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1. Introduction 
 

During the design and construction of underground 

structures, it is of extreme importance to determine 

variation of the stress field from the beginning of rock mass 

excavation until the completion of works, depending on the 

technology of construction process. In addition, monitoring 

and measurements during construction works have 

demonstrated that there also exists a variation of secondary 

stresses over time as a result of rheological processes. 

Rheological processes and materials are described with 

mathematical relations and corresponding boundary 

conditions, so that they could be used within mathematical 

models for description of rock mass behaviour during 

excavation. 

Matter in nature occurs as having elastic, viscous, and 

plastic properties. These properties, under the action of 

“external” influences, occur simultaneously or successively. 

Actual behaviour of matter is sometimes very complex, so 

the relations of strain and stress are also quite complex. 

Classical continuum mechanics, in the past, acknowledged 

two types of materials, i.e., two rheological models - elastic 

solid bodies (the Hooke’s body) and ideal fluids (the 

Newton’s fluid), which are considered to be the basic 

(simple) rheological models. Complex rheological models 

are composed of several simple models. They can consist of 

only two simple models, or of a combination of three or 

more basic models, which are often called three-parametric 

or multi-parametric models of viscoelastic materials. The  
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more a material is complex in its structure and behaviour, 

the more basic models must be included in its behaviour 

model (Fritz 1984). Rheological elements can be connected 

in parallel (the described phenomena occur simultaneously) 

and serial (the described phenomena occur successively). 

Combination of rheological elements provides 

rheological models, which can describe behaviour of 

various natural materials (rocks) over time. Behaviour of 

rock mass, based on the measurements in underground 

structures, indicates occurrence of large „delayed“ strain, 

which can cause failure of rock mass. This phenomenon 

illustrates a long-term viscous behaviour of rocks and 

progressive damage occurring after redistribution of stress 

around the excavated cavity (Effinger and Bois 2012). 

It is well known that the system of the tunnel lining and 

the rock mass has mechanical properties of rheological 

character and that the condition of stress and strain varies 

over time. The rheological properties of the individual 

components of this system have been investigated so far. 

However, the integral behaviour of a complex system of 

tunnel structure-rock mass is not sufficiently studied. The 

variation of stress-strain relations over time and their final 

values depend essentially on the rheological properties of 

the mutual interaction, i.e., the mutual behaviour of the 

tunnel-rock system as a whole. Precisely for that reason, the 

laws of the interaction of the tunnel-rock complex system 

are established and analysed in this paper. Only such setting 

of the problem can explain the properties of the system and 

emphasise the expedience of designing the optimal 

technological process of tunnel construction, as well as 

selecting the appropriate system of tunnel structure. 

Therefore, the focus of this paper is the development of 

underground pressures to the tunnel lining, taking into 

account the rheological properties of concrete and rock 

mass. 
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2. Basic ideal materials 
 

Properties of basic ideal materials are presented by 

elementary mechanical models for the case of plane stress 

state, i.e. linear and homogenous stress state. Parameters, 

symbols, and characteristic diagrams of stress and strain are 

presented in Fig. 1. 

The mutual relations of strain and stress for such ideal 

bodies are as follows (Roylance 2001, Khoshboresh 2013): 

1. σ = 0 PASCAL’s fluid, 

2. σ = E HOOKE’s elastic body (H), 

3. σ = η𝜀̇ NEWTON’s fluid (N), 

4. σ = c0 St. VENANT’s plastic body (St.V), 

where:  

σ - stress, 

E - modulus of elasticity,  

 - strain, 

η - viscosity coefficient, 

𝜀̇ - deformation rate, 

c0 - yielding point. 

The Hookean model represents a linear relation between 

stress and strain. The mechanical model is symbolised by an 

ideal elastic spring, where the deformation, after unloading, 

ceases completely.  

Saint Venant has proposed a model of ideally rigid-

plastic material, which has the property of exhibiting no 

deformation until the stress value reaches a certain critical 

value σc. The mechanical model is symbolised by a slider 

with a rough surface, thus simulating the Coulomb friction 

C. By exceeding the force of friction, the body begins to 

deform plastically at constant stress. Materials that have 

such properties are called “ideally plastic”, in which case 

permanent (irreversible) deformation after unloading 

remains.  

Matter with ideally viscous properties is the Newtonian 

fluid. The element behaviour is determined by the viscosity 

η, which defines the resistance of matter during stress 

variation. This resistance is proportional to the action of 

internal friction. After unloading of the element, permanent 

(irreversible) deformation remains.  

