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1. Introduction 
 

The estimation of foundation settlement is a basic and 

critical subject matter of foundation engineering and is a 

common procedure carried out by geotechnical engineers. 

Due to the heterogeneous nature of soil, the process of 

predicting settlement has become more tedious and 

complex. In general, sandy soil have a higher differential 

settlement compared to cohesive soils since the former is 

less homogeneous than the latter. Moreover, the 

deformation behavior of shallow foundations obtaining their 

support from granular soils (i.e., sands, gravels) mainly 

governs the final design of structures which are built on 

these soil types. Therefore, predicting settlement is a crucial 

issue and is one of the greatest concerns in foundation 

design codes. 

Numerous researches have been published over the past 

five decades investigating the correlation of predicted 

settlements with the measured settlement of shallow 

foundations on cohesionless soils. Some of them proposed 

new methods to estimate the settlement (Terzaghi and Peck 

1968, Schmertmann 1970, Jorden 1977), while the others 

made an effort to present a comparison among various 

methods to assess whether or not any one distinct method 

provided an upper-level accuracy over the others (Maail 

1987, Maugeri et al. 1998). The reliability of settlement 

estimation for shallow foundations on sandy soils also 

received substantial attention in the recent years (Berardi et  
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al. 1991, Sivakugan and Johnson 2004). Das and Sivakugan 

(2007) produced an overview and indicated that the 

probabilistic design chart method proposed by Sivakugan 

and Johnson (2004), can be utilized for making an estimate 

of the probability that the actual settlement would be exceed 

25 mm in the field. 

Due to the difficulty of obtaining undisturbed samples, 

the majority of the available methods for the settlement 

prediction of shallow foundations on sandy soils relied upon 

in-situ tests, such as the pressuremeter test, plate load test, 

dilatometer test, drive cone test, cone penetration test (CPT) 

and standard penetration test (SPT) Meyerhof (1956, 1965). 

The obtained results were either used: to estimate a soil 

elastic modulus for elastic deformation analysis; to directly 

predict settlement based on an empirical relationship; or to 

estimate other soil properties (i.e., over consolidation ratio, 

relative density) for the estimation of settlement. However, 

most of these methods attempted to simplify the problem by 

assuming a linear response between load and deformation, 

and related it to the factors that can affect the settlement 

value. Therefore, the previous methods failed in obtaining a 

good solution to predict the settlement accurately. The 

aforesaid reviews between predicted and measured 

settlement of shallow foundations in sandy soil indicated 

that no particular method was superior to the others in all 

cases and the calculated results of settlement were 

inconsistent. Consequently, there remains a need for a more 

efficient method that can provide settlement prediction 

results with higher accuracy. To obtain that expectation, a 

new approach using the advantage of artificial intelligence 

technique is employed in this research. 

ANN models are computing systems designed to mimic 

how human brain works and contain a number of 

interconnected processing elements or neurons. These 

elements are able to be trained to map a specified input to 
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obtain an expected output. In contradiction to traditional 

computing models which follow an obvious step-by-step 

procedure based on predefined rules, ANNs can learn by 

available data as examples and adjust the connection 

strength between different neurons to acquire desired 

outputs. These advantages make ANNs capable of learning 

complicated relationships between multi-dimensional data. 

Therefore, ANNs are frequently being used in numerous 

fields of science and technology, as well as in expanding 

various engineering applications (Shahin et al. 2002, 

González and Zapico 2008, Tsompanakis et al. 2008). The 

fundamentals of neural computing procedures in 

geotechnical analysis and design were first implemented by 

Goh (1994), and an increasing number of articles have been 

published over the years. Most of these studies focused on 

soil properties (static and dynamic) (Çelik and Tan 2005, 

García et al. 2006, Kamatchi et al. 2010, Erzin and Ecemis 

2017), predicting behavior of foundations (Das and 

Basudhar 2006, Chaudhary et al. 2007, Shahin 2010, 

Alkroosh and Nikraz 2011, Dinçer 2011, Gandomi and 

Alavi, 2012), predicting liquefaction (Chern and Lee 2008, 

Samu and Thallak 2011), estimating slope stability and 

landslides (Cho 2009, Das et al. 2011), and applying in the 

others of geomechanics field (Javadi and Rezania 2009, 

Shivapullaiah et al. 2009, Alavi et al. 2010, Erz and Cetin 

2014, Shahrbanouzadeh et al. 2015, Fei et al. 2019 ). 

This study focused on the application of an ANN to 

propose a simple method of predicting the settlement of 

shallow foundation on sandy soil using several parameters. 

