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1. Introduction 
 

The theory of micropolar materials has been found to be 

useful when working with a class of substances that 

demonstrate particular microscopic effects arising from the 

local system and the micro-motions of the media. The linear 

theory of micropolar elasticity has been found to be a 

sufficient principle to stand for the behavior of such 

materials. In the case of ultrasonic waves, such as the elastic 

vibrations that are differentiated by high frequencies and 

minute wavelengths, the effects of the body microstructure 

become considerable. The established effects of micro-

structure lead to the advancement of fresh forms of waves 

that are not included in the classical theory elasticity. 

Materials such as composites, metals, soils, polymers, 

concrete, and rocks are distinctive media with micro-

structures. In general terms, the majority of artificial and 

natural materials such as geological, engineering, and bio-

logical media have micro-structures. The developers of the 

linear theory of micropolar elasticity (Eringen, 1966 and 

Eringen, 1970) viewed the principle as a theory of couple 

stress.  

Marin (1998, 2016, and 2017) explained various types 

of challenges in the concept of micro-polar of elastic solid 

with negations. The concept of linear elastic materials with  
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negations is among the most crucial generalizations of the 

conventional principle of elasticity. This concept has been  

found to be critical in the assessment of different types 

of biological and geological elements in which the elastic 

principle is sufficient. This hypothesis focuses on elastic 

materials that consist of a distribution of minute porous 

(voids), in which the small porous’ volume is incorporated 

among the kinetics changeable, and in the restricting case of 

evaporating this volume; it decreases to the traditional 

concept of elasticity. The principle of thermoelastic 

elements with voids and with limited energy of indulgence 

was initiated by Cicco and Diaco (2002). In addition, Puri 

and Cowin (1985) explored the characteristics of plane 

waves in a linear elastic component with small porous 

(voids). In 1986, Iesan demonstrated a linear concept for a 

thermoelastic element with voids. Iesan developed the 

primary equations and demonstrated the exceptionality of 

the solution, reciprocity connection, and variation 

description of the solution in the dynamical principle. 

Hobiny and Abbas (2020) described the fractional-order 

thermoelastic wave survey in two different mediums that 

consisted of small porous.  

According to Nunziato and Cowin (1979), waves are in 

rotational elastic solid with voids. Dhaliwal and Wang 

(1994) discussed the sphere of influence concept in the 

linear principle of elastic elements with voids. Scarpetta 

(1995), on the other hand, explored the good posedness 

assumptions of linear elastic components with voids. 

Additionally, Kaddari et al. (2020) initiated research on the 

structural behavior of the functionality of the graded porous 

plates based on elastic knowledge by exploiting a new 

quasi-3D mode. Equally, Arifa et al. (2017) investigated the 

characteristics of plane harmonic waves subjected in a 

rotational medium under the influence of micro-temperature 
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and double-phase-lag thermoelasticity. The influence of 

inclined load and hall current in diagonally isotropic 

magneto-thermoelastic revolving medium with the order of 

functionality promotes heat transmission due to the normal 

force (Lata and Kaur 2018a, b). Al-Basyouni et al. (2020) 

carried out an investigation that focused on the influence of 

revolving on the thermal stress wave conveyed in a non-

homogenous viscoelastic medium. Lata and Singh (2019) 

examined the implication of nonlocal factor on nonlocal 

thermoelastic rock subjected to an inclined load.  
Abo-Dahab et al. (2019), on the other hand, explored 

the influence of gravity and revolving on an electro-
magneto-thermoelastic object with both voids and diffusion 
through dual-phase-lag and Lord-Shulman models. Mirzaei 
et al. (2019) conducted a steady-state analysis to examine 
the creep evaluation of rotating functionality that was 
graded by a plain blade. Abbas and Marin (2017) also 
assessed the systematic solution of thermoelastic 
association in a half-space using the pulsed laser heater. 
Explanation regarding the partition of energies was 
provided by Marin et al. (2019). In this case, the authors 
indicated that the energy for the backward time is an issue 
of thermoelastic components with a dipolar system. The 
severity of complex circular plates by radial ribs was 
enhanced by Itu et al. (2019). Ellahi et al. (2018) explored 
the effects of a shiny film coating on different fluid flows of 
revolving disks balanced with nano-sized gold and silver 
particles. Thermally established peristaltic propulsion of 
magnetic object components in bioarchaeological liquids 
was studied by Bhatti et al. (2018). In addition, Shahid et 
al. (2020) demonstrated the mathematical assessment of the 
swimming of gyrotactic micro-organisms in none liquids 
through absorbent objects over an outlined facade. The 
activation energy for the transfer of gyrostatic micro-
organisms in the magnetized none liquids and how they 
pass through a porous place was examined by Bhatti et al. 
(2020). 

