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1. Introduction 
 

Elastic-wave-based exploration techniques are widely 

used in geotechnical and rock engineering, from 

infrastructure construction (e.g., rock slopes and tunnels) to 

resource recovery and production (e.g., geothermal 

development and petroleum production). Data interpretation 

for wave propagation in jointed rock masses requires a 

comprehensive understanding of joint characteristics, such 

as joint spacing, joint roughness, and joint stiffness, as well 

as incident wave characteristics, such as amplitude and 

wavelength (Pyrak-Nolte et al. 1990, Ju et al. 2007, Zhao et 

al. 2008). Wave propagation in jointed rock masses is often 

modeled using the displacement discontinuity model 

(DDM), where stresses across joint interfaces are 

continuous, whereas particle displacements are not during 

stress wave propagation (Mindlin 1960, Schoenberg 1980). 

Various theoretical and numerical investigations based on  
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the DDM have been performed for wave propagations 

through multiple parallel fractures (Cai and Zhao 2000, 

Zhao et al. 2008, Perino et al. 2010, Zhu et al. 2013), non-

parallel joints (Chai et al. 2016), filled joints (Zhu et al. 

2012, Li et al. 2013, Wang et al. 2017), and obliquely 

incident waves (Li et al. 2014, Li et al. 2016) using various 

analytical models.  

Meanwhile, the equivalent medium model (EMM) 

corresponding to the long-wavelength propagation can be 

used to formulate an effective modulus representing the 

effects of joints on rock mass properties (Schoenberg and 

Muir 1989, Cook 1992, Li et al. 2010). Although the EMM 

oversimplifies the jointed rock mass properties and is not 

applicable when fractures are relatively large and sparsely 

spaced, it can be used to interpret wave propagation 

characteristics under the long-wavelength assumption, 

where the wavelength is much longer that the spatial 

heterogeneity (i.e., joint spacing). In fact, long-wavelength 

propagation is the most typical situation in seismology and 

exploration geophysics (White 1983, Schoenberg and Muir 

1989, Schoenberg and Sayers 1995).  

Several laboratory scale studies have been conducted to 

understand long-wavelength propagation in jointed rock 

masses more effectively. Fratta and Santamarina (2002) 

invented the quasi-static resonant column (QSRC) testing 

device based on the long-wavelength S-wave propagation 

of a jointed rock mass under various normal stress levels 

and investigated the effects of joint thickness filled with 

clay gouge. Cha et al. (2009) performed experimental tests  
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on long-wavelength P- and S-wave propagations and 

studied S-wave attenuation characteristics in jointed rock 

masses subjected to various normal stress and joint 

conditions; they suggested an analytical model (i.e., an 

equivalent elastic wave velocity model) to extract joint 

properties from measured QSRC test data. Mohd-Nordin et 

al. (2014) investigated torsional shear wave propagation 

through natural rock joint surfaces and the correlation 

between the joint roughness coefficient and torsional shear 

wave velocity. Kim et al. (2018) conducted QSRC tests and 

resonant column tests on grouted rock joints and examined 

the effects of initial joint roughness and grout fill thickness. 

Previous studies regarding long-wavelength wave 

propagation in jointed rock masses using QSRC test devices 

focused on different joint conditions and lacked a numerical 

background on which further parametric studies could be 

performed.  

Long-wavelength elastic wave propagations in regularly 

jointed rock masses are investigated herein based on the 

three-dimensional distinct element code (3DEC) program. 

Experimental studies using the QSRC test device were 

conducted to characterize the P- and S-wave velocities 

under various normal stress levels. The normal and shear 

joint stiffnesses were extracted from the experimental 

results using the equivalent continuum model and used as 

input parameters for numerical analysis. Using the 

calibrated jointed rock model, numerical results were 

compared with the experimental results. Further analysis 

can provide a better understanding on the propagation of 

elastic waves through the repetitive rock-joint system. 

