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1. Introduction 
 

Since the soft ground usually shows low bearing 

capacity and high compressibility, it will exhibit substantial 

ground subsidence under vertical loads and further cause 

failure of engineering structures. Hence, ground 

improvement through grouting is needed to avoid such 

geological hazards (Bergado et al. 1996, Shehata and 

Poulos 2018, Singh 2018). Jet-grouting is a commonly 

utilized technique to harden the ground or reinforce rock 

masses and form rotary grouting piles in practical 

engineering by filling voids and replacing pore fluid with 

grouts in soil (Lignola et al. 2008, Zhang et al. 2015, Chang 

et al. 2016, Kim and Park 2017, Shen et al. 2017, Njock et 

al. 2018, Zhang et al. 2018, Celik 2019, Sun et al. 2019, 

Zou and Zhang 2019). The injected grout solidifies and 

produces a cemented soil body, which would greatly 

enhance the bearing capacity of the soft ground. Since the 

area of cemented soil body primarily depends on the  
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permeation range, it is of great significance to determine the 

permeation range of the grout so as to estimate the grouting 

effects in practice. 

Over the past few decades, a variety of theoretical 

models have been developed to investigate the diffusion 

process of grouts in the soil. These theoretical solutions can 

be broadly divided into rheology solution, Biot’s coupled 

solution and cavity expansion solution. Based on the 

rheology equation, Wallner (1976) modeled the grouts as 

Bingham fluids to investigate permeation of cement pastes 

in jointed rocks. Hassler et al. (1992) also presented an 

analytical model, which assumes the grout as Newtonian or 

Bingham fluids, to describe diffusion of grout in jointed 

rock. Yang et al. (2004) presented a spherical permeation 

model to formulate the permeation radius of Bingham fluids 

injected into sandy soils and predicted the grouting pressure 

needed along the depth. Extensive research efforts, which 

take more properties of grout into account, have been 

devoted to analyzing diffusion of grouting fluids in soils. 

Yang et al. (2011) investigated column-hemispherical 

penetration mechanisms considering time-dependent 

viscosity of grout. Experiments were conducted to verify 

the solutions, the observations of which showed good 

agreement with the theoretical results. More recently, Hou 

et al. (2019) considered the variation of the viscosity of 

grout with time and proposed an improved model for both 

cylindrical and spherical permeation of Bingham fluids in 

porous media. However, the permeation mechanisms for 

Bingham or Newtonian fluids, based on the rheology 

equation, only take the diffusion of grouts into account,  
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while neglect the quasi-static deformation of soils. The 

poroelasticity theory proposed by Biot (1941), which well 

couples the volumetric changes of soil and the permeation 

behaviors of grouting fluids, has great potential in 

modelling the permeation range of grout for ground 

improvement and rotary grouting pile installation 

(Detournay and Cheng 1988, Abousleiman and Cui 1998, 

Mehrabian and Abousleiman 2013, Song et al. 2019). Based 

on Biot’s theory, Rajapakse (1993) developed an analytical 

solution for grouts injection in a borehole, but the solution 

is only applicable to the case where constant uniform radial 

traction is applied to the borehole wall. As for the cavity 

expansion model, Liu et al. (2017) proposed a cavity 

expansion model to estimate the installation effects of high 

pressure jet-grouting columns. The spherical cavity 

expansion theory is adopted to derive the approximate 

solutions in semi-infinite soils, which are compared with 

both the numerical results acquired from FEM and other 

well-documented solutions. Zou and Zuo (2017) idealized 

the synchronous grouting process of shield tunnel as 

cylindrical cavity expansion and proposed a theoretical 

solution for synchronous grouting of shield tunnel under 

non-axisymmetric displacement boundary. Li et al. (2019) 

also developed a theoretical model based on the cavity 

expansion theory to determine the limiting grouting 

pressure for compaction grouting. However, these cavity 

expansion theory-based models fail to take the permeation 

of grout into account. It can be found that the previous 

theoretical models pertaining to grouting mechanisms either 

neglect the volumetric changes of soils or ignore the 

permeation of the grout in the soil mass. A poroelastic 

solution, which properly considers the real time-dependent 

grouting pressure, has seldom been covered in the published 

literature. 

This paper aims at developing an analytical model to 

investigate the jet-grouting effects by adopting Biot’s 

poroelasticity theory, in which the volumetric change of soil 

couples the permeation of grout. Two typical time-

dependent boundary conditions are considered in this study 

to simulate the real grouting pressure-time relationships 

encountered in ground improvement and rotary grouting 

pile installation. Boundary condition Ⅰ represents the 

intermittent grouting when forming rotary grouting piles 

due to rotation of the grouting pipe. Boundary condition Ⅱ 

corresponds to the grouting process in ground improvement  

 

 

without rotation of the grouting pipe. Parametric studies are 

conducted to explore the impacts of the exponent in 

boundary condition Ⅱ on different grouting-induced 

responses. It is expected that the proposed theoretical model 

could better explain the coupling mechanism between 

deformation of soil and permeation of grouting fluids and 

provide guidelines for design and construction of grouting. 
 