For this purpose, 180 experimental data from different 

technical literatures were collected. First, a simple 

regression analysis was performed to show the relationship 

between the settlement and the five-main variables: the 

breadth of foundation B, the shape factor L/B, the 

embedment ratio Df/B, the net-applied load pressure at 

footing base qnet, and the average SPT blow count N. 

Afterwards, ANN method was applied for predicting the 

settlement of foundation on sand using the aforementioned 

experiment results. Then, an explicit solution of settlement 

of shallow foundation in terms of the mentioned input 

parameters was proposed by using the backpropagation 

algorithm. To evaluate the accuracy of the developed ANN, 

some classic empirical formulas and other ANN model 

Shahin et al. (2002) were selected and the results obtained 

from the different methods were compared to the results 

from the developed ANN. 
 

 

2. Overview of artificial neural networks (ANNs) 
 

ANN is an information processing model that mimics 

the function of the human brain which is the ability to 

acquire, represent, and create a desired mapping of 

information from multi-dimensional data to another with a 

set of data representing that mapping. This model consists 

of an interconnected assembly of simple processing 

elements called neurons, which are linked to each other. 

These artificial neurons are modeled on the biological 

model which is comprised four main parts: dendrite, axon, 

synapse, and cell body as illustrated in Fig. 1. The signals 

are transferred to the dendrites from the other neurons 

 

Fig. 1 The biological neurons 

 

 

Fig. 2 The structure of artificial neuron 

 

 

(cells). The axon of each neuron is of use to organize 

synaptic connections with other neurons. The cell body 

synthesizes the incoming signals from the dendrites'. The 

volumes of signal transferred relies on the synaptic strength 

of the connection, that means the synaptic integration, 

which determines whether a neuron becomes active or not. 

In order to become active, the input signals must reach a 

threshold level where the neuron will send a nerve impulse 

(spike) to its axon. In contrast, if the inputs are not 

sufficient to reach the required level, no excitation will 

occur. 

The fundamental element of a neural network is the 

artificial neuron as presented in Fig. 2. The scalar input x is 

multiplied by the scalar weight w and added by the other 

input, called bias b, which is multiplied by 1. This 

summation, denoted z given in Eq.(1), is then transformed 

using an active function f, which produces the scalar neuron 

output y. 

1

w
n

i ij j i

j

z x b


 
 

(1) 

An output value for any single neuron can be expressed 

as: 

( )i iY f z
 (2) 

There are a variety of ANN models (Hertz et al. 1992) 

but the multi-layer perceptrons (MLPs) are broadly used in 

engineering applications. In general, an MLPs consists of 

three main components: an input layer, one or several 

hidden layers, and an output layer. Each layer has one or 

more neurons. The output of one neuron provides the input 

to the other neurons in the next layer. The hidden layers  
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Fig. 3 The flowchart for selecting ANN structure 
 

 

enable these networks to represent and calculate complex 

associations between input and output layers. 

The number of hidden layers depend on the complexity 

of the problem. There are several methods to determine this 

number (Kaastra and Boyd 1996, Kanellopoulos and 

Wilkinson 1997, Alvarez Grima and Babuška 1999, Haque 

and Sudhakar 2002). Most of these methods are, however, 

not presented specifically. The neural network can “learn” 

or “train” from several learning algorithms. The most 

commonly used training algorithm engineering applications 

is the backpropagation algorithm which can be divided into 

three parts: (i) the feeding of data at input layers, (ii) the 

output calculation and its error backpropagation, and (iii) 

the weights modifications. This procedure can be 

implemented with various optimization strategies. The error 

of the ANN model's output and the actual label is 

transmitted backward and used to renew weights of the 

previous layers can be observed in Fig. 3. 

In order to estimate whether the overall ANN is sound 

or not, several criteria can be considered such as: coefficient 

of determination R2, root mean square error (RMSE), mean 

absolute error (MAE), minimal absolute error, and 

maximum absolute error. A well-trained model should show 

the result with R2 close to 1 and small values of error terms. 

In this paper, the settlement prediction model for shallow 

foundation using ANN was built using Python code which 

is an open-source and powerful programming language with 

numerous available libraries (e.g., keras, tensorflow, mxnet 

and so on). The reliability of the model was estimated using 

the first three-aforementioned criteria including R2, RMSE 

and MAE. These values were also utilized to compare with 

some empirical existing methods, which are presented in 

the following section. 

 

 

3. Empirical classical method 
 

There have been numerous researches which proposed 

prediction method for the settlement of shallow foundations 

on sandy soils. Three methods were chosen to compare and 

assess the reliability of the performance of the ANN model. 