The brittle element (R) with the CR parameter represents 

a rock mass failure with a change in diagram (σ, ), as it is 

shown in Fig. 1. 

By mutual connection of models of basic ideal bodies in 

a certain way, and under certain conditions, 

rheologicalmodels of certain complex materials can be 

obtained:  
 

 

 

Fig. 1 Models of ideal basic materials 

1. σ = E + η𝜀̇  KELVIN’s body (K), 

2. σ = η𝜀 ̇ – tR𝜎̇  MAXWEL’s body (M), 

3. σ = η𝜀̇ + c0  BINGHAM’s viscoplastic fluid (B), 

4. σ = E + η𝜀̇ + tR𝜎̇ POYNTING–THOMSON, 

5. σ = E + η𝜀̇ + c0 Elasto-viscoplastic body, 

6. σ = η𝜀̇ – tR𝜎̇ + c0 PRANDTL–REUSS, 

where:  

tR - relaxation time,  

𝜎̇ - stress rate. 

 

 

3. Rheological models of rock mass 
 

In theoretical considerations of stress state for the 

purpose of construction of underground structures, it is 

important to point out the following: 

• the impact of rheological properties of rock mass on 

the stress state around the tunnel; 

• the character of redistribution of stress in the zone 

around underground structure depending on the 

technological process of construction and static structural 

system.  

One of the most important problems in consideration of 

rheological models is the analysis of strain over time. 

According to time-dependent strain, rock masses can be 

divided in two groups, wherein their behaviour is displayed 

through rheological models (Desai and Abel 1972). The 

first group represents those rock masses for which the 

function of time and strain under constant load has a 

horizontal asymptote. The Kelvin’s model (K=H/N - 

parallel connection of a Hooke’s body and a Newton’s 

body) corresponds to this kind of rock mass (Fig. 2). On the 

other hand, for rock masses belonging to the second group, 

the time-strain function under constant load does not have a 

horizontal asymptote, i.e. the strain infinitely increases. The 

behaviour of this group of rocks is presented by the 

Maxwell’s model (M=H-N - serial connection of a Hooke’s 

body and a Newton’s body) (Fig. 3). 

The time dependence of the behaviour of rock mass can 

be presented by a rheological model shown in Fig. 4, where  

 

 

 

Fig. 2 Kelvin’s model (Wang et al. 2014, 2015) 

 

 

Fig. 3 Maxwell’s model (Wang et al. 2013, 2015) 
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Fig. 5 Viscoelastic model with yield stress - Bingham-

Hooke model (Shyshko 2013) 

 

 

Fig. 6 Viscoelastic model - Standard Solid (Poynting) 

contact model (Shyshko 2013) 

 

 

the variables are as follows: 

Erm - modulus of elasticity of rock for the 

Hooke's body (H1), 

EKrm - modulus of elasticity of rock for the 

Hooke's body (H2) within the linear Kelvin’s body (K), 

ηKrm - viscosity coefficient of the Newtonian 

fluid (N1) within the linear Kelvin’s body (K), 

ENKrm - modulus of elasticity of rock for the 

Hooke's body (H3) within the nonlinear Kelvin’s body 

(NK), 

CNKrm - yielding point of the St. Venant’s body 

(St.V1) within the nonlinear Kelvin’s body (NK), 

ηNKrm - viscosity coefficient of the Newtonian 

fluid (N2) within the nonlinear Kelvin’s body (NK), 

CBrm - yielding point of the St. Venant’s body 

(St.V2) within the Bingham’s body (B), 

ηBrm - viscosity coefficient of the Newtonian 

fluid (N3) of the Bingham’s body (B). 

  

 

Elastic deformations are described by the Hooke’s body 

(H1) (1). Creep deformations, on the other hand, are 

perceived through two stages, whereby for the primary 

phase of creep (2) one linear Kelvin’s body (K) (2.1) and 

one nonlinear Kelvin’s body (NK) (2.2) are included (Jiang 

et al. 2012). The secondary stage of creep (3) is described 

by the Bingham’s body (B). The Bingham’s model consists 

of a Saint-Venant’s element (St.V2) and a dashpot in parallel 

(N3) (as shown in Fig. 4). Deformation of the model is not 

possible before reaching the yield stress through the Saint-

Venant’s element. When the yield stress is reached, the 

model exhibits viscoplastic deformation. 