A three-phase-lag formulation of the linearized principle 
of dual-thermoelasticity was created based on the heat law 
considerations that included the thermal displacement and 
temperature gradient as among the constitutive factors. 
Estimation to an alteration of the Fourier law with three 
distinctive transformations for the heat flux vector, for the 
thermal displacement gradient as well as for the temperature 
gradient replaced the existing Fourier law. The 
generalization of the dual concept of thermoelasticity was 
generated by Chandrasekharaiah (1987) and Tzau (1995) 
and was referred to as the double phase-lag thermoelasticity 
model. Tzou (1995) took into account the micro-structural 
influence in the delayed reaction in time in the microscopic 
model that is created by considering the amplification of the 
lattice temperature that was held up due to phonon-electron 
associations of the macroscopic stage. In this case, a 
macroscopic lagging reaction between the heat flux and 
temperature gradient appeared to be a potential result based 
on the progressive interactions. However, Tzou (1995) 
established a two-phase lagging model for both temperature 
gradient and heat flux vector. The author took to account 
the constitutive equations that assist in explaining the 
lagging behavior in heat transfer in solid materials. Lately, 
Roy Choudhuri (2007) introduced a more generalized 
numerical formulation for a double thermoelasticity 
principle that involves a three-phase lagging variable 

including Thermo displacement gradient, temperature 
gradient as well as heat flux vector. This formulation was 
developed by reducing the previous model to suit particular 
cases. This specialized formulation indicated that heat flux 
is transformed as  

*( , ) [ ( , ) ( , )qp t K T p t K p t           q  where 

*
K  stands for the additional material constant and 

( )T    represents the thermal displacement gradient. 

The developed equation provides considerably different 

outcomes when used to examine some pertinent, applicable 

issues, particularly those challenges associated with heat 

movement, short and high heat fluxes. In such a case, the 

hyperbolic equation suggests that the lagging characteristics 

in heat transfer in solid materials should not be under-

estimated. It is worth noting that three-phase-lag 

formulation is critical is assessing issues related to exo-

thermic catalytic responses, nuclear boiling, and phonon-

scattering and phonon-electron interactions among others 

where the delay period q  helps to include the thermal 

wave conduct. In addition, the phase-lag   helps to 

obtain the influence of phonon-electron interactions.  The 

other delay period   is efficient since it makes the 

thermal displacement gradient to be examined as a 

constitutive factor. Sur and Kanoria (2014, 2015) and 

Othman et al. (2015, 2017, and 2019), explained the main 

problems associated with the three-phase-lag model and the 

issues connected to the concept of micropolar thermo-

elasticity. Accordingly, Othman et al. (2014) outlined the 

influence of revolving and original stress on a generalized 

micropolar thermoelastic object with the three-phase 

lagging model. 
The current study objects to examine the influence of 

revolving on isotropic, homogeneous, the thermally 
micropolar elastic object will small porous according to the 
3PHL formulation and thermoelasticity with energy 
dissipation (G-N III) principle. The results of the analysis 
were acquired by employing normal mode evaluation. The 
results were also compared with the three principles in the 
absence and presence of rotation and two distinctive values 
of relaxation periods. The circulations of all the targeted 
variables were graphically represented.  
 

 

2. Formulation of the problem 
 

We consider a homogeneous and micropolar thermo-

elastic medium with voids rotating uniformly with angular 

velocity Ω n , where n  is a unit vector representing 

the direction of the axis of rotation. Schoenberg and Censor 

(1973) show that, the displacement equation of motion in 

the rotating frame has two additional terms: the centripetal 

acceleration ( ) Ω Ω u due to the time-varying motion 

only and the Coriolis acceleration 2( )u  where 

( , 0, )u wu  is the dynamic displacement vector, the 

micro-rotation vector is 2(0, ,0)  and (0 0),Ω,Ω  

is the angular velocity. We take the rectangular Cartesian 

coordinates with the origin on the surface y=0 and z-axis 

normally into the medium, which is represented by z≥0. If 
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we restrict our analysis parallel to xz- plane.  
 

