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1. Introduction 
 

Rock explosions are always associated with a certain 

extent of damage around the blast hole (Tripathy et al. 

2016). When the explosive charge is fired, the induced 

waves rapidly expand through the surrounding environment 

and severely influence the rock media around the explosion 

point (Kostic et al. 2013). Accordingly, these waves cause 

the initial borehole to widen and create a set of dense and 

interconnected cracks around the borehole called the 

“crushed zone.” A few of these cracks penetrate more into 

the surrounding area and go beyond the crushed zone 

forming a “cracked zone.” Beyond the cracked zone, the 

impact of explosion is mostly observed as ground 

vibrations, called the “seismic zone.” Thus, the single-hole 

explosion causes (Esen et al. 2003, Lu et al. 2016, Liu et al. 

2017): 

• the blast hole to expand, 

• the crushed zone to form around the blast hole, 

• the radial cracks to penetrate through the rock causing  
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Fig. 1 Crack formation around a blast hole 

 

 

a cracked zone, and finally, 

• the explosion-induced waves to influence the 

surrounding environment causing some ground vibrations. 

Fig. 1 illustrates a schematic plan of the above-

mentioned zones around the explosion point. 

The induced radial cracks, especially in the perimeter of 

excavation areas, may impose implementation problems, 

increase the excavation cost, and raise instability issues 

(Sun 2013). Thus, optimizing the cracked zone has attracted 

a lot of attention, and a large body of research has been 

conducted to estimate the size of the explosion-induced 

damaged area in rock media (Donze et al. 1997, Zhu et al. 

2007, Sharafisafa et al. 2014). Ash (1963, parts 1 and 2) 

proposed some experimental models to control the 

undesired outcomes and improve explosion plan. Based on 

these models, the radius of the damaged area is calculated 
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demonstrated around the blast point. 
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as a coefficient of the blast hole radius by using the relative 

density of the rock mass and the relative explosive power. 

In addition, Drukovanyi et al. (1973) performed some plane 

strain analyses for rock mass explosion and determined the 

distribution of damage zones around the blast hole by using 

Il’yushin’s model for materials and assuming a 

homogeneous environment. In another study, Xu et al. 

(2004) used several laboratory models to study the effect of 

radial strains generated in rock-like media and subsequent 

damage. Further, Hustrulid and Johnson (2008) proposed a 

model to control the damage caused by both coupled and 

decoupled explosions. Ma et al. (2011) employed a 

numerical simulation in their study to investigate the 

pressure load excreted on the blast hole wall. In addition, 

they studied the damage generated around the explosion 

point with three different criteria, including Peak Particle 

Velocity (PPV), Effective Strain (EF), and Damage 

Criterion. Trivino and Mohanty (2015) implemented a 

combined FEM-DEM approach to evaluate the damage 

caused by a single-hole explosion in the rock environment. 

Then, they presented an experimental model and described 

the results, compared to the numerical model. 

Considering all the above-mentioned studies, the results 

have more focus on a mean of the measured damage sizes. 

However, a relatively large difference was observed 

between the means. In fact, the blasting process has not 

been recognized well because both rocks and explosives are 

regarded as complex materials (Nagy et al. 2010). Aleatory 

and/or epistemic uncertainty is applied to both the rock and 

explosives, leaving the deterministic models unable to 

provide a unique and comprehensive estimate of failure in 

rock explosions. Accordingly, a probabilistic approach was 

adopted in this paper to address the induced damage. In this 

approach, the involved parameters were first modeled as 

random variables. This issue reminds us of considering a 

part of uncertainty associated with the input parameters in 

our calculations. Then, a reliability analysis was used to 

calculate the probability of exceedance for cracked zone 

radius around the blast hole, and to develop the exceedance 

risk curve. A theoretical foundation for the reliability 

analysis is explained below. 
 

 

2. Modeling 
 

In order to perform a reliability analysis, selecting a 

primary model to estimate the dimension of induced 

damage seems necessary. In the present study, Senuk’s and 

modified Ash’s models were implemented for this purpose 

(Senuk 1979, Hustrulid 2010). Table 1 indicates the details 

and proposed relations in these two models, where r0 

represents borehole radius, ρ0 indicates explosive density, 

DCJ is regarded as ideal detonation velocity, T presents the 

tensile strength of the rock material, de/dh shows the ratio of 

explosive diameter to borehole diameter called “decoupling 

ratio,” RBS is the relative bulk strength (compared to 

ANFO), and ρr is described as the density of rock. 