The considered methods were performed the studies of 

Schultze and Sherif (1973), Meyerhof (1974), and 

Anagnostopoulos et al. (1991), all of which used data from 

SPT. These were chosen since these had been recently used 

in many design codes, and the ANN model had similar 

input variables. 

 

3.1 Schultze and Sherif (1973) 
 

Based on the results of a study by Schultze and Sherif 

(1973), wherein they measured settlements from 48 sites 

with SPT, they were able to suggest an empirical method to 

estimate the settlement of shallow foundations on sand. 

This settlement can be predicted from: 

0.87 1 0.4

net c

c

f

q F
S

D
N

B


 
 

   

(3) 

 

3.2 Meyerholf (1974) 
 

Meyerholf’s most recent expressions for settlement were 

further modifications of his previous methods (Meyerhof 

1956, 1965) and were generally considered to be 

conservative. In this case, when the adjustment for 

foundation embedment was taken into account, the 

settlement was given as: 

1.33
1      for 1.22 

fnet

c
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 
   

   
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 
   

   

(5) 

 

3.3 Anagnostopoulus (1991) 
 

Anagnostopoulos et al. (1991) suggested another 

empirical method for grouping estimates according to 

stiffness, e.g., loose, medium or dense sand as well as small 

versus large footings. This method was based on a statistical 

evaluation of measured settlements and multiple regression 

analyses. of the case histories obtaining primarily from 

Schultze and Sherif (1973) and Burland and Burbidge 

(1985). Presumably one would estimate settlement by using 
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the appropriate expression for both SPT blow count range 

and the appropriate footing width, and then average the two 

results to give a single settlement estimate. These formulae 

for predicting settlement can be expressed as: 

 0.94 0.90 0.870.57q B      for 0 10cS N N  
 

(6) 

 1.01 0.69 0.940.35q B      for 10 30cS N N  
 

(7) 

 0.90 0.76 2.82604q B      for 30cS N N 
 

(8) 

 0.77 0.45 1.081.90q B      for 3 mcS N B 
 

(9) 

 1.02 0.59 1.371.64q B      for 3 mcS N B 
 

(10) 

where, in Eq. (3-10), Sc = settlement (mm); qnet = net 

applied pressure (kPa); B = footing width (m); Df = depth of 

embedment (m); N = the blow count from SPT, were not 

corrected for overburden stress; σ'c = pre-consolidation 

pressure (kPa); Fc = settlement coefficient (obtained from 

design chart). 

 

 

4. ANN models and numerical application 
 

4.1 ANN models and input parameters 
 

The principal performance of an ANN model is 

controlled on the NN structure and parameters setting. One 

of the most important and difficult tasks in developing NN 

is to figure out the most optimal structure. It can be done by 

using trial and error approach to determine the number of 

hidden layers and the number of neurons in hidden layers. 

The universal approximation theorem states that MLP can 

approximate any continuous function with a single hidden 

layer containing a finite number of neurons. One of the first 

versions of this theorem was proved by Cybenko (1989) for 

sigmoid functions. Consequently, the NN model in this 

study was built with one hidden layer. 

The experimental data used in this study cosists of 180 

experimental shallow foundation was reported by various 

studies and given in Appendix A. The five variables were 

used as input parameters for the ANN model: (1) B; (2) L/B; 

(3) Df/B; (4) qnet; (5) N while the output was selected as the 

measured settlement of shallows foundation Sc. The 

uncorrected N-values were used in predicting settlement, 

however, if the sand was dense, saturated and very fine or 

silty, Terzaghi and Peck (1968) recommended that the blow 

count applied to submerged case should be corrected 

according to: 

15 0.5( 15)cN N  
 (11) 

If the soil was gravelly sand or sandy gravel, a 

correction for N was recommended by Burland and 

Burbidge (1985) as: 

1.25cN N
 (12) 

Table 1 Statistic of the database used for ANN 

Parameter used Minimum Maximum 
Mean 

(μ) 

Std. 

(σ) 

Input parameters 

Nc 4.0 60 24.58 13.53 

B (m) 0.8 255 9.82 20.48 

L/B 1.0 10.6 2.19 1.80 

Df/B 0 3.44 0.53 0.58 

qnet (kPa) 18.32 1532 194.31 157.35 

Output parameters 

Sc (mm) 3.3 103.40 20.20 26.10 

 

 

Fig. 4 The optimization process of selected NN 

 

 

In total, 80% of the collected data (144 cases) were 

utilized for training and the remaining 20% for testing (36 

cases). Statistical parameters of the data used for training 

and testing sets are presented in Table 1. Model input and 

output variables commonly have different dimensions and 

orders of magnitude. Thus, they need to be normalized to 

make training less sensitive to the scale of the input 

variables and to eliminate their dimensions (Luat et al. 