2.1 Constitutive relations: (El-Karamany and Ezzat 
2013) 

 

 
(1) 

 
(2) 

 
(3) 

 

2.2 Equation of motion: (Othman et al. 2015) 
 

 
(4) 

Using Eqs. (1) and (3), Eq. (4) can be written as: 

 

(5) 

 

2.3 Heat conduction equation with 3PHL model 
(Choudhuri 2007) 

 

 

(6) 

 

2.4 Micropolar equation  
 

 
(7) 

Using Eqs. (1) – (3), Eq. (7) take the form: 

 

(8) 

 

2.5 Voids equation 
 

 
(9) 

Then, the governing equations for a micropolar thermo-

elastic medium with voids under the effect of a rotation 

with 3PHL model can be rewritten as, 

 (10) 

 (11) 

 
(12) 

 
(12) 

 
(13) 

 
(14) 

Also, the stress tensor and couple stress tensor 

components take the form:     

 
(15) 

 
(16) 

 
(17) 

 (18) 
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(24) 

For simplifications we shall use the following non-
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(27) 

 

 

(28) 

 

(29) 

 

(30) 

Also, the stress tensor components (15)-(19), using (25), 

become 
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Similarly, the couple stress tensor components (20)-(23), 

using (25), take the form 
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We introduce the displacement potentials 1( , , )q x z t  and 

2( , , )q x z t which are related to displacement components as 
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3. Normal mode analysis 
 

The solution of the considered physical variable can be 

decomposed in terms of normal modes as the following 
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2 * * *
2 3 2 2 1 3 2[ D ] 0,a b q b q a    

2 * 2 * *
4 5 6 7 1 8[b D ] [ D ] 0,b T b b q b    

2 * 2 *
9 2 11 10 2[D ] [ D ] 0,b a b q   

2 * 2 * *
11 15 12 1 16[D ] [ D ] 0.b a b q a T    
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(51) we obtain 

 
(52) 

The solution of Eqs. (52) - (56) are given by 

 

(53) 

where Mn  is some constant and 
2
nk , ( 1, 2,3, 4,5)n   are 

the roots of the characteristic equation of Eq. (52). 

In order to obtain the displacement components u, w 

using Eqs. (46) and (53) into Eq. (40), respectively, we get 

 

(54) 

 
(55) 

The stresses components are    

 

 

(56) 

 

(57) 

 

 

(58) 

 

 

(59) 

 

 

(60) 

The micro rotation components are  

 

(61) 

 

(62) 

 

(63) 

 

(64) 

where , 1,2,3, ,21, , 1,2,3, ,12i ia i b i  are given in 

Appendix A and A, B, C, E, F, Hin, i= 1,2,34 are given in 

Appendix B, 
 

 

4. Boundary conditions 
 

In order to determine the parameterM1, M2, M3, M4, M5   

we consider the following boundary conditions at z=0.  

(1)  The condition of the voids volume fraction fields 

constant in z direction. 

 
(65) 

(2) The thermal condition the half-space subjected to 

thermal shock applied to the boundary. This leads to  

 
(66) 

(3) The tangential a stress condition (stress free) then 

 (67) 

(4) The normal stress condition (mechanical stress) is 

constant force so that 

 
(68) 

where f1 is the magnitude of the applied force in the half-

space. 

(5) The couple stress tensor condition 

 
(69) 

Applying Eqs. (65)-(69) in (53), (58), (59) and (62) we 

get: 

 

(70) 

 

(71) 

 

(72) 

 

(73) 

 

(74) 

After applying the inverse of matrix method for the 

above equations, the values of the constants 

n (n 1,2,3,4,5)M   can be obtained by using the Matlab 

10 8 6 4 2 * * * * *
1 2 2(D D D D D )( , , , , ) 0.A B C E F q q T       

5
* * * * *
1 2 2 1 2 3 4

1

( , , , , )(z) (1, , , , ) ,
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n n n n n
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
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*

1

1

[ ] ,nk z
n n n
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w k iaH M e
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

  

5
*

1

1

[ ] .nk z
n n

n

u ia k H e




 

5
* 2 2 2

17 1 18

1

[ ( ) ( )xx n n n

n

a a iak H a k a


    

1 4 2 ] ,nk z
n n na H H M e


 

5
* 2 2

18 1 4 2

1

[ ( ) ] ,nk z
yy n n n n

n

a k a a H H M e 



   

5
* 2 2

19 1 2 19 2 1

1
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n

a k H ia a a k a a H


   

3 3 ] ,nk z
n na H M e




5
* 2 2 2

17 1 18

1

[ ( ) ( )zz n n n n

n
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

   

1 4 2 ] ,nk z
n n na H H M e


 

5
* 2

2 1 2 19

1

[ ( )zx n n n

n
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program. 