 

 

2. Experimental study 
 

2.1 Equivalent continuum model for joint stiffness 
characterization  
 

The equivalent continuum model and accompanying 

equivalent modulus for jointed rocks under static conditions  

 

 
was suggested by Goodman (1989). The elastic constants 
for an equivalent continuous material representative of a 
rock mass with a single set of equally distant joints were 
derived based on the following assumptions: The rock is 
isotropic, homogeneous, and linearly elastic with intact rock 
shear modulus Gintact. The shear joint stiffness ks is defined 
as the slope of the shear stress to the shear–strain curve 
until a slip occurs between the joints. When a shear stress τ 
is applied, each rock block undergoes a displacement of 
(τ/Gintact)∙S, and each joint slips a distance of τ/ks. The global 
shear deformation can be formulated with the summation of 
rock and joint displacements based on displacement 
discontinuity. Furthermore, the interfacing joints presents a 
Hertzian-type contact response at the continuous shear 
stress. This enables the power function of stress to be used 
in the joint stiffness parameter. Hence, the S-wave velocity 
in a jointed rock mass can be expressed as follows (Brady 
and Brown 1993): 
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where ρrm (kg/m3) is the density of the rock mass; Gintact 

(kPa) is the shear modulus of the intact rock; S (m) is the 

joint spacing. The factor αs (kPa/m) is the baseline joint 

stiffness when σv’ = 1 kPa, and the exponent βs captures the 

stress sensitivity. The stress sensitivity and stress gradients 

strongly affect jointed rock mass behaviors and wave 

propagations (Tao et al. 2016, Wu et al. 2019). It is 

noteworthy that a similar derivation can be performed for 

the P-wave velocity using the Young modulus of intact rock 

Eintact and the corresponding normal joint stiffness 

parameters. 
 

2.2 Experimental setup 
 

The QSRC test setup proposed by Fratta and  

  
(a) P-wave propagation (b) S-wave propagation 

Fig. 1 Quasi-static resonant column(QSRC) test setup to measure long-wavelength wave propagation in jointed rock 
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(a) Time-domain signal 

 
(b) Frequency response 

Fig. 2 Data analysis of long-wavelength S-wave velocity 

for gneiss specimen subjected to 297 kPa normal stress. 

Time domain signals are obtained from two 

accelerometers located on the diametrically opposite 

direction. Two signals were added to enhance the 

torsional mode 

 

 

Santamarina (2002) and outlined in Cha et al. (2009) was 

reproduced to measure the long-wavelength elastic wave 

propagation through regularly-jointed rock mass specimens. 

This test setup uses quasistatic deformations below the 

elastic threshold level (e.g., shear strain < 10-5) to generate 

longitudinal and torsional excitations in jointed rock masses 

and measure long-wavelength P- and S-wave propagations. 

The QSRC testing device and electrical peripherals are 

shown in Fig. 1. 

 Jointed rock specimens with regularly spaced joints 

were simulated by stacking cylindrical rock discs of equal 

thickness. The disc surface was remained clean and flat 

without any undulation and filling materials. A total of 12 

discs were stacked in the vertical direction for each 

specimen to minimize Brillouin dispersions and generate 

long-wavelength elastic waves (Fratta and Santamarina 

2002). The specimens were placed on a high impedance 

steel base to simulate fixed boundary conditions at the 

bottom of the specimen. A light aluminum cap was placed 

on top of the rock column, and vertical loading was applied 

using a thin rod placed along the center of the discs. The 

upper end of the rod was anchored to the top cap to simulate 

a free boundary condition, and the lower end of the rod was 

connected to the arm of the loading frame. For all measured 

accelerometer signals, a signal conditioner (PCB 482A16)  

Table 1 Properties of specimens used in this study 

Material Aluminum Gneiss Acetal 

Disc thickness [mm] 250 

Diameter [mm] 63 

Density [kg/m3] 2,780 2,704 1,410 

P-wave velocity [m/s]* 6,370 4,750 1,815 

Rod wave velocity [m/s]* 5,234 4,658 1,500 

S-wave velocity [m/s]** 3,209 3,100 970 

Poisson’s ratio*** 0.33 0.13 0.33 

Bulk modulus [GPa] 74.6 26.4 3.2 

Shear modulus [GPa] 28.6 26.0 1.2 

Photograph 

(disc) 

   

* Intact P-wave and rod wave velocities obtained from 

FFRC tests and point-source travel-time method 

** Intact S-wave velocities calculated from the following 

theoretical relationship (see Cha and Cho 2007):  
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*** Poisson’s ratio indirectly calculated from the rod wave 

velocity and P-wave velocity using the following equation: 
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was used to amplify the measured signal, and the amplified 

signals were digitized using a digital storage oscilloscope 

(Agilent DSO6104A) and stored for post-processing.  

For longitudinal excitation, a steel ball of diameter 10.3 

mm was used as an impact source for stress wave 

generation along the longitudinal direction, as shown in Fig. 

