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1. Introduction 
 

The stability of jointed rock slopes has always been an 

interesting and difficult topic within rock slope research. A 

great deal of research has been carried out in the past few 

decades on the stability of jointed rock slopes. Commonly 

used research methods include limit analysis (Chen et al. 

2003, Florkiewicz and Kubzdela 2013), limit equilibrium 

(Fellenius 1936, Janbu 1954, Sarma 1979, Feng 1999) and 

numerical analysis (Zhou et al. 2015). Wang et al. (2015) 

proposed a limit analysis model for single-layer sliding 

surfaces to analyze any block model, based on the 

principles of limit analysis. Shukla (2011) derived a general 

analytical expression for the factor of safety of a multi-

directional anchored rock slope (MDARS) against plane 

failure, incorporating most of the practically occurring 

destabilizing forces under surcharge and seismic loading 

conditions. However, the effects of dynamic load on the 

stability of two groups of joint wedge rock slopes has been 

seldom studied. Meanwhile, most scholars only consider the 

effect of the horizontal seismic activity and ignore the effect 

of the vertical seismic activity, although Zhao et al. (2017) 

showed that the influence of vertical seismic forces cannot 

be ignored—especially when the influence coefficient of 

horizontal earthquake is large. 
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This study shows that the shear properties of rough rock 

surface do not always satisfy the linear Mohr-Coulomb (M-

C) criterion. Increasingly, nonlinear failure criteria are used 

to evaluate the stability of rock slopes (Barton and Choubey 

1977, Bandis et al. 1981, Liu et al. 2010, Choi and Chung 

1999, Jiang 2009, Zhao et al. 2015) among them, the 

Barton-Bandis (B-B) joint shear strength empirical criterion 

proposed by Barton is most commonly used. Li et al. (2009) 

and Feng and Lajtai (1998) analyzed the stability of slopes 

using the linear M-C criterion and the nonlinear B-B 

criterion. Luo et al. (2013) discussed the common methods 

of transforming the B-B failure criterion parameter into the 

linear M-C criterion shear strength parameter. Lin and Li 

(2014) developed a pseudo-static analysis method for the 

stability of anchored rock slope stability based on the JRC-

JMC model. In their model considering of the influence of 

crack depth, seismic load, anchorage effect and structural 

plane parameters on the stability of a slope, a pseudo-static 

analysis method for the stability of anchored rock slope 

stability was established. Basha and Moghal (2013) and 

Nagpal and Basha (2012) combined the B-B criterion with 

reliability theory to analyze the influence of bolt and 

earthquake action on the stability of plane sliding rock 

slopes. Zhao et al. (2015) developed a method combining 

the B-B criterion with reliability theory to analyze the 

influence of hydraulics on the stability of plane sliding rock 

slopes with inclined fractures. However, the multiple failure 

modes that may exist during failure have rarely been taken 

into account in the above studies. Additionally, these studies 

are based on two-dimensional (2D) models, which is 

different from real three-dimensional (3D) force. The 

stability analysis of this slopes type involves resolution of 
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forces in 3D space. The problem has received considerable 

attention in the literature (Londe 1969, Yang 2015). Also, 

the mechanisms leading to wedge failures in rock slopes 

have been extensively studied in the literature (Nathanail 

1966). Johari and Lari (2016) and Li et al. (2009) analyzed 

the reliability of the 3D wedge with the influence of water 

pressure but assumed that the shear strength criterion of 

rock joints is subject to the linear M-C criterion. 

Thus far, a variety of methods have been invented to 

analyze the behavior of slopes under seismic forces (Li et 

al. 2019), such as the pseudo-static method (Nouri et al. 

2008, Zhao et al. 2016), the pseudo-dynamic method 

(Basha and Babu 2010, Qin and Chian 2018) and Newmark 

sliding-block analysis (Liang and Knappett 2017, Du 2018). 

The pseudo-static method was first employed by Terzaghi 

(1950) and was the most commonly used method for its 

simplicity and convenience. For slope stability analysis, 

limit equilibrium method (LEM) is widely used by 

engineers and researchers which is a traditional and well-

established method. The pseudo-static approach has been 

implemented in various limit equilibrium methods to 

determine the safety factor (Loukidis et al. 2003). It 

manages to provide a fair estimation of the safety factor, 

with minimal computational cost compared with other 

methods. And for this reason, the method is favored by 

engineers. 