Based on the primary models, the rock and explosive 

characteristics are used as input variables to calculate the 

size of the cracked zone. However, in order to turn the 

deterministic model into a probabilistic model and  

Table 1 The deterministic models used for approximating 

the cracked zone radius 

Model 
Target 

parameter 
Formula 

Senuk’s Model 

(Senuk 1979) 

Cracked 

zone radius )8/(12.1 2

00 TDrr CJc 
 

Modified Ash’s 
Model (Hustrulid 

2010) 

Cracked 

zone radius r

h

e
c RBS

d

d
rr /65.225 0

 

 

Table 2 Characteristics of explosive materials 

Sample Explosive 
ρ0 

(g/cm3) 
DCJ 

(m/s) 
Source 

1 ANFO 1 0.803 5016 Esen et al. (2003) 

2 WR ANFO 0.994 5829 Esen et al. (2003) 

3 ANFO 2 0.81 4077 Esen et al. (2003) 

4 ~ 1.6 7000 
Amnieh and Bahadori 

(2012b) 

5 PETN (10 gr detocord) 1.4 6996 Changshou Sun (2013) 

6 ANFO 0.78 4052 Yilmaz and Unlu (2013) 

7 Emulsion 1.25 5582 Yilmaz and Unlu (2013) 

8 ~ 1 3600 Lu et al. (2014) 

9 BA9 1.11 5743 
Torbica and Lapčević 

(2016) 

10 BA1_1 1.17 5879 
Torbica and Lapčević 

(2016) 

11 BA10_1 0.94 5135 
Torbica and Lapčević 

(2016) 

12 BA1_2 1.16 5842 
Torbica and Lapčević 

(2016) 

13 BA2_1 1.07 5459 
Torbica and Lapčević 

(2016) 

14 Gurit 17 1 ~ Iverson et al (2013) 

15 Emulit 22 1.13 5000 Iverson et al (2013) 

16 ANFO 0.85 ~ Iverson et al (2013) 

17 Dynamex 32 1.45 4500 Iverson et al (2013) 

18 emulsion 1.3 4000 Xie et al. (2016) 

19 
TITAN 2030 (Heavy 

ANFO) 
1.1 ~ Blasting Accessories 

20 
TITAN 3030 (Heavy 

ANFO) 
1.05 ~ Blasting Accessories 

21 
TITAN 4030 (Heavy 

ANFO) 
1.1 ~ Blasting Accessories 

22 
TITAN 5040 (Heavy 

ANFO) 
1.21 ~ Blasting Accessories 

23 TITAN 5060 (Blend) 1.32 ~ Blasting Accessories 

 

Table 3 Means and standard deviations for random variables 

Parameter Mean Standard deviation 

r0 (mm) 80 30 

ρ0 (gr/cm3) 0.95 0.2 

DCJ (m/s) 5000 750 

T (Pa) 5,000,000 2,000,000 

RBS 1.15 0.1 

ρr (gr/cm3) 2.5 0.25 

 

 

formulate the reliability problem, it is necessary to establish  
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a limit state function (LSF) and define all the involved 
parameters as random variables with certain means and 
standard deviations. For this purpose, the LSF was 
considered as follows:  

,LSF QR 
 

(1) 

where R represents the desired radius of the damage zone 

(e.g., rd=2500 mm), and Q is regarded as the estimated 

length of the radial crack obtained from primary models 

(rc). After substituting the two primary models into Eq. (1), 

two LSFs were defined as follows: 

,)8/(12.1LSF 2

001 TDrr CJd 
 

(2) 

./65.2)/(25LSF 02 rhed RBSddrr 
 

(3) 

Now, the probabilistic characteristics of the involved 

variables should be defined. These characteristics play an 

important role in uncertainty modeling. In order to match 

the modeling of random variables with real-world data, 23 

caseloads were selected from the literature and the 

characteristics of the explosive materials, including ρ0 and 

DCJ, were listed in Table 2. Then, by providing the 

histogram for each set of data, it was shown that the normal 

distribution function could be a proper indicator for the 

modeling of random variables (Fig. 2). Additionally, 

referring to the statistical study conducted by Perras and 

Diederichs (2014) and the histogram provided in their 

study, it can be found that the tensile strength of rock mass 

can also be assumed to follow a normal distribution 

function with a mean close to the one assumed in our paper.  