 

2. Background and theoretical model of jet-grouting 
 

The soft ground may experience great settlement under 

the load transferred from the superstructures constructed 

over it (Cai et al. 2006). In such situations, jet-grouting is 

an effective way to improve the strength and stiffness of the 

ground so as to reduce the ground settlement. Also, deep 

foundations, such as the rotary grouting pile, are necessary 

if grouting in surface layer is unable to sustain the 

superstructures. (Jalili and Shabani 2019). According to the 

grouting procedure, the jet-grouting process in ground 

improvement and rotary grouting pile installation can be 

approximately modeled as the expansion of the borehole 

and the permeation of grouts into surrounding soils under 

the grouting pressure, as shown in Fig. 1. As seen in the 

figure, the grouting pipe is first penetrated into the borehole 

with an initial radius of 𝑟0 . Then, the grouting pipe is 

rotated and risen up to inject the grout into the surrounding 

soil. During the grouting process, the borehole gradually 

expands from the initial radius 𝑟0 to the ultimate radius 𝑟h 

accompanied by permeation of the grouting fluids in the 

porous media. The actual boundary conditions are generally 

extremely complicated during the jet-grouting process, 

attributed to many factors such as the grouting rate, 

components of the injected fluids, jet propagation across the 

space included between nozzles and the intact soil and so on 

(Modoni et al. 2006). For simplicity, the injected fluids are 

regarded as the single fluid system, which contain grout 

only without air and water. It is also assumed that the jet-

grouting process in semi-infinite soil is an axisymmetric 

problem with uniform grouting pressure being applied to 

the borehole wall. Three types of grouting techniques are 

widely covered in grouting engineering: the permeation 

grouting method, the fracturing grouting method, and the 

compaction grouting method. In this study, the first kind of 

grouting mechanism is chosen to investigate the jet-

  

Fig. 1 Scheme of jet-grouting process 
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grouting process. Based on Biot’s theory, the problem 

considered can be reduced to solving a partial differential 

equation group, which couples volumetric changes of soil 

and the permeation of grout. 

 

 

3. General solutions 
 

In this study, the poroelasticity theory proposed by Biot 

(1941) is adopted to illustrate the coupled deformation-

permeation mechanism of jet-grouting in the porous media. 

In terms of the axial symmetry, the problem considered can 

be formulated by three basic governing equations, which 

are expressed with respect to the cylindrical coordinate 

system as follows 

(∇2 −
1

𝑟2
) 𝑤𝑟 +

1

1 − 2𝜈

𝜕𝜀𝑣

𝜕𝑟
+

1

𝐺

𝜕𝑝

𝜕𝑟
= 0 (1) 

∇2𝑤𝑧 +
1

1 − 2𝜈

𝜕𝜀𝑣

𝜕𝑧
+

1

𝐺

𝜕𝑝

𝜕𝑧
= 0 (2) 

2𝐺𝑘(1 − 𝜈)

1 − 2𝜈
∇2𝜀𝑣 =

𝜕𝜀𝑣

𝜕𝑡
 (3) 

where 𝑤𝑟 and 𝑤𝑧 represent the displacement in r- and z-

directions, respectively; 𝑝 is the excess pore fluid pressure; 

𝜀v denotes the volumetric strain of soils; 𝐺  and 𝑘, are 

denoted as the shear modulus and the permeability 

coefficient of the porous medium; 𝜈 represents Poisson’s 

ratio of soil; ∇2 is referred to as the Laplace operator and 

is expressed as 

∇2=
𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
+

𝜕2

𝜕𝑧2
 (4) 

According to generalized Hooke’s law, the stress-strain 

relationship can be given in the tensor form as follows 

𝜎𝑖𝑗 = 2𝐺 [𝜀𝑖𝑗 +
𝜈

1 − 2𝜈
𝜀𝑘𝑘𝛿𝑖𝑗] + 𝑝𝛿𝑖𝑗 (5) 

where 𝛿𝑖𝑗  is Kronecker’s delta symbol; 𝜎𝑖𝑗  and 𝜀𝑖𝑗 

represent the stress and strain tensors, respectively. It should 

be noted that uniform radial grouting pressures are imposed 

on the borehole wall during the installation process of 

rotary grouting piles, and thus the circumferential 

displacement (𝑤𝜃), the shear stresses (𝜎𝑟𝜃 and 𝜎𝑧𝜃) and 

shear strains ( 𝜀𝑟𝜃  and 𝜀𝑧𝜃 ) all vanish because of the 

axisymmetric geometry and loading conditions. 

Another noteworthy point is that Eq. (3) can be 

simplified if the variables are non-dimensionalized by 

taking the cavity radius 𝑟h as a unit length and 𝑟h
2(1 −

2𝜈)/[(2𝐺𝑘(1 − 𝜈)] as a unit of time. The dimensionless 

quantities will yield dimensionless solutions, which is 

representational while displaying the final results in this 

study. 