1(a). The steel ball was dropped from a height of 0.2 m onto 

the surface of the disc at the top of the column. The 

presence of the rod and weights affected the longitudinal 

resonance, and the column could not be considered as a 

free-fixed system in longitudinal vibrations. Hence, the P-

wave velocity in the column system VP
QSRC was calculated 

as the height of stacked column L divided by the travel time 

∆t, i.e., VP
QSRC = L/∆t. Two accelerometers placed on the top 

and bottom of the specimen were used to measure the travel 

time difference (Note: P-wave propagation is dispersive in 

the columns owing to the addition of radial inertia; hence, it 

is difficult to obtain a longitudinal resonance in a free-fixed 

system). 
For torsional excitation, a brittle 0.5 mm mechanical 

pencil lead was used to excite the column at the top cap, as 
shown in Fig. 1(b). The fracturing of the pencil lead 
released the column from its initial shear deformation and 
enabled the specimen to vibrate freely. Two accelerometers 
placed on the top cap at diametrically opposite positions 
with their axes aligned normal to the radius of the column 
were used to obtain the time-domain data. Time-domain  

0

3

6

9

12

0 0.1 0.2

A
c
c
e

le
ra

ti
o

n
 [

m
2
/s

]

Time [s]

0

0.2

0.4

0.6

0.8

1

1.2

0 0.4 0.8 1.2 1.6

N
o

rm
a

liz
e

d
 
a

u
to

s
p
e

c
tr

a
l
d
e

n
s
it
y

Frequency [kHz]

fn = 0.781 Hz

229



 

Song-Hun Chong, Ji-Won Kim, Gye-Chun Cho and Ki-Il Song 

 

 
 

signals were added to remove the low-frequency 
components of the flexural response, shown in Fig. 2(a). 
The added time-domain signal was then transformed to the 
frequency domain using fast Fourier transformation to 
obtain the resonance spectrum of the torsional shear 
response. For the given boundary conditions of the free-
fixed system, the wavelength λ is four times the height of 
the stacked disc column L. Hence, the resonant frequency fn 
of the torsional shear response shown in Fig. 2(b) was used 
to compute the long-wavelength S-wave velocity. 

Three different types of specimens were tested in this 

study: aluminum, acetal, and gneiss. The properties of the 

specimens used in this study are summarized in Table 1. 

The rod wave and P-wave velocities of the intact block 

were obtained from free-free resonant column (FFRC) tests 

using the point-source travel-time method, and the S-wave 

velocities were calculated from the theoretical relationship 

outlined in Cha and Cho (2007). The material properties 

were used to calculate the normal and shear joint stiffness 

and assigned to the material properties (i.e., density, 

Poisson’s ratio, shear modulus, and bulk modulus) of the 

disc specimens for numerical simulation. Experimental tests 

were conducted for four different normal stress levels (37, 

148, 297, and 445 kPa) to examine the relation between the 

wave velocities and normal stress. 

 

 
 
2.3 Experimental results 

 
Fig. 3 shows the long-wavelength P- and S-wave 

velocities of the three tested materials for different normal 
stress levels. The velocities increased with the normal 
stress, which is consistent with results from previous studies 
(Fratta and Santamarina 2002, Cha et al. 2009). The normal 
and shear joint stiffness of each test specimen are presented 
in Fig. 4 according to the level of normal stress. The joint 
stiffness parameters αn and βn for the P-wave velocity and αs 
and βs for the S-wave velocity were estimated by best fitting 
the experimental data using the least-squares method, as 
tabulated in Fig. 4. As the normal stress increased, the 
normal and shear joint stiffness increased as well. The 
stress-dependent normal and shear joint stiffness values are 
representative of the stiffness characteristics of the jointed 
specimen at the given normal stress level and can be used in 
numerical analysis and as input parameters for joint 
interfaces. 
 
 

3. Numerical study 
 

3.1 Geometry and boundary conditions 
 

Numerical studies were performed using the 3DEC  

  
(a) P-wave velocity (b) S-wave velocity 

Fig. 3 Experimental results of QSRC test with different normal stress levels 

  
(a) Normal joint stiffness (b) Shear joint stiffness 

Fig. 4 Evolution of equivalent joint stiffness with different normal stress levels. The lines superimposed on data points 

show the fitted equation. The corresponding joint parameters are tabulated in the figures 
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program (Itasca 2013). The discrete element method is 

widely used in rock engineering and rock mechanics owing 

to its ability to model the discrete discontinuous 

characteristics of rock masses. Fig. 5(a) shows the mesh and 

dimensions to simulate long-wavelength propagations in the 

repetitive disc-joint system. 