 

(75) 

where Sji, j=1,2,3,…,9 are given in Appendix B.                                                                                                               

Hence; the expressions of displacements, stresses, 

temperature distribution, micro-rotation and the change in 

the volume fraction field of micropolar generalized 

thermoelastic medium with voids in the present of rotation 

in the context of three-phase-lag theory of thermoelasticity 

also, can be obtained. 

 

 

5. Particular and special cases of thermoelastic 
theory 
 

We discuss some special cases for different values of the 

parameters considered in the problem. 

 

5.1 Equations of the 3PHL model  
 

When , , 0q     , *, 0,K K  and the solutions are 

always (exponentially) stable if 
**2

q
q

K
K

  


   as in 

Quintanilla and Racke (2008). 

 

5.2 Equations of the thermoelasticity with energy 
dissipation (G-N III) theory  
 

When,
* 0, 0,K K      0.q      

 

 

6. Numerical results and discussions 
 

Suppose that the medium is a magnesium crystal 

micropolar material like material subjected to mechanical 

and thermal disturbances for numerical calculations. The 

physical constant used as Othman et al. (2015) are 

 

 

 

The void parameters are taken as (Othman et al. 2015) 

  

  

  

   

Since, we have 

1 2i ,s     1
2 2[cos( ) i sin( )]

tste e t t


    and for small 

values of time we can take 1s   (real). The software 

Matlab 7.0.4 has been used to make the calculations. The 

computations carried out for a=0.4 m, x= 0.1 m, a= 0.4 m, x 

= 0.1 m, ζ1 = 0.9 rad/s, ζ2 = 3.7 rad/s, f=0.01, f1=0.01 and 0 

≤ z ≤ 4.  

The comparisons have established for three cases: 

(i) With two values of rotation parameter (Ω=0.18, 0.3) 

in the context of (G-N III) theory and (3PHL) model.   

(ii) With four values of a phase-lag of the heat flux τq  

( 0.3, 0.4,0.6,0.8)q   at Ω=0.3. 

(iii) With four values of a phase-lag of temperature 

gradient ( 0.4, 0.5,0.6,0.7)     at Ω=0.3.   

The computations are carried out for the non-

dimensional time t=0.02 on the surface plane 0.1.x   The 

numerical technique outlined above is used for the 

distribution of the real part of the non-dimensional 

displacement w, the non-dimensional temperature T, the 

couple stress tensor component mzy the stress components 

σzz, σxz, the change in the volume fraction field ψ, and the 

micro rotation component ϕ2 with distance z for the 

problem.   
 

6.1 The effect of rotation parameter  
 
Figs. 1-7 show comparisons among the change in the 

volume fraction field ψ, the micro-rotation ϕ2, the couple  

 

 

Fig. 1 Distribution of the change in the volume fraction 

field ψ versus z 

 

 

Fig. 2 Distribution of the Micro rotation component ϕ2 

versus z 

1
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Fig. 3 Distribution of the couple stress tensor component 

mzy versus z 

 

 

Fig. 4 Distribution of the stress component σzz versus z 

 

 

Fig. 5 Distribution of the stress component σxz versus z 

 

 

Fig. 6 Distribution of the temperature T versus z 
 

 

stress mzy, the force stress components σzz, σxz, the  

 

Fig. 7 Distribution of the displacement component w 

versus z 
 

 

temperature T, and the displacement component w for 

different values of Ω (Ω=0.18, 0.3). 

Fig. 1 explains the distribution of the change in the 

volume fraction field ψ against the distance z. It is noted 

that, the values of the change in the volume fraction field ψ 

for Ω=0.3 are small compared to those for Ω=0.18 in the 

range 0 0.3;z   large in the range ψ, while the values are 

the same for two theories at 2.5.z   Fig. 2 exhibits the 

distribution of the micro-rotation component ϕ2 versus z. 