2020). Moreover, normalization makes the problem better 

conditioned and prevents numerical difficulties during the 

calculation. Therefore, all variables are normalized to the 

range of [0, 1] using the min-max normalization method, 

which is expressed as follows: 

𝑥𝑛𝑜𝑟𝑚 =
𝑥 −𝑚𝑖𝑛⁡(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛⁡(𝑥)
 (13) 

where, x is the original value and xnorm is the normalized 

value. 
 

4.2 Optimal ANN model 
 

Although there is no rule for determining the number of 

nodes in a hidden layer in general, this number must be 

satisfactory for correcting the model of the problem, as well 

as should be small enough to ensure the simplification. In 

order to optimize the network, ANNs with multiple neurons 

in its hidden layer are trained in range 1 to 11 as discussed 
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Fig. 6 The optimum NN structure 

 

 

by Caudill (Caudill, 1988) for 1000 epochs, shown in Fig. 

4. The performance of the NN is evaluated by utilizing the 

default sigmoid functions in the hidden layer units and a 

linear activation function in the output layer. An RMSE was 

used for the backpropagation with the efficient stochastic 

gradient decent (SGD) optimization algorithm while 

keeping the values of the learning rate and momentum 

factor equal to 0.01 and 0.8, respectively. The mini batches 

of data were shuffled for each epochs in order to serve the 

purpose of reducing variance and ensuring that NN model 

remained general and over-fitted less. Each result of the NN 

was tested over ten simulations with a different initializing 

random weights, then the average RMSE and MAE of 

training and testing set were obtained. It should be noted 

that in an ANN model, the performance on training data 

shows the learning process, while the obtained result of 

testing data demonstrates the model predictability. 

Therefore, the final model is chosen based on the testing 

data performance. As shown in Fig. 5, the two-node layer 

had the lowest error for the testing set in terms of RMSE, 

indicated the best performance. Moreover, the small 

distance of RMSE between the training and testing set 

showed a less over-fitting prediction. In terms of MAE, the 

smallest value yielded the three-node layer. However, it is 

noteworthy that one of the main tasks was to derive an 

explicit-predictive formula for practical design. The smaller 

the number of neurons is, the simpler the equation derives.  

 

 

For this reason, the ANN model with two neurons in the 

hidden layer was chosen as the optimal model. This 

selection was generally acceptable because the two-node 

layer had a difference of only 0.1 mm against the three 

hidden layer nodes in terms of MAE. In brief, the optimal 

NN structure was found to be 5-2-1, as displayed in Fig. 6. 

In an attempt to develop an NN by combining transfer 

functions with optimization, some functions and 

optimization algorithm were used. Three functions 

including logistic sigmoid function, hyperbolic tangent 

(tanh) and rectified linear unit (ReLU) were applied to the 

activation functions in all units of hidden layers. The five 

backpropagation training algorithms used consisted of 

SGD, adaptive moment estimation (Adam) (Kingma and Ba 

2015), Adadelta (Zeiler 2012), adaptive gradient algorithm 

(AdaGrad) (Duchi et al. 2011), and signum optimizer  

(Bernstein et al. 2018). These algorithms were governed by 

hyperparameters (e.g., learning rate - α, momentum - μ). 

Actually, all above algorithms have learning rate as a 

hyperparameter. Trial and error method was used to find out 

the best set of these factors. This meant that one factor was 

changed while the others remained constant. Based on the 

procedure of selecting the hyperparameters for SGD 

algorithm as shown in Fig. 7, the learning rate and 

momentum were chosen as 0.01 and 0.2 respectively. This 

process was also done for other algorithms. 

The results showed the performance indices (RMSE, 

MAE and R2) of the ANN with various activation functions 

and optimization algorithms. It was evident that overall, the 

sigmoid function performed the best in training and testing 

whereas the ReLU function had the lowest accuracy. Out of 

the five optimization algorithms, sigmoid function 

combined with signum algorithm presented the smallest 

RMSE of 3.22 mm for training set while for testing set, the 

algorithm that yielded the smallest value was Adam at 2.66 

mm. This rule was also true in the case of tanh activation 

function with RMSE with 3.09 mm and 2.82 as training and 

testing data, respectively. The value of minimum RMSE 

object was altered based on the coefficient of determination 

R2 for the testing results. The R2 value reflected the input 

data participation in predicting the output value, and that the 

errors were decreased when predicting the settlement by 

using five input parameters. Table 2 also reports the  

 