To solve the partial differential equations above, the 

Laplace-Fourier integral transform technique is employed, 

and therefore the two transforms of a function are first 

introduced here. The Laplace transform of a function 

𝑓(𝑟, 𝑧, 𝑡) with respect to time 𝑡, denoted as 𝑓(̅𝑟, 𝑧, 𝑠), can 

be expressed as 

𝑓(̅𝑟, 𝑧, 𝑠) = ∫ 𝑓(𝑟, 𝑧, 𝑡)𝑒−𝑠𝑡𝑑𝑡
+∞

0

 (6) 

Correspondingly, the inverse transform is cast as follows 

𝑓(𝑟, 𝑧, 𝑡) = ∫ 𝑓̅(𝑟, 𝑧, 𝑠)𝑒𝑠𝑡𝑑𝑠
𝛾+𝑖∞

𝛾−𝑖∞

 (7) 

where 𝑠  represents the Laplace transform parameter; 

Re 𝑠 = 𝛾, is a line on 𝑠 plane, which is to the right of all 

singularities of 𝑓;̅ and 𝑖 denotes the imaginary unit. 

As for the Fourier transform, it is not hard to give the 

following transform formula of the function 𝑓 ̅ above. 

𝑓∗(𝑟, 𝜔, 𝑠) =
1

2𝜋
∫ 𝑓(̅𝑟, 𝑧, 𝑠)𝑒𝑖𝜔𝑧𝑑𝑧

+∞

−∞

 (8) 

where 𝑓∗ is the Fourier transform of 𝑓;̅ 𝜔 represents the 

Fourier transform parameter. 

Inversely, 𝑓̅  can be expressed with an integral as 

follows. 

𝑓(̅𝑟, 𝑧, 𝑠) =
1

2𝜋
∫ 𝑓∗(𝑟, 𝜔, 𝑠)𝑒−𝑖𝜔𝑧𝑑𝜔

+∞

−∞

 (9) 

It is convenient to convert Eq. (3) to the following form 

by non-dimensionalizing all the quantities, as has been 

demonstrated previously. 

∇2𝜀𝑣 =
𝜕𝜀𝑣

𝜕𝑡
 (10) 

The solution can be obtained as follows by applying the 

Laplace-Fourier transform to variables 𝑡 and 𝑧. 

𝜀𝑣
∗ = 𝐶1(𝜔)𝐾0(𝐴𝑟) + 𝐶2(𝜔)𝐼0(𝐴𝑟) (11) 

where 𝐼0 and 𝐾0 are denoted as modified Bessel functions 

of the first and second kind, respectively; 𝐶1(𝜔)  and 

𝐶2(𝜔)  are two arbitrary functions with respect to the 

variable 𝜔 ; 𝐴  is an intermediate variable and can be 

expressed with 𝜔 and 𝑠 as √𝜔2 + 𝑠. 

It is interesting to note that the value of the function 𝐼0 

will grow to infinity as the radial distance 𝑟 increases. 

However, it is recognized that the volumetric strain remains 

finite everywhere in the porous medium, which demands 

𝐶2  to be zero. Therefore, the expression of 𝜀𝑣
∗  can be 

simplified as follows 

𝜀𝑣
∗ = 𝐶1(𝜔)𝐾0(𝐴𝑟) (12) 

Through proper differentiation of Eqs. (1) and (2), the 

excess pore fluid pressure, 𝑝 , is correlated with the 

volumetric strain in the following form. 

∇2𝑝 = −2𝐺
1 − 𝜈

1 − 2𝜈
∇2𝜀𝑣 (13) 

Similarly, Eq. (13) can be solved by applying the two 

transforms and substituting Eq. (12) into Eq. (13), the result 

of which is shown below. 

𝑝∗ = 2𝐺[𝐶3|𝜔|𝐾0(|𝜔|𝑟) −
1 − 𝜈

1 − 2𝜈
𝐶1𝐾0(𝐴𝑟)] (14) 

where 𝐶3 is an arbitrary function of 𝜔. 
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After deriving expressions of the volumetric stain and 

the excess pore fluid pressure, the displacement in z-

direction, 𝑤𝑧, is obtained by substituting Eqs. (12) and (14) 

into Eq. (2). 

𝑤𝑧
∗ = 𝐶4|𝜔|𝐾0(|𝜔|𝑟) + 𝑖𝜔𝑟𝐶3𝐾1(|𝜔|𝑟) +

𝑖𝜔𝐶1

𝑠
𝐾0(𝐴𝑟) (15) 

where 𝐶4 is also an arbitrary function with respect to 𝜔. 