This figure shows that, all curves start from negative values 

for Ω=0.18, 0.3 and the rotation parameter has a decreasing 

effect. In Fig. 3 the distribution of the couple stress tensor 

component mzy begins from zero at 0z   for (Ω=0.18, 

0.3), which satisfy the boundary condition. It is clear that, 

the values of couple stress tensor component Ω=0.18 are 

large compared to those for Ω=0.3 for mzy in the range

0 0.6,z   but small in the range 0.6 1.4z  ; while 

the values are the same for the two theories when 1.4z  . 

Fig. 4 displays the distribution of the stress component σzz 

versus z. The values of stress component σzz for Ω=0.3 are 

small compared to those for Ω=0.18 in the range 3z   , 

while the values are the same for the two theories when 

3.z   Fig. 5 depicts the variation of the stress component 

σxz against the distance z, from this figure we see that, all 

curves begin from zero at z=0 for Ω=0.18, 0.3, which 

satisfy the boundary condition. The values of stress 

component σxz for Ω=0.3 are large compared to those for 

Ω=0.18 in the range 0.7;z    but small in the range

0.7 2.5;z   while the values are the same for two 

theories when 2.5.z   Fig. 6 exhibits the values of the 

temperature T against the distance z; this figure shows that, 

all curves start from the same value at z=0, which agree 

with the boundary condition. In the context of the two 

theories, the values of the temperature for Ω=0.3 are large 

compared to those for Ω=0.18 in the range 0.3;z    

small in the range 0.3 2.6z   while the values are the 

same for the two theories when 2.6.z   Fig. 7 displays 

the distribution of the displacement component w versus z. 

It is clear that, the rotation has an increasing effect. 
 

6.2 The phase-lag of the heat flux effect 
 

Figs. 8-14 show the comparisons among the change in  
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Fig. 8 Distribution of the change in the volume fraction 

field ψ versus z 
 

 

Fig. 9 Distribution of the Micro rotation component ϕ2 

versus z 

 

 

Fig. 10 Distribution of the Micro rotation component ϕ2 

versus z 

 

 

Fig. 11 Distribution of the stress component σzz versus z 

 

Fig. 12 Distribution of the stress component σxz versus z 

 

 

Fig. 13 Distribution of the temperature T versus z 

 

 

Fig. 14 Distribution of the displacement component w 

versus z 

 

 

Fig. 15 Distribution of the change in the volume fraction 

field ψ versus z 
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Fig. 16 Distribution of the micro rotation component ϕ2 

versus z 

 

 

the volume fraction field ψ, the micro-rotation ϕ2, the 

couple stress mzy, the force stress components σzz, σxz, the 

temperature T and the displacement component w  against 

the distance z in the (3PHL) model, for different values of a 

phase-lag of the heat flux τq, namely (τq= 0.3, 0.4, 0.6, 0.8), 

we can see that: the parameter τq has significant effects on 

all the field quantities, the wave has a finite speed of 

propagation and the (3PHL) model agrees with the 

generalized thermoelasticity. Fig. 8 shows the distribution 

of the change in the volume fraction field ψ, against the 

distance z. It is observed from this figure that the effect of 

τq, is manifest, where the values of the solutions increase 

with the increase of τq, in the range 0 0.3;z   while 

decreasing in the range 0.3 2.4.z   Fig. 9 exhibits the 

distribution of the micro-rotation component ϕ2, versus .z  

This figure shows that, the parameter of a phase-lag of the 

heat flux τq has a decreasing effect. Fig. 10 shows the 

distribution of the couple stress tensor component mzy 

against the distance z. It is clear that the magnitude of the 

couple stress tensor component is directly proportional to 

the parameter mzy, τq, increase with the increase of the value 

while, they in τq, for z>0. Fig. 11 displays the distribution of 

the stress component σzz versus z. The values of stress 

component σzz, increase with the increase of the value τq, for 

z>0. Fig. 12 explains the variation of the stress component 

σxz against the distance z; from this figure we see that the 

values of σxz decrease with the increase of τq in the range 

0 0.4;z   and increase in the range 0.4 2.5,z   

while the values of σxz are the same when 2.5.z   Fig. 13 

exhibits the values of the temperature T against the distance 

z; this figure shows that, the magnitude of the temperature T 

is directly proportional to the parameter τq, where, they 

increase with the increase of the value of τq, for 0.z   Fig. 