Fig. 5 The optimization process of selected NN 
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comparison of R2 with various combination of transfer 

functions and backpropagation algorithms. The combination  

 

 

 

 

of SGD and Adam algorithm with sigmoid function showed 

the best correlation with a value of 0.979. Thus, the optimal  

 
(a) Various learning rate values with momentum μ = 0.8 

 
(b) Various momentum values with learning rate α = 0.1 

Fig. 7 Performance of ANN model with sigmoid activation function 

Table 2 The comparison of RMSE, MAE, R2 for training and testing sets among various optimization algorithms and 

activation function 

Opimization algorithm SGD Adam Adadelta Adagrad Signum 

Activation function Train Test Train Test Train Test Train Test Train Test 

RMSE 

Sigmoid 3.82 2.79 3.53 2.66 3.46 4.20 3.2 3.99 3.22 4.01 

Tanh 3.86 3.94 4.51 2.82 3.88 3.58 3.14 4.75 3.09 4.52 

ReLU 3.87 6.03 11.71 10.24 11.78 10.32 11.74 10.36 11.04 8.77 

MAE 

Sigmoid 0.30 2.60 0.28 2.54 0.35 2.73 0.38 3.00 0.39 3.09 

Tanh 0.46 4.04 0.34 2.94 0.39 2.81 0.36 2.97 0.33 3.05 

ReLU 0.49 5.17 1.35 8.78 1.44 9.12 1.45 9.09 1.38 7.75 

R2 

Sigmoid 0.956 0.979 0.973 0.979 0.971 0.946 0.972 0.952 0.972 0.951 

Tanh 0.967 0.966 0.965 0.978 0.969 0.962 0.974 0.931 0.974 0.937 

ReLU 0.961 0.897 0.603 0.680 0.599 0.674 0.600 0.671 0.649 0.777 

Table 3 Model parameters of the best ANN 

Neuron 

Weights 
Bias 

Input Output 

Nc B L/B Df/B Qnet Sc Hidden layer Output layer 

1 -30.6090 21.5313 0.8972 1.1797 0.2728 79.4644 -3.2050 -4.1869 

2 -21.5254 -7.7179 4.2135 4.5605 145.3265 13.8813 -4.1869  
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Fig. 8 NN prediction and actual values for training and 

testing set 

 

 

ANN model chosen for predicting settlement was the 

sigmoid activation function associated with Adam 

optimization algorithm that turned out a learning rate of 

0.01, which also presented the best MAE of 0.25 mm for 

training data and 2.54 mm for testing data. From the 

backpropagation algorithm results, the connection weights 

and biases of the final model are represented in Table 3. The  

relationship between the measured settlement and the 

predicted values which obtained from ANN model can be 

observed in Fig. 8. As seen in the figure, almost all of the 

data points showed good correlation between predicted and 

measured values. 

 

 

5. Explicit formulation for predicting settlement 
 

The main object is to derive an explicit formulation of 

settlement prediction as a function of input variables. It 

should be noted that, before training, all input variables 

were normalized using Eq. (14). Hence, the connection 

weights and biases of the optimal ANN (Table 3) was re-

scaled before deriving the close-formed solution 

formulation. Finally, the settlement of foundation was 

expressed in terms of the blow count from SPT Nc, footing 

width (B), foundation geometry ratio (L/B), embedment 

ratio (Df/B) and net applied pressure (qnet) as follows: 

   1 279.4644 13.8813 4.1869cS sig Z sig Z    
 

(14) 

where,  
1

1 Z
sig Z

e



, and: 

 

 
1 0.2883 0.2028 0.084

       + 0.0111 + 0.0026 0.2119f net

Z N B L B

D B q

      

  
 

(15) 

 

 
2 0.2027 0.0727 0.0397

        + 0.0429 1.3686 59.2171f net

Z N B L B

D B q

      

   
 

(16) 

It should be noted that the closed-form solution derived 

above is valid for the ranges of variables given in Table 1. 

 

 

6. Performance evaluation of the proposed ANN 
model 
 

For the purpose of examining the accuracy of the ANN 

model, the model was compared against a few traditional 

methods as presented in Section 3. In addition, the ANN 

model results proposed by Shahin et al. (2002) were also 

used to compare with the results obtained from the present 

work. Some considered indices needed for each method and 

their equations are summarized in Table 4. The performance 

of the ANN model and the four considered methods, in 

relation to the testing set, are also displayed graphically in 

Fig. 9. According to Table 4, the ANN model performed 

reasonably well over the full range of settlement predictions 

with a high coefficient of determination between the 

predicted and measured values of 0.973. Table 4 also 

presents the lowest RMSE and MAE obtained from ANN 

model of this study. The values of RMSE and MAE 

obtained using Adam optimization were 3.53 and 0.28 mm, 

respectively. By contrast, the RMSE and MAE of 

considered methods ranged from 11.04 to 25.72 mm and 

from 8.78 and 16.59 mm, respectively. As seen in Fig. 9, the 

ANN model demonstrated a better prediction with less 

scatter with respect to the best fit line than those obtained 

from other methods, when the range of testing set was 

analyze. For instance, the method of Schultze and Sherif 

(1973) had a tendency to under-predict the settlement of 

shallow foundation, especially for larger (than 40 mm) 

settlement, with a lowest coefficient of determination of 

0.16 as listed in Table 4. 