Making use of Eq. (1) and the stress-strain relationship, 

it is not difficult to express the radial displacement 𝑤𝑟
∗, 

radial stress 𝜎𝑟𝑟
∗ , circumferential stress 𝜎𝜃𝜃

∗  and shear 

stress 𝜎𝑟𝑧
∗  as follows  

𝑤𝑟
∗ = −

𝐶1𝐴

𝑠
𝐾1(𝐴𝑟) − 𝐶3|𝜔|𝑟𝐾2(|𝜔|𝑟) + 𝑖𝜔𝐶4𝐾1(|𝜔|𝑟) (16) 

𝜎𝑟𝑟
∗ = 2𝐺{𝐶1 [

𝜔2

𝑠
𝐾0(𝐴𝑟) +

𝐴

𝑠𝑟
𝐾1(𝐴𝑟)] + 𝐶3|𝜔|[𝐾2(|𝜔|𝑟) +

𝐾0(|𝜔|𝑟) + |𝜔|𝑟𝐾1(|𝜔|𝑟)] − 𝑖𝜔𝐶4[|𝜔|𝐾0(|𝜔|𝑟) +
𝐾1(|𝜔|𝑟)

𝑟
]}  

(17) 

𝜎𝜃𝜃
∗ = 2𝐺{−𝐶1 [

𝐴

𝑠𝑟
𝐾1(𝐴𝑟) + 𝐾0(𝐴𝑟)] − 𝐶3|𝜔|[𝐾2(|𝜔|𝑟) −

𝐾0(|𝜔|𝑟)] +
𝑖𝜔

𝑟
𝐶4𝐾1(|𝜔|𝑟)}  

(18) 

𝜎𝑟𝑧
∗ = 2𝐺{−𝑖𝐶1

𝜔𝐴

𝑠
𝐾1(𝐴𝑟)

+ 𝑖𝐶3𝜔[𝐾1(|𝜔|𝑟) − |𝜔|𝑟𝐾2(|𝜔|𝑟)]

− 𝜔2𝐶4𝐾1(|𝜔|𝑟)} 
(19) 

The solutions obtained above are the Laplace-Fourier 

transforms of the original functions, and thus the final 

results should be presented with the inverse formula. 

Since the permeation of grout in the porous medium 

conforms to Darcy’s law, the radial fluid discharge, 𝑞𝑟, can 

be expressed with the following equation. 

𝑞𝑟 = 𝑘
𝜕𝑝

𝜕𝑟
 (20) 

However, there has been unified cognition that the 

complexity of the integral in the inverse transform formula 

tends to make it impossible to obtain a rigorous analytical 

solution of the quantities above. Thus, some numerical 

methods have been proposed to tackle the infinite integral, a 

well-known method of which is reported in Stehfest’s paper 

(1970) as follows 

𝑓(𝑡) =
1𝑛2

𝑡
∑ 𝑎𝑘𝑓(̅

𝑘𝑙𝑛2

𝑡
)

𝑁

𝑘=1

 (21) 

where 𝑓̅ is the Laplace transform of 𝑓 ; 𝑁  is an even 

integer which is taken as a number larger than 8 to achieve 

satisfactory accuracy; 𝑎𝑘, however, is determined with the 

following equation 

𝑎𝑘 = (−1)𝑘+𝑁/2 ∑
𝑖

𝑁
2 (2𝑖)!

(
𝑁
2

− 𝑖) ! (𝑖 − 1)! (𝑘 − 𝑖)! (2𝑖 − 𝑘)! 𝑖!

min (𝑘,
𝑁
2 )

𝑖=[
𝑘+1

2 ]

 (22) 

The Fourier inversion can be directly conducted with 

simple numerical integral methods for the reason that only 

the points at 𝑧 = 0  are considered during the whole 

analysis and thus the integrand of the inverse formula is 

reduced to a real function of 𝜔 without the imaginary unit. 
 

 

4. Time-dependent boundary conditions 
 

The borehole wall is assumed to be subjected to uniform 

grouting pressure over a segment of length 2𝑏. Two kinds 

of time-dependent boundary conditions are selected in this 

study to represent the grouting pressures encountered in 

ground improvement and rotary grouting pile installation, as 

shown in Fig. 2. It should be noted that a fully permeable 

surface is applied to the boundary. Corresponding solutions 

are obtained by solving the boundary-value problems in the 

following. 

 

4.1 Exponential grouting pressure-time relationship 
    

A simple grouting pressure-time relationship is 

described with the exponential function, which is 

commonly encountered in ground improvement. The 

boundary condition can be expressed with the 

dimensionless variables as 

𝜎𝑟𝑟(1, 𝑧̃, 𝜏) = 𝑓u(1 − 𝑒−𝐵𝜏)[(𝐻(𝑧̃ + 𝑏̃) − 𝐻(𝑧̃ − 𝑏̃)] (23) 

where 𝑧̃, 𝜏 and 𝑏̃ are non-dimensionalized variables; 

𝑓u represents the limit value of grouting pressure; 𝐵 is the 

 

 

 

Fig. 2 Two kinds of time-dependent boundary conditions 

 

 
Fig. 3 Variation of radial displacement at borehole wall 

(𝑧 = 0) with loading length for different grouting time 

under boundary condition Ⅱ 
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Fig. 4 Variation of hoop stress at borehole wall (𝑧 = 0) 

with loading length for different grouting time under 

boundary condition Ⅱ 
 

 

exponent in the grouting pressure-time relationship; 𝐻() is 

denoted as the Heaviside step function. 