To simulate the same joint condition as the experimental 

test, the joint surfaces in the numerical model were clean 

and flat, and all of the interface elements on one side of the 

disc were in full contact with all interface elements on the 

other side of the neighboring disc. A Coulomb-slip joint 

constitutive model was assigned to simulate the interfacing 

joints. Stress boundaries were assigned at the top of the 

specimen for both P- and S-wave simulations. The bottom 

boundary was fixed by setting the velocities in all directions 

to zero for S-wave simulations. Non-reflective viscous 

boundaries were assigned to the joints in the joint plane 

direction to minimize wave reflections at the joint 

interfaces. In addition to the measurement locations 

outlined in the experimental setup, additional measurement 

locations were added to each disc, as shown in Fig. 5(b), to 

better understand the P- and S-wave propagation 

characteristics throughout the repetitive rock-joint system. 

 

3.2 Optimization of model parameters 
 

The 3DEC program uses an explicit time-marching 

scheme to calculate the equation of motion, which is 

expressed with finite differentiated displacement and stress 

terms for all grid points (Zhu et al. 2013). In each step, the 

velocities and stresses of all grid points are updated. 

However, it is assumed that the newly calculated stresses do 

not affect the present velocities of all grid points. Hence, the 

calculation is performed with known values that are 

obtained from the previous calculation process. This 

assumption can be justified using a small time step such that  

 
 

the information cannot physically pass from one element to 
another in that interval (Howie and Amini 2005). In this 
concept, the calculated wave speed always remains ahead of 
the physical wave speed. 

The maximum element size should be optimized to 

effectively simulate wave propagations using the discrete 

element method. Extremely large grid dimensions filter 

high frequencies, whereas extremely small grid dimensions 

cause numerical instabilities and require considerable 

computational cost (Villiappan and Murti 1984, Saenger et 

al. 2000). The grid size ∆x is defined with the lowest 

velocity and highest frequency of the wave propagation 

(Zerwer et al. 2002): 

minx    
 

(4) 

where λmin is the minimum wavelength of a propagating 

elastic wave (λmin = Vmin/fmax), Vmin the lowest elastic wave 

velocity of a medium, fmax the highest frequency of a 

propagating wave, and χ a constant (χ = 0.25 for consistent 

mass matrices; χ = 0.2 for lumped mass matrices). The 

Rayleigh wave velocity VR in a homogeneous half-space is 

generally considered to be the lowest elastic wave velocity 

and is related to the S-wave velocity VS by VR ≈ 0.9 VS 

(Zerwer et al. 2002). In this study, the highest frequency 

range of a wave generated by an impact source was fmax = 

7,143 Hz, and the Rayleigh wave velocity of the specimen 

varied from Vmin = 873 m/s for acetal, which has the 

minimum wave velocity, to 2888 m/s for aluminum, which 

has the maximum wave velocity, resulting in a minimum 

wavelength of λmin = 0.122 m. Because 3DEC uses lumped 

mass matrices as default, the allowable maximum 

dimension of the three-dimensional grid is 0.0244 m. In 

addition, the dimension of the grid should satisfy the 

Courant number ∆x ≤ λmin/6 = 0.02 m (Robertsson et al. 

1994). Hence, the finite grid size was determined to be ∆x =  

  

(a) Model dimensions and joint locations (b) Wave measurement locations for each disc for P- and S-

wave QSRC tests 

Fig. 5 3D model for jointed rock specimen 
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0.005 m in this study. 

The optimal range of the time increment can be 

calculated from the grid size ∆x and the P-wave velocity VP 

of the medium, in which wave propagation is expressed by 

the following equation (Villiappan and Murti 1984): 

10 p p

x x
t

V V

 
  


 

(5) 

It is noteworthy that a larger time increment ∆t yields a 

diverging solution, whereas a smaller time increment causes 

spurious oscillations (Gibbs phenomenon). In addition, the 

time increment should satisfy the temporal Nyquist limit: 

max

1

2
t

f
 


 

(6) 

In this study, the time increment was calculated as ∆t = 

0.1 μs, which satisfies the spatial and temporal Nyquist 

limits simultaneously. 