Regarding the other parameters, no direct 

recommendation is found in the literature about their 

probabilistic characteristics, and they can take different 

values depending on the project specification and 

implementer decision. Therefore, the uniform distribution 

function that provides a similar probability for different 

values can be a choice. However, in this paper, a normal 

distribution was used, with means and standard deviations 

covering their most common values in real projects. The 

probabilistic characteristics of all variables are shown in 

Table 3. 

There is still one parameter (de/dh) remaining. This 

parameter indicates the ratio of the explosive diameter to  

 

 

the borehole diameter called the “decoupling ratio,” and this 

addresses a type of explosion where the explosive charge is 

not completely fit into the blast hole and a gap is available 

between them (Zhang 2016). By decreasing the decoupling 

ratio, an increase takes place in the gap, and a reduction 

happens in the amount of energy transferred from the 

explosion to the surrounding rock environment. This issue 

can significantly decrease the induced damage around the 

blast hole (Britton 1987, Talhi and Bensaker 2003, Wang 

2017). Here, we begin with a full-charge explosion 

assuming de/dh=1. In Section 4.3, the impact of the 

decoupling ratio will be discussed in detail. 
 

 

3. Analysis and results 
 

3.1 Exceedance probability 
 

After establishing LSFs and defining the characteristics 

of random variables, the Monte Carlo sampling method was 

employed to calculate the probability of exceedance for 

cracked zone radius. To do so, by substituting rd=2500 mm 

and de/dh=1 in Eqs. (2) and (3), the target LSFs were revised 

as follows: 

,)8/(12.1LSF 2

001 TDrr CJd 
 

(4) 

./65.2)/(25LSF 02 rhed RBSddrr 
 

(5) 

In the next step, 20 random samples were generated by 

using random characteristics of input variables and their 

corresponding probability distribution functions. For this 

purpose, the command normrnd(mu,sigma,m,n) was used in 

MATLAB programming, where mu represents the mean, 

sigma indicates the standard deviation, m is regarded as the 

number of rows, and n shows the number of required 

columns. For instance, in order to generate 20 random 

numbers for r0 with a mean of 80 mm and a standard 

deviation of 30 mm, we can use this command: 

r0=normrnd(80,30,20,1). Similarly, this process was 

repeated for other variables, and 20 random samples were 

generated for each one. Tables 4 and 5 represent the results 

of Senuk’s and modified Ash’s models, respectively. 

Furthermore, using Eqs. (4) and (5), the LSF values were  
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(a) Histogram of explosive density (b) Histogram of detonation velocity 

Fig. 2 Histograms of (a) explosive density and (b) detonation velocity showing normal distribution of variables 
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Table 4 Generated random samples in Senuk’s model 

Number r0 (mm) ρ (kg/m3) DCJ (m/s) T (Pa) LSF 

1 96.13 1084.30 4923.32 2821871.41 -1173.63 

2 135.02 708.50 4818.91 5065114.93 -547.09 

3 12.23 1093.45 5239.41 6105054.04 2160.30 

4 105.87 1276.05 5234.64 7201220.44 -421.08 

5 89.56 1047.78 4351.34 8088423.79 743.58 

6 40.77 1156.94 4977.46 5171862.27 1298.16 

7 66.99 1095.38 4876.34 2016819.38 -514.67 

8 90.28 889.31 5470.78 3515396.33 -610.63 

9 187.35 1008.77 5819.95 2876836.53 -5585.18 

10 163.08 792.54 5831.95 9700914.45 -904.09 

11 39.50 1127.68 4352.26 3768796.24 1322.36 

12 171.05 720.59 5058.02 6496153.57 -1108.16 

13 101.76 736.23 4089.41 4615162.98 418.71 

14 78.11 788.10 4164.87 6777220.85 1110.89 

15 101.44 361.14 4994.86 3470301.53 453.22 

16 73.85 1237.68 6149.47 2195462.06 -1769.80 

17 76.28 1015.04 4422.75 2155248.15 -398.97 

18 124.69 799.01 5278.53 5976387.82 -513.55 

19 122.27 1224.06 4830.81 4645249.69 -1296.76 

20 122.52 607.70 5838.02 4607893.02 -752.54 

 