With the rheological model shown above (Fig. 4), the 

influence of time upon the stress-strain relations in rock 

mass and tunnel structure can be appropriately taken into 

consideration in the design of underground structures. It is 

of paramount importance to determine the time-dependent 

parameters of rock mass, as this affects the rate of 

construction progress, and therefore, the technological 

process of construction. 

While performing the research of deeply embedded 

tunnels, Quevedo and Bernaud (2018) have employed the 

viscoelastic law with von Mises viscoplastic criteria without 

hardening, in which the deformation rate is presented with 

the Bingham’s model. 

A number of recent researches have been dealing with 

rheological models of rock masses and their application in 

the construction of tunnels. Analysis of the time-dependent 

deformation properties of the rock mass and their impact on 

tunnel structures were presented in the works of Tomanović 

(2012, 2014), Aksoy et al. (2016), and Park (2017). In 

addition, Paraskevopoulou and Diederich (2018) 

investigated the total displacements of the tunnel walls in an 

isotropic viscoelastic environment, taking into account the 

tunnel construction progress and associated cumulative 

deformation due to the rheological behaviour of the material 

over time. According to these studies, it could be concluded 

that the researches on rheological models are still presently 

relevant. In the continuation of the paper, some of the 

models from the recent studies are briefly presented. 

 

Fig. 4 Rheological model of rock mass - analysis of deformation and creep (Popović 1980) 
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Fig. 7 General Kelvin’s viscoelastic model (Wang et al. 

2013) 

 

 

Fig. 8 General Maxwell’s viscoelastic model (Wang et al. 

2013) 

 

 

Fig. 9 Nishihara model (Zhang et al. 2019) 
 

 

Viscoelastic model with yield stress (the Bingham-

Hooke model) and viscoelastic model (the Standard Solid 

(Poynting) contact model) are presented in Figs. 5 and 6 

(Shyshko 2013). 

The Bingham–Hooke model (Fig. 5) consists of a 

Bingham’s model (B=St.V/N) and a spring in series (H). 

The Bingham’s material exhibits linear elasticity for stress 

values lower than the yield stress, as in the Saint-Venant’s 

model, but yields linearly above that value, as in the 

Maxwell’s model. 

The Standard Solid (Poynting) contact model (Fig. 6) 

consists of the Kelvin’s (spring and dashpot in parallel) 

section (K=H1/N) and contains additional spring connected 

in series (H2). This contact model simulates the creep and 

relaxation behaviour, as well as the instantaneous elasticity. 

In rock mechanics, the Hookean elastic springs and 

Newtonian viscous dashpots are used to model a variety of 

rheological properties of the rock mass. To simulate more 

complex rheological behaviour of rocks, additional elastic 

springs or dashpots can be connected in parallel or in series 

in the general Kelvin’s and Maxwell’s models (Wang et al. 

2013, 2014, 2015, 2018). The general Kelvin’s and 

Maxwell’s models are presented in Figs. 7 and 8. 

The Nishihara model (Song et al. 2016 and Zhang et al.  

 

Fig. 10 Viscoelastic Burgers’ model (Wang et al. 2018) 
 

 

2019), presented in Fig. 9, can be used to effectively 

describe the yielding properties of the rock mass. A visco-

elastoplastic model, termed the Nishihara body (Fig. 9), 

comprises a Kelvin’s body (K) and a Bingham–Hooke body 

(B-H), with σp being a critical stress level (long-term 

strength). The creep curve for the Nishihara body can be 

used to describe decay, steady, and unstable creep 

behaviour. The Nishihara model describes the variation in 

the attenuation period and steady period fairly well. 

  Based on the study of rock salt, Ma et al. (2017) 

concluded that the development of axial creep deformation 

can be described by the Burgers’ viscoelastic model (Fig. 

10). The Burgers’ creep model is composed of a Maxwell’s 

model (M=HM-NM) and a Kelvin’s model (K=HK/NK) 

connected in series. The viscoelastic Burgers’ model was 

used in a number of studies considering the creep 

phenomenon (Debernardi 2008, Wang et al. 2017, Wang et 

al. 2018). Wang et al. (2018) pointed out that when the 

Burgers’ viscoelastic model is introduced, with increasing 

time, the displacements accelerate rapidly, and then slow 

down after t = 1.5TK (where TK=ηK/EK - see the model).  