14 displays the distribution of the displacement component 

w versus z. It is clear that, the phase-lag of the heat flux τq, 

has a decreasing effect. 

 

6.3 The phase-lag of temperature gradient effect 
 
Figs. 15-21 show the comparisons among the change in 

the volume fraction field ψ, the micro-rotation ϕ2, the 

couple stress mzy, the force stress components σzz, σxz the 

temperature T and the displacement component w against  

 

Fig. 17 Distribution of the couple stress tensor 

component mzy versus z 

 

 

Fig. 18 Distribution of the stress component σzz versus z 

 

 

Fig. 19 Distribution of the stress component σxz versus z 

 

 

Fig. 20 Distribution of the temperature T versus z  
 

 

the distance z in the (3PHL) model, for different values  
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Fig. 21 Distribution of the displacement component w
versus z  

 

 

Fig. 22 Three-dimensional curve distribution of the 

change in the volume fraction field ψ versus the distances 
 

 

Fig. 23 Three-dimensional curve distribution of the stress 

component σxz versus the distances 
 

 

Fig. 24 Three-dimensional curve distribution of the 

temperature T versus the distances 

of a phase-lag of temperature gradient τθ, namely τθ (τθ = 

0.4, 0.5, 0.6, 0.7) at Ω=0.3. We can see that: the parameter 

τθ has a significant effect on all the field quantities. 

In Figs. 15, 16 and 21 respectively, the magnitude of the 

change in the volume fraction field ψ the micro-rotation 

component ϕ2, and the displacement component w, is 

directly proportional to the parameter τθ, while, they 

increase with the increase of the value τq, for z > 0. Figs. 17, 

18, 19 and 20 depict the distributions of couple stress tensor 

component mzy, the stress components σzz, σxz and the 

temperature T in (3PHL) model for various values of τθ. It is 

observed from these figures that the effect of τθ, is manifest, 

where the values of the solutions are increasing with the 

decrease of τθ. 

 

6.4 The 3D surface curves  
 
Figs. 22-24 are giving 3D surface curves for the 

physical quantities i.e., of the change in the volume fraction 

field ψ, the stress component σxz and the temperature T for 

the effect of rotation on micropolar thermoelastic medium 

with voids in the context of the (3PHL) model. These 

figures are very important to study the dependence of these 

physical quantities on the vertical component of distance.  
 

 

7. Conclusions 
 

According to the above results, we can conclude that: 

• The rotation has an observable effect on the 

distribution of the physical quantities as shown in the 

previous analytical solution and discussion.  

• The phase-lag of the heat flux parameter and the 

phase-lag of temperature gradient have a great effect on the 

distribution of the considered physical quantities.  

• The physical quantities are satisfying all the boundary 

conditions. 

• The used method is applicable to a wide range of 

thermodynamics and thermoelastic problems. 

• The obtained results of this article are of great interest 

in material science and designers of new materials 

researchers. Moreover, the study of relaxation time and the 

rotation are useful to improve the conditions of oil 

extractions and drilling. 
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Nomenclature 
 
λ, μ The Lamé constants 

ρ The material density 

j Microinertia 

τq The phase-lag of heat flux 

T0
 

The reference temperature 

  Micro rotation vector 

, ,x y z  The Cartesian coordinates variables 

t The time variable 

αt The coefficient of linear thermal expansion 

e Dilatation 

mij Couple stress tensor components 

σij Stress tensor components 

ψ Change in volume fraction field 

εij Strain tensor components 

K The additional material constant 

Fi Body force 

Ce The specific heat at constant strain 

δij Kronecker delta 

K* Thermal conductivity 

ε0 Electric permeability 

μ0 Magnetic permeability 

Ω Angular velocity 

τθ The phase-lag of temperature gradient 

2 Laplace operator 

  The volume thermal expansion Permutation 

tensor 
ijr  

τv Phase lag of thermal displacement gradient 

τq Phase lag of heat flux 

, , ,k     The material constants due to presence of 

micropolar 

α*, η*, ω*, 

β*, m, ξ* 

The material constants due to presence of voids 

u The displacement vector, ( , , ),u v wu ,u v and 

w are the displacement components 

T Absolute temperature (temperature above the 

reference temperature T0) such that

0 0( ) 1T T T   
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