Table 5 Generated random samples in the modified Ash’s 

model 

Number r0 (mm) RBS ρr (gr/cm3) LSF 

1 122.58 1.23 3.23 -584.93 

2 88.75 1.06 2.71 238.33 

3 85.93 1.16 2.84 266.74 

4 127.63 1.10 2.24 -1136.23 

5 55.87 1.18 2.38 899.82 

6 100.90 1.09 2.43 -249.06 

7 105.05 1.20 2.77 -310.47 

8 72.69 1.22 2.43 400.78 

9 86.47 1.32 2.68 27.03 

10 45.02 1.13 1.99 1117.83 

11 45.56 0.94 2.41 1344.71 

12 83.15 1.07 2.29 193.33 

13 101.67 1.29 2.11 -732.76 

14 157.56 1.04 2.63 -1540.08 

15 59.99 1.25 2.57 800.06 

16 85.62 1.16 2.51 127.97 

17 77.53 1.29 2.17 62.02 

18 22.01 0.95 2.78 1975.49 

19 66.83 1.13 2.59 702.45 

20 26.16 1.03 2.43 1806.46 

 
 

calculated for each set of randomly generated numbers. The  

Table 6 Exceedance probability for Senuk’s and modified 

Ash’s models 

Sample 

number 

Senuk’s model Modified Ash’s model 

Less-than-

zero 
number 

Exceedance 

Probability (%) 

Less-than-

zero number 

Exceedance 

Probability (%) 

100 44 44 36 36 

500 192 38.4 176 35.2 

1000 353 35.3 354 35.4 

10000 3671 36.71 3656 36.56 

20000 7418 37.09 7238 36.19 

 

 

results are presented in the last columns of Tables 4 and 5 

for Senuk’s and modified Ash’s models, respectively. 

Next, counting the number of less-than-zero samples 

and dividing it by the total number of samples, the 

exceedance probability was calculated. As observed in 

Tables 4 and 5, thirteen and six less-than-zero samples were 

obtained in each case. Thus, the probability of exceedance 

for Senuk’s (P1) and modified Ash’s (P2) models is as 

follows:  

,65.0
20

13
1 

N

n
P

 

(6) 

.3.0
20

6
2 

N

n
P

 

(7) 

In other words, the probability of exceedance for the 

cracked zone radius, rc=2500 mm, was calculated as 65% 

and 30% for Senuk’s and modified Ash’s models, 

respectively. However, these values cannot yet be accepted 

as the final output because the number of random samples 

used in their calculation is limited, and the results may 

depend on the number of samples. In order to solve this 

problem, it is required to increase the number of samples to 

ensure that more increases in the sample number cannot 

change the results. Thus, the above calculations were 

repeated for the sample numbers 100, 500, 1000, 10,000, 

and 20,000. Table 6 indicates the results for both Senuk’s 

and modified Ash’s models. 

In order to clearly observe the convergence process and 

ensure the accuracy of the output, by taking a relatively 

smaller step than that in Table 6, the above calculations 

were repeated and the number of samples was drawn 

against the exceedance probability. What is meant by the 

step in this section is the difference between each two 

decision variables reported in the first column of Table 6. 

Figs. 3(a) and 3(b) illustrate the results for Senuk’s and 

modified Ash’s models, respectively. A y-axis limit was 

applied to this figure to provide a clearer view of the graph. 

As observed, by increasing the number of samples to 

20,000, the probabilities for Senuk’s and modified Ash’s 

models are converged to 37.09% and 36.19%, respectively. 

Having these results, the primary goal of the study to 

calculate the exceedance probability of the cracked zone 

was achieved. However, this only shows the probability of 

exceedance for R=2500 mm. For a more comprehensive  
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assessment of the failure probability around the blast hole, 

the probability of exceedance for any desired distance from 

the blast hole should be targeted. In other words, each 

desired cracked zone radius should be related to an 

exceedance probability. 

 

3.2 Exceedance risk curve 
 

In the previous section, the reliability problem for 

R=2500 mm was solved and the corresponding probability  

 

 

 

 

was calculated. Now, the probability of exceedance should 

be calculated for any desired radius. Hence, R is considered 

as the decision variable, rd. By changing the rd, the LSF is 

updated, and a new reliability problem is established which 

needs to be analyzed separately. Using 20,000 random 

samples, this process was performed for several different 

values of rd. Table 7 represents the results for both Senuk’s  

and modified Ash’s models. 