Three field tests were selected for verification of Eq. 

(14) by estimating and comparing settlement of shallow 

foundation. A 3×3 m footing (Exp No. 1) was implemented 

at Riverside Campus of A & M Texas University by Briaud 

and Gibbens (1994). Two underlain shallow foundation of 

two buildings (D2 and E1 – Exp No.2 and 3) located in 

Mascali, Italy were examined by Maugeri et al. (1998). This 

comparison is presented in Table 5. It is evident that the 

proposed equation provides the best accurate results 

compared to other methods. Moreover, the most accurate 

calculation out of traditional methods are at least twice as 

much as the measured settlement. 

 

 

Table 4 Criteria indices and proposed equation for 

predicting 

Method 

Performance indices 
Proposed 
equation R2 

(mm) 
RMSE 
(mm) 

MSE 
(mm) 

Schultze & Sherif 

(1973) 
0.16 25.72 16.59 Eq. (3) 

Meyerhof 
(1974) 

0.518 23.55 11.81 Eq. (4-5) 

Anagnostopoulos (1991) 0.768 15.02 9.91 Eq. (6-10) 

Shahin et al. 

(2002) 
0.819 11.04 8.78 - 

This study 0.979 2.66 3.53 Eq. (14) 
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7. Conclusions 
 

This paper presented an ANN model for the prediction 

of shallow foundation settlements on sandy soils. To 

propose this model, a database containing 180 experimental 

cases was collected from the available literature. The 

backpropagation algorithm was used to derive an explicit 

formula that could make sense in actual designs. Based on 

the discussion above and comparisons of the proposed 

model with available methods, some conclusions can be 

given, as follows: 

• The optimal model for ANNs was associated with the 

number of hidden layers and the number of neurons in  

 

 

hidden layers which was found to be 5-2-1. The activation 

function used for the hidden layer was a logistic sigmoid 

function whereas the output layer was applied by a linear 

regression function. 

• The obtained results from the proposed ANN model 

performed a good agreement with experimental results 

where its measured errors were low. These values illustrated 

that the neural networks had a capability to estimate the 

settlement of shallow foundation upon the sandy soils 

ranging from 3.3 to 103.4 mm. 

• It was found that the ANN model can be efficiently 

utilized to develop an empirical equation for predicting the 

settlement of shallow foundation on sandy soils using the 

  

  

 

Fig. 9 Comparison measured versus predicted settlements between the proposed ANN model and available methods. 
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standard penetration tests. Moreover, the derived 

formulation can be employed as a handy prediction tool 

with satisfactory predictability. 

• The range of applicability of the derived equation is 

constrained by the data used in the model. Consequently, 

for cases in which the input variable values are beyond this 

range, the proposed ANN model should be used with 

caution. 

• In spite of the current research was able to do good a 

prediction, neither a parametric study nor variable 

importance was conducted. Therefore, future work should 

focus on the sensitivity analysis to determine the most and 

least important input variables. Moreover, another soft-

computing techniques, such as multivariate adaptive 

regression splines (Luat et al. 2020), gradient tree machine 

(Thai et al. 2019), etc. can be further explored with nature-

inspired evolutionary algorithm such as Genetic Algorithm, 

where the influence of each parameter required to predict 

the settlement of shallow foundation can help avoid the 

manual trial and error procedures. 
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Appendix  
 

Table A Experiment database used for training and testing 

Reference 
B 

(m) 

qnet 

(kPa) 
NSPT L/B Df/B 

Sm 

(mm) 

Burland and Burbidge  
(1982, 1985) 