  In the study of the behaviour of chlorite schist, Yang et 

al. (2017) introduced the visco-elastoplastic rheological 

mechanical model CVISC to describe its behaviour. This 

model has also been implemented in the FLAC 3D 

software. The model consists of the Burger’s rheological 

component (K-M) and the Mohr–Coulomb friction 

component, as shown in Fig. 11, where: 

c - cohesion, 

𝜙 - friction angle, 

𝜓 - parameter of the Lacerda and Houston’s 

relaxation model, 

σt - tensile strength. 

The volumetric behaviour is of elastoplastic nature only 

and is governed by the linear elastic law and the plastic 

flow rule (Fig. 11(a)), whereas the deviatoric behaviour is 

of visco-elastoplastic character and is driven by the 

Burgers’ model and the same plastic flow rule (Fig. 11(b)). 

This means that the viscoelastic strains are deviatoric and 

depend only on the deviatoric stress. On the other hand, the 

plastic strains are both deviatoric and volumetric, and 

depend on the total stress in accordance with the chosen 

flow rule. 

An example of analogous model that gives a reasonable 

approximation of the behaviour of some of the rock masses 

under certain loading conditions is shown in Fig. 12. That is 

the Cividini and Gioda’s simplified model. The Cividini 

and Gioda’s simplified model comprises a Kelvin’s element 

(K) in series with a Bingham–Hooke element (B-H).  
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Fig. 11 Sketch of the CVISC model (Debernardi 2008) 

 

 

Fig. 12 Sketch of the Cividini and Gioda’s simplified  

model (Debernardi 2008) 

 

 

Fig. 13 Extended elasticity model (Wang et al. 2017) 
 

 

The plastic yield criterion of the slider of the Bingham’s 

element is defined according to the Mohr–Coulomb yield 

criterion. As for the model, the main assumption is to split 

the mechanical behaviour of the rock mass into a 

volumetric and a deviatoric component. Also, the model 

assumes that volumetric behaviour is of elastoplastic 

character only and is governed by the linear elastic law and 

the plastic flow rule, whereas the deviatoric behaviour is 

visco-elastoplastic. 

This paper presents and analyses a complex rheological 
model, the so-called extended elasticity model, presented in 
Fig. 13. This rheological model includes, as the limiting 
cases, the aforementioned rheological models, the parallel 
and the serial connections of the Hooke’s body (H1 and H2) 
and the Newton’s body (N1). The model describes 
phenomena that can occur in a variety of geotechnical 
problems in sufficiently accurately qualitative terms. At 
constant stress, strain increases up to a certain value, which 
is finite in a general case. It becomes infinite for the 
boundary transition E1→0, where E1 stands for the modulus 
of elasticity of the parallel connection of the Hooke’s body 
(H1) (Fig. 13). The relaxation of stress at constant strain is 
partial in general case. For the boundary transition E1→0 
the relaxation becomes total, whereas for the boundary 
transition E2→0 there is no relaxation, whereby E2 

designates the modulus of elasticity of the serial connection 
of the Hooke’s body (H2) (Fig. 13). 
 

 

4. Load transmission under the influence of 
rheological processes 
 

Based on the rheological model, primarily of the 
environment (rock mass), adequate design concept of tunnel 
construction technology must be considered (both during 
excavation and construction of lining structure of a tunnel, 
when it is required), so that correlated interaction of 
rheological properties of the structure and the environment, 
i.e., transmission of load, could be provided.  
 

4.1 Load transmission - theoretical bases 
 

By employing the model presented in Fig. 13, the load 
to the tunnel lining can be determined by taking into 
consideration the rheological properties of concrete and 
rock mass. The solution is presented for the circular ring 
(Fig. 14), where:  

a - external tunnel radius; 

d - thickness of the concrete lining; 

p0 - constant pressure in the undisturbed 

rock mass; 

pi - interactive pressure between the lining 

and the rock; 

w - displacement; 

ν - Poisson’s coefficient; 

Erm - modulus of elasticity of rock mass; 

Ec - modulus of elasticity of concrete. 
 
 

 

Fig. 14 Load to the tunnel structure accounting for the  

rheological properties of rock mass and concrete 
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For the constant pressure p0 it is assumed that the 

Heim’s hypothesis is valid and the tunnel is sufficiently 

deeply embedded. 

