛼1 = 0.02,solid line with centre symbol triangle 

corresponds to GN theory of type-III, 𝛼1 =  0 and solid 

line with centre symbol  inverted triangle corresponds to 

GN theory of type-III , 𝛼1 = 0.02  for mechanical force 

with insulated boundaries. 

 

 
Fig. 9 Variation of conductive temperature φ with the 

distance x (insulated boundary) 

 

 
Fig. 10 Variation of normal stress t33 with the distance 

x(insulated boundary) 

 

 
Fig. 11 Variation of tangential stress t31  with the 

distance x (insulated boundary) 

 

 

In Fig. 1 displacement 𝑢 corresponding to the 𝛼1 = 0 

decreases for the range 0 < 𝑥 < 2  and increases for 2 <
𝑥 < 4 and assumes constant value in the remaining range, 

corresponding to the  𝛼1 = 0.02 variation of 𝑢  is 

oscillatory with the decrease in amplitude as 𝑥 increases 

for GN theory of type –II and displacement 𝑢 decreases 

for 0 < 𝑥 < 10 corresponding to the 𝛼1 = 0  and 𝛼1 =
0.02 in case of  GN theory of type–III. In Fig. 2  
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Fig. 12 Variation of couple stress  m32  with the 

distance x (insulated boundary) 
 

 

displacement 𝑤 follows oscillatory behavior for both the 

𝛼1 = 0  and 𝛼1 = 0.02 with almost equal amplitude of 

the variationfor both GN theory of type –II and GN theory 

of type–III. In Fig. 3 conductive temperature 𝜑 depicts  

oscillatory behavior corresponding to the 𝛼1 = 0  and 

𝛼1 = 0.02 for both GN theory of type–II and GN theory of 

type –III. And variation is descending oscillatory in case 

of𝛼1 = 0.02,GN theory of type–III with highest amplitude 

amongst all cases. In Fig. 4 normal stress 𝑡33 follows 

smooth oscillatory behavior corresponding to both the 

𝛼1 = and 𝛼1 = 0.02 except the amplitude and 

magnitude/value of the variation for GN theory of type –

II.In case of GN theory of type–III, normal stress 

𝑡33 corresponding to both 𝛼1 = 0   and 𝛼1 = 0.02 

decreases smoothly for 0 < 𝑥 < 4  and 8 < 𝑥 <
10,increases in the remaining range. In Fig. 5 variation 

tangential stress 𝑡31  is similar to the variation of 

displacement w except the magnitude of variation for all the 

four curves. In Fig. 6 curve for the variation of couple stress 

𝑚32 corresponding to the 𝛼1 = 0  decreases in the range 

0 < 𝑥 < 4  , increases for 4 < 𝑥 < 6 and assumes 

constant magnitude in rest and  corresponding to the 𝛼1 =
0.02   decreases in the range 0 < 𝑥 < 2  , 4 < 𝑥 <
6  and increases for 2 < 𝑥 < 4 assumes constant 

magnitude in rest for GN theory of type –II. For GN theory 

of type–III, couple stress𝑚32 decreases for the entire range 

of 𝑥 for both the values of two temperature parameters 

with the difference in the amplitude of both the curves. 

In Fig. 7 displacement 𝑢 shows descending oscillatory 

behavior for 𝛼1 = 0  and curve corresponding to 𝛼1 =
0.02 decreases for 0 < 𝑥 < 4 and increases for the rest of 

the range for GN theory of type –II and decreases with the 

increase in 𝑥 for GN theory of type–III. In Figs. 8 and 10 

characteristic curves for the displacement 𝑤 and tangential 

stress𝑡31 resp. follow oscillatory trend. In Fig. 9 conductive 

temperature 𝜑 follow oscillatory trend but with difference 

in the magnitude for both the curves for 𝛼1 = 0  and  

𝛼1 = 0.02 corresponding to the GN theory of type–II. And 

corresponding to the GN theory of type–III conductive 

temperature decreases with the increase in distance 

𝑥 corresponding to 𝛼1 = 0, and for 𝛼1 = 0.02it decreases 

for 0 < 𝑥 < 8 and increases in the rest. In Fig. 11 normal 

stress 𝑡33follow oscillatory trend for all the cases except 

that magnitude is smaller in case of  GN theory of type–

III. In Fig. 12 couple stress 𝑚32  shows descending 

oscillatory trend for GN theory of type–II,𝛼1 = 0.  For  

GN theory of type–II , 𝛼1 = 0.02curve assumes constant 

magnitude. And corresponding to the GN theory of type–

III,𝛼1 = 0  decreases for  0 < 𝑥 < 4 and corresponding 

to the GN theory of type–III,𝛼1 = 0.02 decreases for  0 <
𝑥 < 8, and both curves increases for the rest. 

 

 

8. Conclusions 
 

From the graphs, it is clear that there is a significant 

impact of two temperature , GN theory of type–II and GN 

theory of type–III on the deformation of various 

components of stresses, displacement, conductive 

temperature, couple stress. The effect of two temperature in 

isotropic modified couple stress thermoelastic for insulated 

and isothermal boundaries, with and without energy 

dissipation has an imperative impact in the investigation of 

the deformation of the body. As distance 𝑥 varied from the 

point of application of the source, the components of 

displacements, conductive temperature, normal stress, 

tangential stress and couple stress pursue an oscillatory 

pattern or smoothly decreasing behaviour . It is seen that as 

the disturbances travel through different constituents of the 

medium, the variations of displacement components, 

normal stress 𝑡33 , tangential stress 𝑡31  and conductive 

temperature 𝜑, it experiences  changes, resulting in an 

varying/ non- uniform pattern of curves. The results of this 

problem exceptionally valuable in the two dimensional 

problem of homogeneous isotropic thermoelastic solid with 

two temperature which has various geophysical and 

industrialised applications and helpful for designers of new 

materials. 
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