Based on this approach, each value of the decision 

variable, rd, corresponds to a probability of exceedance.  
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(a) Senuk’s model (b) Modified Ash’s model 

Fig. 3 Convergence of the Monte Carlo analysis 
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Fig. 4 Exceedance risk curve for both Senuk’s and modified Ash’s model 
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Fig. 5 Contour plot for the exceedance probability of cracked zone radius around the explosion point 
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Table 7 Exceedance probability for different values of rd 

Decision 
variable 

Senuk’s model Modified Ash’s model 

Less-than-

zero 

number 

Exceedance 
Probability (%) 

Less-than-

zero 

number 

Exceedance 
Probability (%) 

100 19797 98.98 19888 99.44 

500 19455 97.27 19612 98.06 

1000 18170 90.85 18547 92.73 

1500 15094 75.47 15966 79.83 

2000 11059 55.29 11895 59.47 

2500 7409 37.04 7177 35.88 

3000 4575 22.87 3410 17.05 

3500 2785 13.92 1306 6.53 

4000 1689 8.44 380 1.90 

8000 127 0.63 0 0 

 

 

Choosing a step smaller than that in Table 7 (i.e., the 

difference between each two decision variables listed in the 

first column), rd was depicted against Pf and a graph was 

fitted to them. Fig. 4 illustrates the graph for both Senuk’s 

and modified Ash’s models, known as the “exceedance risk 

curve” (Nikolaidis et al. 2005). 

As observed in Fig. 4, the probability of exceedance 

drops sharply by increasing the damage zone radius. For 

instance, in the graph related to modified Ash’s model, the 

failure probability of 50% for rc=2.20 m drops to 10% for 

rc=3.28 m and further to 1% for rc=4.21 m. The probability 

of exceedance for rc=3.62 m in modified Ash’s model and 

rc=4.56 m for the Senuk’s model is less than 5% (These 

values are directly resulted from analysis; but, can roughly 

be read from Fig. 4 as well). This shows that cracked zone 

radii larger than 4.5 m are unlikely to occur. As shown in 

Fig. 4, the modified Ash’s model gives a higher result than 

Senuk’s model for cracked zone radii less than 2.44 m, 

while less chance is estimated for cracks to propagate inside 

the rock for radii larger than 2.44 m. In other words, a 

higher risk curve results in increasing the chance of damage 

to grow inside the rock mass. Therefore, the modified Ash’s 

model provides a more optimistic estimate of rock capacity 

to accommodate the explosion load for large damage zone 

radii (larger than 2.44 m), compared to those of Senuk’s 

model. Optimistic estimate means that the modified Ash’s 

model reports a lower probability of exceedance for a given 

length of radial cracks than Senuk’s model. In fact, the 

cracked zone has less chance to grow through the rock 

under the explosion load, indicating a higher load-bearing 

capacity of rock mass to withstand the explosion load. 

However, the amount of difference is gradually decreasing, 

and accordingly the two graphs become tangent for very 

large radii. 

 

3.3 Contour plot of exceedance risk curve 
 

The risk curves shown in Fig. 4 provided useful 

information about the probability of failure due to the 

explosion. However, a physical aspect of the problem 

cannot be easily understood from this figure. Therefore, 

instead of using the graph form, these two graphs were 

represented as contour plots around the explosion point. 

Figs. 5(a) and 5(b) illustrate the contour of exceedance 

probability obtained from Senuk’s and modified Ash’s 

model, respectively. As displayed, by getting farther from 

the explosion point, the exceedance probability decreases 

sharply. This occurs more quickly in the modified Ash’s 

model, compared to Senuk’s model. In fact, Fig. 5(b) 

illustrates a comparatively smaller area indicating less 

chance for the cracked zone to infiltrate the rock. This 

proves the point that modified Ash’s model provides a more 

optimistic estimate of rock capacity against failure, 

compared to Senuk’s model. 
 