To solve the boundary-value problem mentioned above, 

the Laplace-Fourier transform needs to be applied to Eq. 

(23) to obtain the boundary condition in the following form. 

𝜎𝑟𝑟
∗ (1, 𝜔, 𝑠) = −2

1 + 𝑒−2𝜋

1 − 𝑒−2𝜋

1

1 + 𝑠2

sin(𝜔𝑏̃)

𝜔
= 𝑝g

∗ (24) 

Other boundary conditions for the fully permeable 

surface can be easily expressed with the following two 

equations 

𝑝∗(1, 𝜔, 𝑠) = 0 (25) 

𝜎𝑟𝑧
∗ (1, 𝜔, 𝑠) = 0  (26) 

Using Eq. (14), the excess pore fluid pressure given by 

Eq. (25) is reduced to the following relationship between 

𝐶1 and 𝐶3. 

𝐶1 =
(1 − 2𝜈)|𝜔|𝐾0(|𝜔|)

(1 − 𝜈)𝐾0(𝐴)
𝐶3 = 𝐷𝐶3 (27) 

where 𝐷  is an intermediate coefficient expressed as 
[(1 − 2𝜈)|𝜔|𝐾0(|𝜔|)]/(1 − 𝜈)𝐾0(𝐴). 

The rest of the coefficients can be determined by 

substituting Eqs. (17), (19) and (27) into Eqs. (24) and (26), 

expressions of which are cast below. 

𝐶3 = −
𝑏1

2𝐺𝑀
𝑝g

∗ (28) 

𝐶4 =
𝑏2

2𝐺𝑀
𝑝g

∗  (29) 

where 

𝑏1 = −𝜔2𝐾1(|𝜔|) (30) 

𝑏2 = 𝑖[−
𝜔𝐴

𝑠
𝐷𝐾1(𝐴) + 𝜔𝐾1(|𝜔|) − 𝜔|𝜔|𝐾2(|𝜔|)] (31) 

𝑏3 =
𝜔2

𝑠
𝐾0(𝐴) +

𝐴

𝑠
𝐾1(𝐴) (32) 

𝑏4 = |𝜔|[𝐾2(|𝜔|) + 𝐾0(|𝜔|) + |𝜔|𝐾1(|𝜔|)] (33) 

𝑏5 = −𝑖𝜔[|𝜔|𝐾0(|𝜔|) + 𝐾1(|𝜔|)] (34) 

𝑀 = 𝑏2𝑏5 − 𝑏1(𝐷𝑏3 + 𝑏4) (35) 

After the determination of all the coefficients, analytical 

solutions for the displacement, hoop stress, excess pore 

fluid pressure and fluid discharge are obtained through the 

numerical inversion method. Since the curves of 

displacement, stress, excess pore pressure and fluid 

discharge for Boundary condition Ⅰ are similar to those for 

Boundary condition Ⅱ, the similar jet-grouting responses 

will be represented and illustrated by the curves for 

Boundary condition Ⅱ in this study.  

Fig. 3 shows the variation of the radial displacement 

with the dimensionless loading length at the borehole wall 

(𝑧 = 0) under boundary condition Ⅱ for different time 

during the jet-grouting process. The displacement is 

normalized with the shear modulus 𝐺  and the limit 

grouting pressure 𝑓u, which can reduce the parameters to 

only one, namely the exponent, 𝐵. As seen from the figure, 

the radial displacement grows fast when 𝑏̃ is small and 

gradually approaches an asymptotic value. It can also be 

seen that the radial displacement increases with the increase 

of grouting time, which can be well explained by the fact 

that the grouting pressure increases rapidly at first and 

remains nearly constant after 𝜏 reaches a certain value. 
Fig. 4 displays the relationship between the hoop stress 

and the loading length at the cavity wall (𝑧 = 0). Note that 
the hoop stress can be directly normalized with the ultimate 
grouting pressure 𝑓u. Consistent with the result from the 
research of Rajapakse (1993), the circumferential stress 
increases from an initially negative value, which indicates 
compressive stress, to a positive limit value for all time 
instants. Different from the solution presented by Rajapakse 
(1993), the maximum circumferential stress in this paper 
largely depends on grouting time and will not converge to 
the same asymptotic value, which increases with the 
increase of grouting time. This is because the grouting 
pressure in Rajapakse’s study remains constant all the time, 
while the time-dependent grouting pressure here increases 
fast initially and approaches an asymptotic value quickly 
after grouting begins. 