The time-domain excitation signals for the QSRC test 

are shown in Fig. 6. For the generation of P-waves in the 

vertical direction, a steel sphere of diameter 10 mm was  

 

 

 

dropped freely onto the top of the rock column from a 

height of 0.2 m. The duration of the contact between the 

steel ball and the top of rock column can be calculated as 

follows (Sansalone and Carino 1986): 

0.4

0.1
5.97[ ( )]   c s s m

R
t

H , 
(7) 

where δm = (1-υm
2)/Em, δs = (1-υs

2)/Es, ρs the density of the 

steel sphere (7800 kg/m3), R the radius of the steel sphere 

(0.005 m), H the height of the free fall (0.2 m), υm the 

Poisson ratio of the test material (0.2), υs the Poisson ratio 

of the steel sphere (0.15), Em the elastic modulus of the test 

material, and Es the elastic modulus of the steel sphere (220 

GPa). The maximum force and duration of impact were 

calculated as 1.6 N and 0.07 ms, respectively. For a 

longitudinal excitation, the calculated excitation signal was 

applied as a half sine function at the top of the rock column.  

For a torsional excitation, a force was applied linearly with 

time up to 5 N at 0.1 ms and then removed instantly. The 

excitation signal was applied at two locations on top of the 

specimen in opposite directions with respect to the central 

axis of the model to allow an accurate representation of free  

  
(a) Impulse excitation for longitudinal wave generation (b) Torsional excitation for shear wave generation 

Fig. 6 Time-domain excitation signals applied to the upper end of rock column 

  
(a) Received time-domain signals (b) Cross-correlation sums and detected arrival times 

Fig. 7 P-wave signals obtained from numerical analysis of the Gneiss specimen under different normal stress levels 
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torsional vibrations. Both dynamic excitation inputs were 

applied as transient load boundaries to their respective  

 

 

 

positions to provide a net torque to the sample. A Rayleigh 

mass-proportionate damping of 2% obtained from  

 

Fig. 8 Cascade of received P-wave signals in each rock disc for the gneiss specimen for different normal stress levels. The 

signal amplitude measured at each disc layer is illustrated in a color scale from 1 to -1, where red represents peaks and blue 

represents troughs. The time-domain data from the bottom disc is shown below the cascade for reference 

  

(a) Time-domain signals obtained from two diametrically 

opposite measurement points 

(b) Added time domain signal 

 
(c) Frequency response transformed from the added time-domain signal for different normal stress levels 

Fig. 9 S-wave signals obtained from numerical analysis 
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experimental study was applied to simulate the mechanical 

damping in all cases. The damping ratio falls within the 

range of frequency-independent damping of geomaterials 

around 2-5% (Biggs 1964, Perino and Barla 2015). 

 

3.3 Numerical results 
 

Fig. 7(a) shows the P-wave arrival signals for different 

stress levels obtained at the bottom of the gneiss specimen.  

 

 

 

The amplitudes of the received signals were normalized by 

the amplitude of the incident wave. The travel time can be 

calculated using the cross-correlation method considering 

the incident and received wave signals. Fig. 7(b) shows the 

cross-correlation sum of the P-wave according to the 

normal stress, where the time lag ahead of the peak of the 

cross-correlation sum represents the time difference. The 

numerical results show increased amplitudes and shorter 

time lags with increased normal stress, which implies that 

 
Fig. 10 Cascade of received S-wave time and frequency domain signals in each rock disc for the gneiss specimen for 37 

and 445 kPa normal stresses. The signal amplitude measured at each disc layer is illustrated in a color scale from 1 to -1, 

where red represents peaks and blue represents troughs. The time- and frequency-domain data from the top disc is shown 

above the cascade for reference 

  
(a) P-wave velocity (b) S-wave velocity 

Fig. 11 Elastic wave velocities obtained from numerical analysis for different tested materials against normal stress levels. 