Based on the above considerations, in this paper, the 

safety factor expression of a rock wedge slope is deduced 

based on the seismic pseudo-static method, and both the 

horizontal and vertical seismic effects are considered. To 

verify the accuracy and applicability of this method, 

theoretical calculations are compared with the discrete 

element numerical simulation results. The influence of the 

seismic pseudo-static direction on the instability mode is 

analyzed using the stereographic projection method. The 

influence of geometrical parameters, rock mechanics 

parameters, seismic pseudo-static parameters, and rock 

mechanics parameters on the safety factor of wedges are 

also analyzed.  

 

 

2. Failure model based on nonlinear Barton-Bandis 
criterion 
 

2.1 Nonlinear Barton-Bandis criterion 
 

Barton and Choubey (1977) and Bandis et al. (1981) 

summarized the shear strength behavior of artificially 

produced rough, clean “joints.”, and proposed the Barton-

Bandis model. The nonlinear empirical formula of the JRC-

JCS model for calculating the shear strength of joints is 

summarized as follows: 

τ = σntan[φ
b
+JRClog

10
(JCS/σn)] (1) 

where τ is the shear strength of a rough rock surface, σn is 

the compressive strength of the rock on the discontinuity 

surface, JRC is the joint roughness coefficient, JCS is the 

compressive strength of the rock at the fracture surface and 

φb is the friction angle of the rock. In practical applications, 

the values of parameters JRC, JCS and φb can be referenced 

in the literature (Barton and Choubey 1977, Liu et al. 2005,  

 

Fig. 1 Force diagram of a 3D wedge 
 
 

Xia and Sun 2002). The literature notes that Eq. (1) is 

proposed under low-stress conditions. Therefore, the 

suitable range for Eq. (1) is 0.01 < σ/σc < 0.3 (where σc is 

the uniaxial compressive strength of the rock). In Eq. (1), 

[φb + JRClog10 (JCS/σn)] should be no greater than 70°. In 

practical applications, the JRC, JCS, and φb values can be 

estimated based on experience or existing standards (He et 

al. 2012). 
 

2.2 Seismic pseudo-static analysis 
 

In a 2D plane analysis, the pseudo-static method is often 

used for the dynamic stability analysis of the geotechnical 

structure (Baker and Garber 2016) to consider the 

complexity of the seismic action. For the seismic force, the 

horizontal seismic influence coefficient is Kh and the 

vertical seismic influence coefficient is Kv, which can 

usually be related according to: 

Kv = ξKh (2) 

where ζ is the proportional coefficient of the vertical 

earthquake; if ζ is positive, the direction of force is the same 

as the positive direction of the Z axis and if ζ is negative, 

the direction of force is the same as the negative direction 

of the Z axis. The above method is used in this paper for the 

stability analysis of the 3D wedge. The force diagram of a 

wedge is shown in Fig. 1. 

The effect of seismic pseudo-static force is calculated 

according to Eq. (3). 

{

Kv = ξKh

Khy = Khsin(β)

Khx = Khcos(β)

 (3) 

A clear model for analysis has been established to 

analyze the stability of sliding rock slopes. The pseudo-

static force is applied to the three axes of the analytical 

model to consider the effect of seismic activity on the 

stability of the slope. Then, the pseudo-static earthquake 

and the gravity of the rock block are superimposed. The 

forces acting on the three coordinate axes, X, Y and Z, are 

expressed as t1, t2 and t3, respectively. The space force 

vector form (t1, t2, t3) could be calculated as follows: 

{

t1= Khcos(β)W

t2= Khsin(β)W

t3= (Kv-1)cos(β)W

 (4) 
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Fig. 2 Stability analysis model of a 3D wedge 

 

 

2.3 Analytical model 
 

Wittke (2015), Goodman (1989) and Low (1997) 

discussed the possible failure modes of a 3D wedge. Li et 

al. (2009) and Johari et al. (2016) analyzed four possible 

failure modes of wedges with fissure water pressure. There 

are also four possible modes of failure in the wedges under 

seismic pseudo static force: 1) sliding along discontinuity 

plane 1 only; 2) sliding along discontinuity plane 2 only; 3) 

sliding along the line of intersection of two discontinuity 

planes forming the block; 4) the wedge is separated from 

the two structural faces and is separated from the slope. It is 

assumed that all forces act through the center of gravity of 

the wedge so no moments are generated, and there is no 

rotational slip or toppling. 

In this paper, the analysis model shown in Fig. 2 is 

selected to conduct research. In the Fig. 2, H is the height of 

the slope; h is the height of the wedge; α, Ω and ε are the 

inclination angles of the slope face, upper slope surface, and 

intersection of the two discontinuity planes, respectively; δ1 

and δ2 denote the dips of the discontinuity planes 1 and 2, 

respectively; and θ1 and θ2 are the two angles in the 

horizontal triangular BDC, which are related to the strikes 

of the joints. 