Fig. 5 plots the radial distribution of the excess pore 

fluid pressure (𝑧 = 0) for different grouting time and 

loading lengths. Also, the limit grouting pressure 𝑓u is used 

to non-dimensionalized the excess pore fluid pressure. It 

can be clearly seen from the figure that the relationships 

between the excess pore fluid pressure and the radial 

distance are similar for different grouting times. The excess 

pore fluid pressure starts from zero and finally comes back 

to zero infinitely far away from the borehole wall. It should 

also be noted that the excess pore pressure decays to zero 

more rapidly with the radial distance for smaller 𝜏. The two 

phenomena can be explained by the facts that the borehole 

wall is fully permeable and the soil at the same position 

undergoes more severe disturbance due to the squeezing 

effects with the permeation of grout. Another noteworthy 

point is that the increase in loading length will postpone the 

presence of the peak of the curve and result in an increase in  
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Fig. 5 Radial distribution of excess pore fluid pressure 

(𝑧 = 0) for different loading lengths and grouting time 

under boundary condition Ⅱ 

 

 

Fig. 6 Radial distribution of fluid discharge (𝑧 = 0) for 

different loading lengths and grouting time under 

boundary condition Ⅱ 

 

 

Fig. 7 Variation of diffusion radius of grouts with 

grouting time for different loading lengths under 

boundary condition Ⅱ 
 

 

the peak value, which indicates that the loading length 

shows significant impact on the maximum excess pore 

pressure. 

Fig. 6 displays the radial distributions of fluid discharge 

in the porous medium (𝑧 = 0) for different grouting time 

and loading lengths. The discharge is normalized with the 

permeability coefficient 𝑘  and the maximum grouting 

pressure 𝑓u . As seen from the figure, the discharge is 

negative when the radial distance is small, which illustrates 

that the grout flow inward near the cavity wall. It is 

interesting to note that the radial discharge at the borehole 

wall increases with the decrease of the loading length, 

which indicates that changes in the loading length impose 

pronounced effect on the fluid discharge at the cavity wall. 

Further inspection of the figure reveals that the utmost 

discharge does not change significantly with loading length, 

which implies that the loading length has an insignificant 

effect on the maximum fluid discharge. 

Fig. 7 plots the variation of the permeation radius of 

grout with grouting time for different loading lengths. It 

should be noted that the permeation radius can be obtained 

by seeking the radial position where the fluid discharge 

decreases to zero. This can be well illuminated by the fact 

that discharge of grout vanishes outside the reinforced 

region in the porous media. The permeation radius is easily 

normalized with the radius of the borehole 𝑟h. It is clear 

that the permeation radius increases with the increase of 𝑏̃ 

and depends more significantly on the loading length when 

the loading length increases. This indicates that the grouting 

effect can be improved by increasing the length of the 

loading section. It is also interesting to note that the 

relationships between the permeation radius and grouting 

time are similar for different loading lengths, which means 

that the permeation rate of grout varies insignificantly when 

the dimensionless loading length changes. 

 

4.2 Intermittent trigonometric grouting pressure-time 
relationship 
 

Intermittent grouting is commonly encountered during 

the installation process of rotary grouting piles, and thus it 

is necessary to determine a periodic function for a proper 

description of this kind of grouting method. An intermittent 

trigonometric function is selected to model the grouting 

pressure-time relationship and the corresponding boundary 

condition for 𝜏 ranging from 2𝑛𝜋 to 2(𝑛 + 1)𝜋 is given 

by  

𝜎𝑟𝑟(1, 𝑧̃, 𝜏) = −𝑓u sin(𝜏) 𝐻((2𝑛 + 1)𝜋

− 𝜏)[(𝐻(𝑧̃ + 𝑏̃) − 𝐻(𝑧̃ − 𝑏̃)] (36) 

where 𝑓u is the amplitude of the trigonometric function; 𝑛 

is a random positive integer. 

Applying the Laplace-Fourier transform, Eq. (36) can be 

rewritten as 

𝜎𝑟𝑟
∗ (1, 𝜔, 𝑠) = −2

1 + 𝑒−2𝜋

1 − 𝑒−2𝜋

1

1 + 𝑠2

sin(𝜔𝑏̃)

𝜔
 (37) 

Thus, it is convenient to obtain the coefficients, 𝐶1, 𝐶3 

and 𝐶4, by substituting Eq. (37) for 𝑝g
∗ in Eq. (24). 