15 0.8 1 0.00 78 7 

50 2.1 1 0.71 697 2.3 

60 2.5 3.8 1.20 284 1 

25 1.2 10.6 0.25 250 10 

20 0.9 1 3.44 300 6.7 

45 1.2 1 0.50 150 0.6 

35 4.5 1.3 0.67 195 3.9 

35 5.5 2.9 0.52 93 6.5 

20 4.3 1.6 0.49 161 5 

12 4.5 6.8 0.60 91 11 

35 15.0 4.9 0.20 81 5.4 

20 4.9 1.6 0.47 188 15 

20 4.0 1.6 0.50 145 7.4 

13 1.5 1 0.80 77 2.1 

45 1.0 1 0.50 284 4.7 

40 3.3 1.7 0.90 304 11.6 

17 12.2 1 0.09 130 22 

21 6.7 1.6 0.51 113 5 

6 25.0 1 0.11 75 87 

7 1.2 1.6 0.17 199 13 

20 4.3 1 0.49 102 7.1 

30 21.7 5.3 0.14 148 19.8 

34 1.0 1 0.00 220 3.6 

16 2.5 1.1 0.00 245 11 

37 4.0 1 1.30 512 12.8 

13 1.5 1 0.80 77 1.3 

28 3.6 4.4 0.00 193 18 

6 14.5 1 0.07 74 75 

20 4.0 1.6 0.50 225 9.1 

20 6.4 1.6 0.50 150 14.5 

20 4.3 1.6 0.49 138 7.1 

20 4.9 1.6 0.47 123 6.6 

50 1.2 1 0.42 300 4.5 

20 4.9 1.6 0.47 107 3.6 

20 3.7 1 1.40 135 10.1 

6 22.4 3.8 0.04 64 70 

20 4.3 1 1.20 134 15.4 

20 4.9 1.6 0.47 97 4.3 

20 4.3 1.6 0.49 150 6.8 

40 1.0 1 0.00 294 5 

21 22.0 1 0.23 79 10.5 

6 25.0 1 0.09 75 87 

19 33.5 1 0.00 156 90 

 

Table A Continued 

Reference 
B 

(m) 

qnet 

(kPa) 
NSPT L/B Df/B 

Sm 

(mm) 

Burland and Burbidge 

(1982, 1985) 

18 1.2 1 2.20 215 8.6 

6 22.4 3.8 0.04 75 92 

10 2.6 8.5 0.77 147 12 

40 4.5 1.5 0.67 304 18.3 

8 1.2 1 0.75 268 12.7 

35 1.5 1 0.40 150 2.1 

21 22.0 3.4 0.22 82 7.7 

26 1.2 1 2.20 215 1.5 

60 10.0 1 0.15 240 7 

25 1.4 1 2.10 230 3.9 

8 3.3 4.2 0.54 52 35 

50 2.1 1.1 1.40 584 4.6 

50 1.4 1 2.60 300 1.5 

25 1.6 7.9 0.25 250 9.3 

20 4.9 1.6 0.47 199 11.7 

35 23.6 1.14 0.13 167 15.4 

8 3.3 4.2 0.54 52 20 

60 2.5 3.8 1.20 284 3 

15 19.0 1 0.00 80 52 

30 22.9 1.4 0.13 165 20.4 

20 3.0 1.6 0.50 231 8.1 

20 3.7 1.6 0.49 290 11.2 

20 3.4 1.6 0.50 247 12.2 

22 7.0 1.6 0.50 177 8.3 

18 13.0 2.4 0.16 193 22 

25 1.2 1 0.00 320 2.8 

18 13.0 1.7 0.16 194 18.8 

45 1.0 1 0.50 564 4.4 

20 4.6 1.6 0.50 113 5.1 

20 3.7 1.6 0.49 139 7.4 

30 6.0 2.7 0.60 162 11 

6 0.9 1 1.00 113 6.4 

20 4.0 1.6 0.50 97 6.1 

50 1.5 1 0.40 150 1 

17 5.3 9.9 0.49 121 12 

25 1.0 1 3.00 196 6 

21 42.7 1 0.00 166 80 

5 20.0 1 0.15 85 81 

30 0.9 1 1.30 300 4 

12 3.5 1 0.43 25 3 

50 2.1 1.1 1.10 584 4.4 

27 24.4 1 0.00 120 14.3 

29 1.2 1 2.20 215 2.5 

40 3.6 1.8 0.83 304 13.3 

18 13.0 2.1 0.16 193 23.5 
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Table A Continued 

Reference 
B 

(m) 

qnet 

(kPa) 
NSPT L/B Df/B 

Sm 

(mm) 

Burland and Burbidge  

(1982, 1985) 