Heim’s hypothesis is based on the assumption that the 

structure is exposed to equal stresses in all directions. Heim 

developed this hypothesis during the excavation of alpine 

tunnels, where it was found that the hydrostatic state of 

stress exists in the rock mass, i.e. σv=σh=p0, where σv is a 

vertical component of normal stress (σv=γrmh, γrm is unit 

weight of rock mass, h is depth of observation), σh is a 

horizontal component of normal stress. The lateral pressure 

coefficient for this hypothesis is defined as λ=σh/σv=1.0 

(Selimović 2003). 

For the rotationally symmetrical stress and strain state, 

the following is obtained: 

 

(1) 

On the other hand, lining displacement is given as: 

 

(2) 

Eqs. (1) and (2) result in the interactive pressure: 

 

(3) 

When at time t the excavation is executed, at the 

location of the future contact of the tunnel lining with the 

rock mass there is an onset of elastic strain and 

displacement: 

 

(4) 

It is also assumed that ν = const with time. Based on 

this, it can be concluded that stress state in rock mass is 

invariable up to the moment the tunnel lining is installed. 

Considering the rheological model (Fig. 13), for the 

constant stresses, it can be written: 

 

(5) 

 

(6) 

That is: 

 

 

(7) 

where: 

E1 - modulus of elasticity of rock mass for 

the Hooke’s body (H1) (Fig. 13), 

E2 - modulus of elasticity of rock mass for 

the Hooke’s body (H2) (Fig. 13), 

η1 - viscosity coefficient of the Newton’s 

body (N1) (Fig. 13), 
ηrm - coefficient of viscosity of rock mass, 

ε - strain, 

ε0 - initial strain. 

For displacement w the following is obtained: 

 

(8) 

The radial displacement of the excavated contour, until 

the moment the concrete lining is activated, is the function 

of time in the following form: 

 
(9) 

where φrm=E2/E1 (for rock mass). 

The concrete lining becomes activated at the moment 

t=T, and from that time on, pressure p=p(t) starts to develop 

at the contact of concrete and rock mass. For t=T the 

following is obtained:  

 
(10) 

Due to the gradual increase of pressure p(t), 

displacement at the contact of concrete and rock mass starts 

to develop in the following way: 

 

 

 

(11) 

 

(12) 

Displacement of the concrete lining in radial direction 

is: 

 

(13) 

where:  

ηc - coefficient of viscosity of concrete; 
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φc=E2/E1 (for concrete). 

By equating wc(t)=w(t)–w(T), the following is obtained: 

 

(14) 

The expression on the right side can be written as: 

 

(15) 

The right side of Eq. (15) changes the form into:  

 

(16) 

where 

 

p(T) = 0 

(17) 

 

(18) 

The following designations are introduced: 

  

(19) 

 
(20) 

 

(21) 

Eq. (14), with the transformation in Eq. (15), changes 

the form as presented in Eq. (22), which represents the 

Volterra’s integral equation of the second order: 

 

(22) 

By differentiating Eq. (22), the following is obtained: 

 

(23) 

That is: 

 

(24) 

 

(25) 

 

(26) 

If   crm  
and R=P+Q: 

 

(27) 

 

(28) 

By solving differential equation in Eq. (27): 

 

(29) 

p(T) = 0   

   

(30) 

The final solution of the equation is obtained in the 

following form: 

 

(31) 

When t→∞: 

 

(32) 

A more complex load condition of tunnel lining will be 

considered when the creep and shrinkage effects of concrete 

are also taken into consideration. 

Relations of stress and strain, which vary over time t, 

are presented in the form of the Volterra’s integral 

equations: 

 

(33) 

 

(34) 

where:  

Ec(t) - modulus of elasticity of concrete, 

εs(t) - strain that occurred due to the shrinkage 

of concrete. 
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Kernel K(t,τ) of integral equation and its resolvent R(t,τ) 

depend primarily on the chosen rheological model. These 

relations are valid in the area of the linear theory of 

concrete creep, when stresses do not exceed 50-60% of the 

concrete strength. 

For the purpose of simplification of calculation, it is 

most often considered that the modulus of elasticity of 

concrete Ec(t) does not change over time. In that case: 

  

(35) 

where: 

φ(t, τ) - coefficient of concrete creep, 

C(t, τ)   - specific creep, 

E  - modulus of elasticity of concrete 

considering shrinkage and creep effects. 

In order to facilitate consideration of the impact of the 

creep and shrinkage of concrete in the design of structures 

in practice, various algebraic proposals were made with an 

aim to simplify these relations. 