 

4. Discussion 
 

4.1 Accuracy of Monte Carlo method 
 

As already mentioned, the accuracy of the Monte Carlo 

method relies heavily on the sample size used in the 

calculations. In fact, an increase in the number of random 

samples leads to an increase in the accuracy of the Monte 

Carlo method and consequently causes the failure 

probability to converge to a specific answer (Nowak and 

Collins 2013, Cardoso et al. 2008). This matter could be 

examined using the exceedance risk curve. For such 

purpose, the Monte Carlo method was adopted by using 20, 

50, 100, 500, 1000, and 20,000 random samples to calculate 

the exceedance risk curve by Senuk’s model. The results are 

shown in Fig. 6. 
As observed, the graph is similar to a “floor and ceiling 

function” for low sample numbers, indicating a high 
variance in outputs so that the analysis could not obtain an 
accurate result. Then, the graph got smoother when the 
sample size increased to 100 and then 500, although a 
fluctuation was still observed. In the next stage, when the 
sample number increased to 1000 and then 20,000, a 
smooth and continuous graph was obtained, which could 
approximate with acceptable accuracy the failure 
probability for any desired radius. 
 

4.2 Sensitivity analysis 
 
The effect of each parameter involved in generating 

failures around the blast hole is regarded as one of the 
important issues which should be emphasized.  

This issue, however, may not be easily measured by 

deterministic methods. Reliability analysis is regarded as a 

more powerful tool for this purpose. Therefore, Senuk’s 

model was implemented and accordingly a reliability 

sensitivity analysis was conducted. To this end, by changing 

the mean of one parameter and keeping the others constant, 

the reliability analysis was repeated and the exceedance 

probability was displayed against the cracked zone radius. 

Thus, a risk curve was obtained for each of the assumed 

mean of the target parameter. Figs. 7(a)-7(d) illustrate the 

related diagrams for the involved parameters, including 

blast hole radius, r0, explosive density, ρ0, ideal detonation 

velocity, DCJ, and tensile strength of the rock, T, 

respectively. 

As seen, the change of parameters influences the entire 
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Risk curve using 50 random samples

 
(a) Risk curve using 20 random samples (b) Risk curve using 50 random samples 
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Risk curve using 100 random samples
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(c) Risk curve using 50 random samples (d) Risk curve using 500 random samples 
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Risk curve using 1000 random samples
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(e) Risk curve using 1000 random samples (f) Risk curve using 20000 random samples 

Fig. 6 Effect of sample size on exceedance risk curve 
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Fig. 7 Effect of different parameters: (a) blast hole radius, (b) explosive density, (c) detonation velocity, and (d) tensile 

strength of the rock on exceedance risk curve 
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range of the damage zone. An increase in r0, ρ0, and DCJ 

results in enhancing the probability of failure while an 

increase in T leads to a decrease in the failure probability. 

Now, in order to further study the impact of different 

parameters, the difference between the risk curves 

corresponding to different mean values were calculated and 

plotted on a new graph separately. As the first parameter, we 

considered the blast hole radius, r0. The difference between 

the exceedance probability corresponding to r0=120 mm 

and other cases were calculated as follows: 

,120 rr PPP    
(8) 

where ΔP represents the difference between the exceedance  

 

 
 

probabilities, Pr indicates the probability corresponding to 

r0=20, 40, 60, 80, or 100 mm, and Pr=120 is regarded as the 

probability related to r0=120 mm. Using this formula, the 

difference between exceedance risk curves was plotted in 

Fig. 8(a). As observed, the maxima of graphs take place in a 

short range of cracked zone radii, roughly between 700 and 

2950 mm, indicating that the change in the blast hole radius 

affects mostly cracked zones with small size, being less 

effective for large-size cracked zones. Adopting a similar 

method, the change in exceedance probabilities for different 

explosive densities, ρ0, was evaluated as follows: 

,
00 1750  PPP    

(9) 
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(c) Risk curves for different detonation velocities (d) Risk curves for different tensile strengths 

Fig. 7 Continued 
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(a) Difference between probabilities with respect to r0 (b) Difference between probabilities with respect to ρ0 
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(c) Difference between probabilities with respect to DCJ (d) Difference between probabilities with respect to T 