26 14.5 1 0.24 255 18 

36 41.2 1 0.24 104 10 

30 6.0 2.7 0.47 162 10.5 

30 34.0 1.7 0.23 270 22 

4 3.3 4.4 0.30 99 37 

50 1.8 1.6 0.83 575 2.7 

45 1.0 1 0.50 339 6 

37 2.6 4.1 0.38 293 10.9 

20 4.6 1.6 0.50 166 8.1 

28 1.2 1 0.50 150 1.3 

20 6.1 1.6 0.49 161 10.2 

13 1.1 1 1.09 78 2 

25 1.8 1 1.70 230 3.4 

5 0.9 1 0.33 133 7.6 

20 0.9 1 1.33 300 2.7 

50 2.1 1.9 1.40 347 1.8 

6 14.5 4.4 0.77 74 74 

25 2.2 22 1.40 284 10.5 

20 18.3 1 0.02 41 4.8 

17 17.2 2.5 0.27 34 3.6 

20 17.6 4.8 0.61 218 26 

17 5.8 4.1 0.43 73 11.9 

10 4.4 5.5 0.57 93 8 

14 16.0 2.7 0.46 209 18.6 

34 33.0 1 0.16 191 43.8 

38 3.0 4.8 0.95 140 3 

15 14.0 1.6 0.18 18 4.2 

21 2.5 5.24 0.00 158 11.7 

12 3.8 3.2 0.39 90 15.5 

20 4.1 1 1.00 125 17.8 

18 2.5 1 0.30 576 25 

20 4.9 1.6 0.47 182 13.8 

18 3.0 1 0.29 500 25 

32 4.0 1.8 1.30 508 11.9 

20 4.9 1.7 0.31 112 7.4 

20 4.9 1.6 0.47 113 8.9 

20 4.3 1.6 0.49 134 10.2 

20 4.9 1.6 0.47 102 6.9 

42 6.0 2.7 0.60 215 4.1 

18 1.5 1 0.51 666 25 

20 5.5 1.6 0.47 139 9.4 

53 12.2 1 0.25 181 9.6 

7 3.3 4.4 0.61 99 37.1 

6 25.0 1 0.08 63 84 

20 3.7 1.6 0.49 252 16.5 

Table A Continued 

Reference 
B 

(m) 

qnet 

(kPa) 
NSPT L/B Df/B 

Sm 

(mm) 

Burland and Burbidge  
(1982, 1985) 

23 6.1 5 1.10 144 11.7 

42 6.0 2.7 0.47 158 7.9 

12 16.0 1.3 0.09 70 90 

34 3.4 6.7 0.00 81 10.7 

20 4.3 1.6 0.49 177 8.1 

18 3.0 1 0.25 500 25 

60 55.0 1.8 0.18 234 25 

11 9.0 8 0.50 115 25 

6 25.0 1 0.08 76 85 

20 3.7 1.6 0.49 225 7.4 

20 15.0 1.3 0.00 148 40 

20 15.2 1 0.02 33 2.8 

55 15.0 1.7 0.40 136 16.2 

18 6.4 1 0.23 101 7.1 

19 5.1 3.1 0.24 117 19.3 

8 2.3 1.1 1.02 400 43 

9 2.6 8.1 0.77 196 33 

Wahls (1997) 

58 5.2 3.7 0 127.8 17 

42 5.2 1 0.44 95.8 9.9 

22 4.9 1.8 0.3 118.7 6.4 

18 6.4 1.45 0.23 71.8 6.6 

16 16.2 1.6 0.29 139 15 

20 22.5 2.9 0.44 221 21 

42 5.1 4.6 0.35 114.9 5.8 

22 5.2 1 0.96 134 14.7 

39 6.6 2 0 168.1 15.5 

20 4.3 1.6 0.49 145 11 

44 5.2 3.7 0 1532 8.9 

49 4.9 2.8 0 161.4 7.1 

24 5 1.7 0.5 181.9 11.9 

20 3.4 1 1.5 129 11.5 

24 11 3 0.45 120 19.6 

20 3.7 1.59 0.49 215 15 

25 13.1 1.8 0.23 47.6 3.6 

24 8.5 1 0 102.5 16.3 

16 1 1 0 247.5 9.9 

20 3.7 1.59 0.49 215 6.4 

22 5.6 4.3 0.27 112 15.5 

24 4.6 5 0.43 112 11.2 

38 6.1 5 0.25 155.6 16.8 

39 4.6 4.5 0.59 85.7 21.1 

42 7 5.1 0.33 131.2 11.9 

20 3.7 1.6 0.49 279 8.6 

22 2.4 1.6 1.9 190 8.5 

43 4.6 3.5 0 111.1 23.9 
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Table A Continued 

Reference 
B 

(m) 

qnet 

(kPa) 
NSPT L/B Df/B 

Sm 

(mm) 

Wahls (1997) 
50 3 3.3 1 230.8 21.1 

21 25.5 1 0.1 175 25 
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