Fritz (1984) presents the relations between stresses and 

strain in the following form: 

 

; 

     

(36) 

where: 

Eφ(t) - ideal modulus of elasticity, 

Eφ
c(t) - ideal modulus of elasticity of concrete. 

If this relation is employed in Eqs. (17) and (19), the 

following is obtained: 

 

(37) 

 

(38) 

Then: 

 

(39) 

The concrete creep coefficient φ(t,t1) consists of the 

return segments φr(t,t1) and the non-return segments φi(t,t1) : 

 

 

(40) 

Function depends on the theoretical thickness of  

 

Fig. 15 Distribution of pressures over time 

 

 

Fig. 16 Pressure diagram as a function of time of    

activation of concrete lining T 

 

 

concrete element and the relative humidity of the 

environment in which it is situated. These functions are 

provided in graphical and numerical terms (Ivković 1965, 

Praščević 1973). 

In case when   crm , the load to the tunnel lining 

in function of time t and time of activation of concrete 

lining T is: 

 

(41) 

When t→∞: 

 

(42) 

Eqs. (41) and (42) are of significance from the 

theoretical aspect and can be applied when all the properties 

of the rock mass and concrete structure are known. The 

calculation is very complex, so this paper analyses the 

pressure ratio in a simpler way, using Eqs. (31)-(32). This 

approach has also been used in the numerical example in 

the subsequent part of the paper. 

On the basis of the rheological model, presented in Fig. 

13, and derived Eqs. (31)-(32), the modulus of elasticity of 

rock mass depending on time Erm=Erm(t) and ratio p(∞)/p 

are obtained (Fig. 15). 

The diagram depicted in Fig. 15 is given for the 

Belgrade marls, with limiting values φrm=2 (lower limit) 

and φrm=3 (upper limit). 

 

4.2 Numerical example 
 

A tunnel structure, with a radius a=3.60 m and a lining 

thickness d=0.25 m, is constructed in the grey marl stone 
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Tunnel lining load with consideration of the rheological properties of rock mass and concrete 

having the properties Erm=785.00 MPa, νrm=0.35, γrm=20 

kN/m3, φrm=2, and ηrm=0.1. The tunnel is built at a depth of 

h=35 m, with the following characteristics of the concrete 

lining Ec=31.5 GPa, νc=0.1, and φc=2.2 (concrete of a 

C25/30 class). 

The dependence of the final pressure at the contact of 

rock mass and tunnel structure on the time T is presented in 

the following diagram (Fig. 16). 

By using Eq. (3) for interactive pressure and by 

calculating p(∞) for time intervals T, the relation for the 

rock mass modulus is obtained in the following form: 

 

(43) 

That is, when the effects of concrete creep and 

shrinkage are taken into consideration: 

 

(44) 

From these expressions, time dependence of the 

modulus of elasticity of rock mass can be observed.  

Depending on the technological process of construction, 

it is necessary to complete the concrete lining and to 

activate its interaction with the surrounding rock mass 

within the time T. For that reason, in the design of tunnel 

structures, it is necessary to determine the time difference 

from the moment the excavation starts until the moment the 

concrete lining is installed. Using this time cycle and a 

rheological model, the elasticity modulus of rock mass 

Erm=E(t –T) is determined. 

On the basis of this model, it can be concluded that for 

the design of tunnel structures, it is necessary to determine 

Erm and to calculate static impact with the value obtained in 

this way. The assumption of the mutual dependence of the 

static structural system, technological construction process, 

and basic properties and characteristics of rock masses is 

confirmed by the previous statements.  
 

 

5. Conclusions 
 

Implementation of rheological models and 

determination of rock mass load transmission to the tunnel 

structure over time makes it possible to determine the 

relation of stress and strain in the rock mass and tunnel 

structure (Manojlović 1987). For the analysis of mutual 

relation of technological construction process, static 

structural system, and geotechnical parameters, it is 

necessary to determine development of deformation 

processes in the rock mass over time using the chosen 

rheological model prior to the calculation. By this, the time 

component of transmission of the load to the tunnel 

structure is defined. The most important thing is that, when 

using the rheological models, actually measured mechanical 

characteristics can be entered: moduli of elasticity and 

strain, uniaxial compressive strength, functional relations of 

stress, strain, and strain rates obtained from the triaxial test, 

as well as strength parameters obtained from the shear test 

(friction angle and cohesion). 
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