 

2.4 Wedge failure mechanism 
 

Based on the analytical model, the safety factor of rock 

slopes is solved by considering the static equilibrium 

condition between the anti-slip effect and the sliding effect. 

The expression is shown as follows (Hoek and Bray 1981, 

Sharma et al. 1995, Wyllie et al. 2004): 

Fs=
Fresist

Finduce

 (5) 

where Fresist is the total anti-slip force and the Finduce is the 

sliding force.  

In this paper, the closed-form equations for determining 

the safety factor of failure modes proposed by Low (1997) 

is referenced, and the expression of safety factor based on 

the B-B criterion can be obtained. 

Failure Mode 1: sliding along plane 1 only 

When Eq. (7) is satisfied, the wedge will slip along 

plane 1 only and the safety factor can be calculated by Eq. 

(6). 

Fs1=

(
η

1

η
2

+
η

2

η
3

Z) tan [φ
1
+JRC1log

10
(

JCS1×s1

η
1
+η

2
×Z

)]

√1+ (
η

2

η
3

sinψ)
2

 
(6) 

{
η

2
<0

η
1
+η

2
×Z<0

 (7) 

The parameters η1, η2, η3, s1, and s2 depend on the 

geometry of the wedge and the seismic pseudo-static 

parameters and can be calculated by: 

η
3
= [

( sin δ2 cos δ1 cos θ2- sin δ1 cos δ2 cos θ1)t1
-( sin δ2 cos δ1 sin θ2 + sin δ1 cos δ2 sin θ1)t2
- sin δ1 sin δ2 sin(θ1+θ2)t3                            

] /sin(ψ) (8) 

η
1
=-

cos θ2×(t
1
-

η
3
×a1

sin( ψ)
)- sin θ2 ×(t2-

η
3
×a2

sin( ψ)
)

sin σ1 sin (θ1 +θ2)
 

(9) 

η
2
=-

cos θ1×(t
1
-

η
3
×a1

sin( ψ)
)- sin θ1 ×(t2-

η
3
×a2

sin( ψ)
)

sin σ2 sin (θ1 +θ2)
 

(10) 

{
 
 

 
 s1=S∆OBC=

h
2
k

2 sin δ2 tan ε sin θ2

s2=S∆OBD=
h

2
k

2 sin δ1 tan ε sin θ1

 (11) 

with: 

a1= sin δ2 cos δ1 cos θ2 - sin δ1 cos θ1 cos δ2 (12) 

a2=- sin δ2 cos δ1 sin θ2- sin δ1 cos δ2 sin θ1 (13) 

a3=- sin δ1 sin δ2 sin θ1 cos θ1- sin δ1 sin δ2 sin θ2 cos θ1 (14) 

sin ψ = |√{1-[sin δ1 sin δ2 cos(θ1+θ2)+ cos δ1 cos δ2]
2}| (15) 

ε = arctan(
sin (θ1+θ2)

sin θ1 cot δ2+ sin θ2 cot δ1

) (16) 

κ=
H

h
=
(1-

tan Ω
tan α

)

(1-
tan Ω
tan ε

)
 (17) 

Z= cos δ1 cos δ2+ sin δ1 sin δ2 cos (θ1+θ2) (18) 

Failure Mode 2: sliding along plane 2 only 

If Eq. (19) is satisfied, the wedge will slip along plane 1 

only and the safety factor can be calculated by Eq. (20). 

{
η

1
<0

η
2
+η

1
×Z>0

 (19) 

Fs2=

(
η

2

η
3

+
η

1

η
3

Z)tan[φ
2
+JRC2log

10
(

JCS2×s2

η
2
+η

1
×Z

)]

√1+ (
η

1

η
3

sinψ)
2

 
(20) 

Failure Mode 3: sliding along the line of intersection of 
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two discontinuity planes 

The safety factor of this mode can be calculated by: 

Fs3=

η
1

η
3

tan [φ
1
+JRC1log

10
(
JCS1×s1

η
1

)]

+
η

2

η
3

tan [φ
2
+JRC2log

10
(
JCS2×s2

η
2

)]
 (21) 

Eq. (21) is valid, and the wedge will slide along two 

joints when the following conditions are met: 

{
η

1
>0

η
2
>0

 (22) 

Failure Mode 4: separated from the two structural faces 

When Eq. (23) is satisfied, the wedge separated from the 

two structural faces: 

{
η

1
+η

2
×Z<0

η
2
+η

1
×Z<0

 (23) 

According to the above analysis, the stability of the 

wedge is mainly influenced by the basic geometric 

parameters of the wedge, the mechanical parameters of the 

rock and the parameters of the seismic pseudo-static force. 