Wave velocities obtained from laboratory experiments are superimposed for each normal stress level and material, where 

(exp) denotes results from laboratory experiments and (num) denotes results from numerical analysis 
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higher energy is transmitted through the jointed rock mass 

with less attenuation for stiffer joint conditions. This is 

evident in the cascade of the received P-wave signals for 

different stress levels at each disc layer (Fig. 8). The color-

scale and the received time-domain signal indicated 

improved energy transmission between joint interfaces with 

increased normal stress and joint stiffness. Clearly, the wave 

propagation in a repetitive jointed rock mass system is 

recognized by the travel time between discrete rock disc 

layers and across joint interfaces. 
Figs. 9 (a) and 9(b) show the torsional shear signals and 

their added sum obtained at the top of the gneiss specimen. 
The frequency-domain signal transformed from the time-
domain signals show a clear peak resonant frequency for all 
stress levels, as shown in Fig. 9(c). A higher applied stress 
level increased the resonant frequency and decreased the 
amplitude, implying changes in torsional vibration modes of 
the specimen with stiffer joint conditions. Unlike P-waves 
where the propagation direction is equal to the loading 
direction, the S-waves propagate perpendicular to the 
loading direction, and the increased normal stress hindered 
the torsional motion of the specimen with respect to the 
same applied torsional excitation. This was evident in the 
cascade of the received S-wave time domain signals for 
different stress levels at each disc layer (Fig. 10). The color 
scale and time-domain signal measured on top of the 
specimen indicated increased frequency and decreased 
amplitude with increased normal stress and joint stiffness. A 
clear shift in resonant frequency and decrease in amplitude 
were observed in the frequency cascade.  

The P- and S-wave velocities for different materials 
obtained from the numerical simulation were compared 
with the experimental results (Fig. 11). The numerical P-
wave velocities of acetal and aluminum agreed well with 
the experimental results, whereas the numerical P-wave 
velocities of the gneiss specimens were higher than the 
experimental results for all tested stress levels. This was 
primarily owing to the imperfectly smooth joint surfaces 
and minute asperities introduced in the sample preparation 
for the experimental tests. Artificial materials, such as acetal 
and aluminum, are homogeneous and enable an accurate 
fabrication of smooth joints with good precision. However, 
this idealized manufacturing of smooth surfaces is difficult 
to achieve for rocks that are innately heterogeneous. Rock 
disc cutting introduces minute asperities during the 
manufacturing process, which results in imperfect contact 
conditions between joints. Such apertures reduce the P-
wave velocity in the disc-stacked column specimen. This 
was reflected in the errors between the P-wave velocity 
from the numerical and experimental results, where the 
average error was 3.7% and 1.9% for acetal and aluminum, 
respectively, and 8.5% for gneiss. Similarly, the torsional 
shear wave velocities from the numerical results agreed 
well with the experimental results for all specimens. The 
errors between the S-wave velocity results for all three 
materials indicated a consistent average between 3.7% and 
4%, where the experimental values were always smaller 
than the numerical values for all tested normal stress levels. 
 

 

4. Conclusions 
 

A preliminary numerical study on long-wavelength 

elastic wave propagation in regularly jointed rock masses 

was presented herein. Experimental studies using the QSRC 

test device for regularly jointed disc column specimens 

were performed for three different materials (acetal, 

aluminum, and gneiss). The normal and shear joint 

stiffnesses were extracted from the experimental results 

using the equivalent continuum model and used as input 

parameters for numerical analysis. The jointed specimens 

were simulated using the 3DEC program, and numerical 

parameters were optimized for the time step, finite grid size, 

contact time, and force–time functions for effective 

numerical simulations. Using the calibrated jointed rock 

model, numerical analyses were performed, and the results 

were compared with the experimental results.  

The long-wavelength P- and S-wave velocities of each 

specimen increased in both experimental and numerical 

studies with increased normal stress levels. The velocities 

obtained from the numerical analysis agreed well with the 

experimental results within allowable errors. The wave 

propagation and energy dissipation in jointed rocks were 

affected by the joint surface roughness. However, the ideal 

flat contact joint conditions simulated in the numerical 

model could not be fully achieved in the experimental tests 

because of minute apertures induced during sample 

preparation. These imperfections yielded smaller P- and S-

wave velocities in the experimental results compared with 

the numerical results. Natural joint surfaces from the 

viewpoint of engineering applications are seldom clean nor 

ideally flat and are often rough with various degrees of 

asperities. This study provides a framework on which 

further parametric studies involving different joint 

conditions can be performed. Different field and joint 

conditions, such as stress anisotropy, water level, gouge fill, 

joint orientation, and joint spacing can be further simulated 

using the numerical model. However, the numerical 

simulation results should be adjusted accordingly based on 

the field joint conditions for practical purposes and 

applications, such as wave propagations in jointed rock 

masses induced by earthquakes or blasting. 
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