Fig. 8 Difference between exceedance probabilities with respect to (a) blast hole radius, (b) explosive density, (c) 

detonation velocity, and (d) tensile strength of the rock 
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where ΔP indicates the difference between exceedance 

probabilities, Pρ0 represents the probability corresponding to 

ρ0 = 50, 150, 550, 950 or 1350 kg/m3, and Pρ0=1750 is 

considered as the probability corresponding to ρ0=1750 

kg/m3. Fig. 8(b) depicts the difference between exceedance 

risk curves. Based on the results, similar to the previous 

case, it was found that explosive density could influence a 

short range of radii, between 700 to 2900 mm. The impact 

of ρ0 decreases significantly for very small or very large 

radii. In a similar way, ΔP for different detonation 

velocities, DCJ, was calculated using Eq. (10): 

,9000 CJCJ DD PPP    
(10) 

where PDCJ=9000 indicates the probability corresponding to 

DCJ=9000 m/s, and PDCJ represents the probability 

corresponding to DCJ=1000, 3000, 5000, or 7000 m/s. Fig. 

8(c) illustrates the difference between exceedance risk 

curves. As shown, a long range of cracked zones radii, 

roughly between 1400 to 4000 mm, was influenced more by 

detonation velocity. Finally, Eq. (11) was used to repeat the 

same process for the tensile strength of the rock, T.  

2 ,T TP P P  
 

(11) 

 

 

where PT=2 represents the probability corresponding to T=2 

MPa, and PT indicates the probability of T=2.5, 3, 5, 10, 20 

or 30 MPa. Fig. 8(d) illustrates the difference between 

exceedance risk curves. Based on the results, the tensile 

strength of the rock approximately affects an average range 

of cracked zone radii, ranging from 1200 to 3400 mm. 

Instead of using graphs to show the difference between the 

risk curves, contour plots were drawn for illustrating the 

location of maximum influence of each parameter around 

the explosion point. Fig. 9 illustrates the plots for all four 

parameters involved. 

It seems that the maximum effect of each parameter falls 

within a particular range of the damaged zone radius. The 

blast hole radius and explosive density highly influence the 

small cracked zone radii, while the maximum effect of 

detonation velocity is in the medium range of cracked zone 

radii. Further, the tensile strength of the rock has a greater 

effect on the longer cracked zone radii. In fact, based on the 

data analysis, the explosion characteristics (r0, ρ0, and DCJ) 

play a significant role on the small and medium range radii 

and are less influential in large radii. However, the rock 

characteristics (T) fail to represent significant resistance 

against explosion in areas close to the blast hole, being 

more effective for large cracked zone radii. 
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(a) Effects of blast hole radius (b) Effects of explosive density 

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000
-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

Distance from blast hole, x (mm)

D
is

ta
n
ce

 f
ro

m
 b

la
st

 h
o
le

, 
y
 (

m
m

)

 

 

10

20

30

40

50

60

70

0

Δ
P

 =
 P

D
  =

9
0

0
0   ̶  P

D
  =

3
0

0
0

C
J

C
J

 
-8000 -6000 -4000 -2000 0 2000 4000 6000 8000

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

Distance from blast hole, x (mm)

D
is

ta
n
ce

 f
ro

m
 b

la
st

 h
o
le

, 
y
 (

m
m

)

 

 

10

20

30

40

50

60

70

0

Δ
P

 =
 P

T
=

2   ̶  P
T

=
2
0

 
(c) Effects of detonation velocity (d) Effects of tensile strength of the rock 

Fig. 9 Location of the maximum influences of (a) blast hole radius, (b) explosive density, (c) detonation velocity, and (d) 

tensile strength of the rock around the explosion point 
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4.3 Effect of decoupling on the size of cracked zone 
 

As it was already mentioned, a gap is created between 

the explosive and borehole wall if the explosion charge has 

a smaller radius than the blast hole. The gap can effectively 

dissipate the energy released from the explosion and 

consequently reduce the effect of the explosion in the 

surrounding environment. This topic has been investigated 

by various researchers referred to as “decoupled explosion.” 

For instance, based on measurements made in the Aspo 

excavation area, where different decoupling ratios were 

used on the roofs and walls, the dimensions of the cracks 

formed around the explosion points were relatively different 

(Emsley et al. 1997).  