The influence of parameters on the stability of the wedge is 

studied for specific cases in the following section. The 

Selected values, in this paper for analysis are arbitrarily 

selected within the range of parameter values. 
 

 

3. Examples and verification 
 

3.1 Wedge stability analysis and comparison 
 

In this paper, a stability analysis method for a 3D wedge 

under seismic pseudo-static action is proposed based on the 

nonlinear B-B failure criterion. The theoretical derivation is 

compared with the analytical results of the discrete element 

numerical simulation software 3DEC (Itasca Consulting 

Group, Inc, 2007a, 2007b) to verify the correctness of this 

method. The analysis model established by 3DEC is shown 

in Fig. 4. The parameters required for numerical simulation 

are obtained using the B-B criterion and the M-C criterion 

parameter transformation method, which was proposed by 

Hoek and Bray (1981) and verified by (Zhao 1998, 

Prassetyo 2017). Eqs. (24-26) are used to calculate the 

required parameters. The results of this example parameter 

conversion are listed in the appendix (Tables 3-6). 

φ
i
=arctan (

∂τ

∂σn

) (24) 

∂τ

∂σn

 =

tan (JRC log
10

JCS
σn

+φ
b
)           

-
πJCS

180 ln 10
[tan2 (JRC log

10

JCS
σn

+φ
b
)+1]

 (25) 

φ
i
=arctan (

∂τ

∂σn

) (26) 

To verify the accuracy of the proposed method in this 

paper, Kh = 0.1, β = 90° and ζ = -1.0-1.0 were selected; rock 

geometric parameter values are shown in Table 1 and 2. 

Calculation results and relative errors of the two methods  

Table 1 Wedge geometry parameters 

Parameter δ1(°) δ2(°) θ1(°) θ2(°) h(m) α(°) Ω(m) 

Value 50 48 62 40 10-30 60 20 

 

Table 2 Rock physical and mechanical parameters 

Parameter JCS1(Mpa) JCS2(Mpa) JRC1 JRC2 φb1(°) φb2(°) 

Value 10 10 9 9 32 32 

 

 

Fig. 3 Model diagram of 3DEC 

 

 

Fig. 4 Comparison of theoretical calculations and 

numerical simulation results 
 

 

are shown in Fig. 4. 

Fig. 4 shows that the relative error between theoretical 

calculation and numerical simulation results ranges from 0-

3%. Therefore, the theoretical analysis of this paper is 

effective, considering the difference between theoretical 

calculations and the numerical simulation. 
 

3.2 Wedge failure mode analysis and comparison 
 

To further validate the methods in this article, the 

influence of seismic pseudo-static direction on the failure 

mode is analyzed. The parameters are set as follows: h = 10 

m, δ1 = 30°, δ2 = 40°, θ1 = 60°, θ2 = 50°, Kh = 0.3, ζ = 1. The 

theoretical calculation results of this paper are compared 

with the results of the stereographic projection. The results 

are shown in Figs. 5 and 6. 

Fig. 5(a) shows the stereographic projection of the 

wedge model under the parameters of this example, where 

○WSEN is the projected great circle, and plane 1 and plane 2 

are the stereographic projections of joint 1 and 2, 

respectively. IO is the stereographic projection of the 

intersection of the two joints, OR is the stereographic 

projection of the resultant force of the wedge, and the arc  
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Fig. 6 Model diagram of 3DEC 

 

 

MN corresponds to the common vertical surface of the two 

joints. OM and ON represent the stereographic projection of 

the normal line of joint 1 and 2, respectively. OR’ is a 

component of OR on the common vertical surface of the 

two joints. 

Fig. 5(b) shows that failure mode 2 would occur when 

the value of β is within the interval (169°, 232°). Failure 

mode 1 occurs when β takes other values. The value of the 

discriminant of failure mode formulas (Eqs. (17, 18, 21, 

23)) are calculated with a change of β. 

It can be seen from Fig. 6 that a change of β can lead to 

a change in failure mode. The results of the method 

presented in this paper are consistent with the analytical 

results of the stereographic projection. This also indicates 

that the proposed method in this paper is correct and 

effective. 
 