Fig. 8 plots the variation of permeation radius of grout 

with grouting time under boundary condition Ⅰ. The 

dimensionless loading length 2𝑏̃ is taken as 0.5. It can be  

1 2 3 4 5
-5

-4

-3

-2

-1

0

P
o
re

 f
lu

id
 p

re
s
s
u

re
, 
p

(r
/r

h
,0

,
)/

f u
×

1
0

-2

Radial distance, r/r
h

b/r
h
 = 1,  = 0.01

b/r
h
 = 1,  = 0.1

b/r
h
 = 0.25,  = 0.01

b/r
h
 = 0.25,  = 0.1

Peak value

B = 3

Boundary condition Ⅱ

 

 

1.0 1.2 1.4 1.6 1.8 2.0
-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

F
lu

id
 d

is
c
h
a
rg

e
, 
q

r(
r/

r h
,0

,
)
(k

f u
)

Radial distance, r/r
h

b/r
h
 = 1,  = 0.01 b/r

h
 = 1,  = 0.1

b/r
h
 = 0.25,  = 0.1

b/r
h
 = 0.25,  = 0.01

Peak value

B = 3

Boundary condition Ⅱ

 
 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
4

6

8

10

12

14

D
if
fu

s
io

n
 r

a
d
iu

s
, 

R
/r

h

Grouting time, 

b/r
h
 = 0.25

b/r
h
 = 0.5

b/a = 1

b/r
h
 = 1.5

B = 3

Boundary condition Ⅱ

 

 

284



 

Jet-grouting in ground improvement and rotary grouting pile installation: Theoretical analysis 

 

Fig. 8 Reinforced region of grouts for different grouting 

time under boundary condition Ⅰ 

 

 

clearly seen that the permeation radius initially grows 

rapidly, the rate of which gradually declines and tends to a 

constant value. This is because the soil becomes dense due 

to the squeezing effects induced by propagation of the 

grouting fluids. 

 

4.3 Comparisons 
 

Fig. 9 shows the reinforced regions under two kinds of 

grouting pressure when 𝜏 = 1  and the dimensionless 

loading length is taken as 0.5 and 3, respectively. The 

exponent in the exponential grouting pressure-time 

relationship is equal to 3. It can be seen that the permeation 

radius of grout is larger under boundary condition Ⅱ. This 

phenomenon can be explained by the fact that the grouting 

pressure increases more rapidly under the second boundary 

condition. It is also interesting to note that the permeation 

radius of grout increases with the increase of loading length, 

which is consistent with the result shown in Fig. 7. 

Fig. 10 compares the radial displacement at the cavity 

wall (𝑧 = 0) for the two kinds of boundary conditions. It 

should be noted that the radial displacement under 

 

 

 

Fig. 9 Comparison of reinforced regions of grouts for 

different loading lengths under two boundary conditions 

 
Fig. 10 Comparison of variations of radial displacement 

at borehole wall (𝑧 = 0) with loading length for different 

grouting time under two boundary conditions 

 

 

Fig. 11 Comparison of radial distributions of excess pore 

fluid pressure for different grouting time under two 

boundary conditions 
 

 

Fig. 12 Comparison of radial distributions of fluid 

discharge for different grouting time under two boundary 

conditions 
 
 

intermittent grouting pressure is negative when 𝜏 = 4. This 

can be well explained by the fact that the grouting pressure 

vanishes for some time in a period, which results in  
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Fig. 13 Comparison of variations of diffusion radius of 

grouts with grouting time for different loading lengths 

under two boundary conditions 
 
 

contraction of the borehole. It also can be clearly seen that 

for the second boundary condition, the radial displacements 

at the cavity wall when 𝜏 = 4 and 10 are nearly the same. 

The observation can be illustrated with the reason that the 

grouting pressure approaches the asymptotic value quickly 

after grouting begins. 

Fig. 11 displays the radial distributions of the excess 

pore fluid pressure (𝑧 = 0) for the two kinds of boundary 

conditions. The dimensionless loading length is taken as 

0.5. As seen from the figure, the peak value of the 

distribution curve for exponential grouting pressure is much 

larger than that for intermittent grouting pressure. This 

indicates that the grouting pressure-time relationship has a 

pronounced effect on the maximum excess pore fluid 

pressure. Another noteworthy point is that the excess pore 

fluid pressure reaches the maximum value at the same 

radial position for boundary condition Ⅰ and Ⅱ. 

Fig. 12 plots the radial distributions of fluid discharge 

for the two boundary conditions. As seen from the figure, 

the fluid discharge increases from a negative value to a 

positive maximum value and subsequently decreases to 

zero. This indicates that for different boundary conditions, 

the grouting fluids all flow inward near the cavity wall. It is 

also interesting to note that the peak value corresponding to 

boundary condition Ⅱ is substantially larger than that under 

the first boundary condition. The phenomenon can be 

explained by the fact that the increasing rate of grouting 

pressure is higher for exponential grouting pressure-time 

relationship. 

The grouting effect for each boundary condition is also 

investigated, as shown in Fig. 13. The dimensionless 

loading length 2𝑏̃ is taken as 0.5 and 3, respectively. It is 

easy to find that the permeation radii for the two boundary 

conditions are nearly the same immediately after the 

grouting fluids are injected into the soil. The permeation 

rate of grout for boundary condition Ⅱ then significantly 

exceeds that for boundary condition Ⅰ, which demonstrates 

that the grouting pressure increases faster for the second 

boundary condition. This indicates that the grouting effect 

can be greatly improved by altering the grouting pressure-

time relationship. 