The results indicated that the decoupling ratio is directly 

proportional to the dimension of the induced damage as 

follows (Zhang 2016):  

,
h

e
c

d

d
kr 

 

(12) 

where rc represents the cracked zone radius, de/dh indicates 

the decoupling ratio, and k is regarded as a constant 

parameter. Although the result of such empirical 

measurements may be useful for estimating the dimension 

of the failure, it fails to provide a comprehensive 

understanding of the decoupling effect and the interaction  

 

 

 

between the explosion wave and the borehole wall. Thus, 

similar to the process described in the previous section, a 

sensitivity reliability analysis was performed on the 

modified Ash’s model in order to examine how the 

decoupling ratio can influence the failure probability. For 

this purpose, by assuming seven different values of 

decoupling ratio and considering the other parameters as 

constant, the exceedance probability was drawn against the 

cracked zone radius. Fig. 10(a) illustrates the graph for 

various values of de/dh. 

As observed, a decrease in de/dh drastically reduces the 

probability of failure. This complies with the results of 

some deterministic studies available in the literature 

(Britton 1987, Nie 1999, Liang et al. 2012).  Then, the 

range of the cracked zone radius where the impact of the 

decoupling ratio was maximum was studied by calculating 

the difference between risk curves. Fig. 10(b) illustrates the 

results of the difference between the exceedance 

probabilities against the cracked zone radius. 

In the next step, the figure was changed into the equivalent 

contour plot, as shown in Fig. 11. Clearly, the decoupling 

ratio imposes maximum effects on radial cracks of 400-

2400 mm in length. Beyond this range, the impact of the 

decoupling ratio is insignificant. 

It should be noted that the reliability sensitivity analysis 

(Section 4.2) is reported only for Senuk’s model. The 

reason for this matter is that the variables involved in 
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(a) Risk curves for different de/dh (b) Difference between probabilities for different de/dh 

Fig. 10 Effect of the decoupling ratio on failure probability 
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Fig. 11 Location of maximum influence of decoupling ratio around the explosion point 
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Senuk’s model (i.e., r0, ρ0, DCJ, and T) are among the most 

important and well-known parameters in geotechnical 

projects. Therefore, their influence on failure probability 

seems to be interesting for readers. However, the variables 

involved in modified Ash’s model, such as RBS, are not 

commonly used by engineers. Therefore, this section is only 

devoted to Senuk’s model. Of course, following the steps 

provided in the paper, similar analyses can be conducted for 

Modified Ash’s model. The decoupling effects (Section 

4.3), however, are only presented for Modified Ash’s 

model. The reason for this point is that the decoupling ratio 

is only available in Modified Ash’s model. In fact, Senuk’s 

model does not consider this parameter and, therefore, is 

unable to assess its effects. 
 

 

5. Conclusions 
 

In the present study, the Monte Carlo method was 

employed to investigate the induced cracked zone around a 

blast hole in rock. For this purpose, LSF functions were first 

established based on Senuk’s and modified Ash’s models, 

and then the problem was analyzed using the reliability 

method. Subsequently, the results were plotted in the form 

of a failure probability against the cracked zone radius. The 

obtained graph, the “exceedance risk curve,” represented a 

probability of failure for any desired length of radial cracks. 

Based on the results, the following conclusions were 

drawn: 

•The modified Ash’s model reported a larger failure 

probability than Senuk’s model for damage zone radii 

shorter than 1.44 m. For larger radii, the result was reversed 

and the modified Ash’s model yielded smaller results. 

Furthermore, the difference reduced gradually so that the 

risk curves obtained from the two models became tangent 

for very large cracked zone radii. 

• Based on the presented risk diagrams, the probability 

of failure dropped sharply by increasing the cracked zone 

radius so that the probability corresponding to cracked zone 

radii larger than 4.5 m was less than 5%, and thus very 

unlikely to happen. 

• The greatest impact of the explosion characteristics, 

including the blast hole radius, explosive density, and 

detonation velocity, fell within the range of small to 

medium damaged zone radii between 700 to 3400 mm, 

while the parameters corresponding to the rock 

characteristics, such as tensile strength of the rock mass, 

mostly affected large radii within the range of 1400 to 4000 

mm. 

• The size of the explosion induced damage was sharply 

reduced by increasing the distance between the explosive 

charge and the borehole wall. Further, the greatest impact of 

the decoupling ratio occurred within the range of 400 to 

2400 mm while an insignificant effect was represented 

beyond this range. 

Last but not least, the involved parameters were 

assumed independent in the present study. Therefore, 

further research can be conducted to study the correlation 

between the parameters by considering the correlation 

matrix into calculation. This topic will be studied by the 

authors in their future research. 
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