5. Parametric study 
 

In this section, parametric study is conducted on 

boundary condition Ⅱ to investigate the effect of model 

parameter on the solutions. It should be noted that the 

presented results are all normalized with some properties of 

the porous medium or model parameters, such as the shear 

modulus 𝐺, the permeability coefficient of soil 𝑘 and the 

limit grouting pressure 𝑓u. Therefore, the parameter that 

still needs to be analyzed denotes the exponent in boundary 

condition Ⅱ, which is referred to as 𝐵. The exponent 𝐵 

stands for the increasing rate of the grouting pressure from 

zero to the limit value, and thus the results of the parametric 

study may be used to control grouting pressure during the 

jet-grouting process of ground improvement when similar 

boundary conditions are applied. 

Fig. 14 displays the variation of radial displacement at 

the cavity wall (𝑧 = 0) with the exponent for different 

loading lengths when 𝜏 = 1. As seen from the figure, the 

radial displacement increases with the increase of 𝐵. This 

phenomenon is for the reason that the grouting pressure 

grows more rapidly with time for larger 𝐵. It can also be 

found that the impact of 𝐵 decays as 𝐵 increases. The 

observation can be well explained by the fact that the  
 
 

 

Fig. 14 Variation of radial displacement at borehole wall 

(𝑧 = 0) with 𝐵 for different loading lengths 

 

 

Fig. 15 Variation of hoop stress at borehole wall (𝑧 = 0) 

with 𝐵 for different loading lengths 
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Fig. 16 Variation of diffusion radius of grouts with 𝐵 for 

different loading lengths 

 

 

increasing rate of grouting pressure changes insignificantly 

when 𝐵 > 3. 

The variation of the hoop stress at the cavity wall (𝑧 =
0) with the exponent when 𝜏 = 1 is shown in Fig. 15. The 

dimensionless loading length is taken as 0.5, 1, 1.5 and 2. It 

can be seen from the figure that the hoop stress also 

increases with the increase of 𝐵  when 𝐵 < 3  and 

approaches a limit value thereafter, which can be illustrated 

with the same reason as that in analysis of Fig. 14. Further 

inspection of the figure reveals that the hoop stress 

increases more rapidly with the exponent as the loading 

length increases. This indicates that the impact of 𝐵 on the 

hoop stress changes with the variation of the loading length. 

Fig. 16 plots the variation of the permeation radius of 

grout with the exponent for different loading lengths. It is 

clear that the permeation radius increases with the increase 

of 𝐵 , which implies that the grouting effect can be 

improved by increasing the growing rate of the grouting 

pressure. It should also be noted that the effect of 𝐵 on the 

permeation radius decays as the loading length increases. 

This indicates that the loading length slightly influences the 

impact of the exponent on the grouting effect. 
 

 

6. Conclusions 
 

In this paper, the poroelastic solutions, coupling soil 

deformation and permeation of grout, are developed based 

on Biot’s poroelasticity theory to model the grouting effects 

during the jet-grouting process. Two kinds of boundary 

conditions, with respect to the grouting pressure, are 

selected to simulate the grouting process in ground 

improvement and rotary grouting pile installation. Different 

from the constant uniform radial traction applied to the 

borehole wall in Rajapakse’s study (1993), the grouting 

pressure in this study, which varies with time during the jet-

grouting process, is determined according to the actual 

grouting technique in ground improvement and rotary 

grouting pile installation. The advantage of adopting such 

time-dependent boundary conditions is that the grouting 

process in practical engineering can be modeled more 

realistically. The grouting pressure-time relationships are 

described with the intermittent trigonometric function and 

the exponential function, for jet-grouting in ground 

improvement and rotary grouting pile installation. 

The results reveal that the excess pore fluid pressure 

increases with the increase of grouting time immediately 

after grouting fluids are injected into the soil as the grouting 

pressure increases with time initially. The fluid discharge is 

negative near the cavity wall and becomes positive when 

the radial distance reaches a certain value, which indicates 

that the fluid flow is inward near the borehole wall. Results 

from parametric study imply that the radial displacement at 

the cavity wall (𝑧 = 0) increases with the increase of 𝐵. 

This phenomenon can be explained with the reason that 

larger 𝐵 results in higher increasing rate of the grouting 

pressure. As for the grouting effect, the exponent 𝐵 turns 

out to show a pronounced effect on the permeation radius, 

which also increases with the increase of 𝐵. The current 

study provides a feasible analytical tool for estimating the 

permeation radius of grouts so as to assess the jet-grouting 

effects in ground improvement and rotary grouting pile 

installation in soft clayey soils. However, it should be noted 

that since the jet-grouting mechanism in coarse gravel is 

governed by the seepage of the injected grouts, the 

proposed model developed for clayey soil is not applicable 

for jet-grouting problems in coarse gravel. 
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