 

4. Parameter analysis 
 

4.1 Parameter sensitivity analysis 
 

Fig. 5(a) shows the stereographic projection of the 

wedge model under the parameters of this example, where 

○WSEN is the projected great circle, and plane 1 and plane 2 

are the stereographic projections of joint 1 and 2, 

respectively. IO is the stereographic projection of the 

intersection of the two joints, OR is the stereographic 

projection of the resultant force of the wedge, and the arc 

MN corresponds to the common vertical surface of the two  

 

 

Fig. 7 Comparison of safety factor sensitivity coefficients 

for random variables 

 

 

joints. OM and ON represent the stereographic projection of 

the normal line of joint 1 and 2, respectively. OR’ is a 

component of OR on the common vertical surface of the 

two joints. 

SK(αK)=(|∆P|/P)/(|∆αK|/αK);(K=1,2,3∙∙∙∙∙∙,n) (27) 

The corresponding sensitivity factor, SK*(αK), is 

obtained by taking αK = αK*. 

Safety factor sensitivity coefficients for various pseudo-

static directions are shown in Fig. 7. The parameters 

analyzed can be divided into two categories: rock 

mechanics parameters and wedge geometry parameters. It 

can be seen that φb is the most sensitive parameter 

regardless of changes in pseudo-static direction, followed 

by θ1 and JRC. 

 

4.2 Influence of seismic pseudo-static force on the 
stability of a wedge 
 

The stability of a wedge is affected by the magnitude 

and direction of the seismic pseudo-static force. To explore 

the variation of the safety factor with the magnitude and 

direction of the seismic pseudo-static force, a graph was 

plotted in polar coordinates, as shown in Fig. 8. The 

parameters in Tables 1 and 2 were selected for analysis. 

The distance from any point on the graph to the center 

of the circle represents the magnitude of the safety factor; 

arbitrary point angle coordinates represent the direction of  

 
  

Fig. 5 The projection of the wedge 
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(a) The effect of ξ and β on the factor of safety (b) The effect of h and β on the factor of safety 

Fig. 8 Influence of seismic pseudo-static force on safety factor 

 

Fig. 9 Direction of the most dangerous seismic pseudo static forces for different geometrical forms of the wedge 

 
(a) The effect of JRC on the factor of safety 

  
(b) The effect of φb on the factor of safety (c) The effect of JCS on the factor of safety 

Fig. 10 Influence of rock mechanics parameters on safety factor 
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Fig. 12 The 2D analysis model 

 

 

the seismic pseudo-static force. 

Based on the above analysis, the safety factor changes 

greatly with the seismic pseudo-static direction. When the 

seismic pseudo-static direction is similar to the slope 

inclination, the wedge is in a more dangerous state and the 

safety factor is smaller. When the seismic pseudo-static 

direction and slope inclination are opposite, the wedge is in 

a stable state and the safety factor is larger. Fig. 9 shows the 

direction of the most dangerous seismic pseudo-static forces 

for different geometrical forms of the wedge. 

Fig. 9 shows us that (1) when θ2 is fixed, with increasing 

θ1, the direction of the most dangerous seismic pseudo-

static forces decreases, then increases; (2) when θ1 is fixed, 

with increasing θ2, the direction of the most dangerous 

seismic pseudo-static forces decreases as it approaches the 

negative X-axis. 

 

4.3 Influence of rock mechanics parameters on the 
stability of the wedge 

 
 

To analyze the influence of rock mechanics parameters 

on wedge stability, the parameters listed in Tables 1 and 2 

were used for analysis. The results are shown in Fig. 10. 

Fig. 10 shows that with increasing JRC, φb and JCS 

wedge stability increase. Hence, the influence of seismic 

pseudo-static force on the stability of a rock mass should be 

analyzed based on the actual mechanical parameters of the 

rock mass. 
 

4.4 Influence of the combination of seismic pseudo-
static force and wedge geometry on the stability of the 
wedge 

 

To analyze the combined influence of wedge geometry 

and seismic pseudo-static form on the wedge safety factor, 

the parameters were set as follows to determine the safety 

factor: γ = 27 kN/m3, Ω = 0°, α = 60°, JRC = 9, JCS = 10 

MPa, Kh = 0.2, ζ = 1. The results are presented in Fig. 11. 

The influences of geometrical changes on the wedge 

safety factor are shown in Fig. 11. θ1 and θ2 are the angles 

related to the strikes of the joints. Note that a change in the 

combination of wedge shape and pseudo-static force can 

lead to a large change in the safety factor. For instance, 

when θ1 = θ2 = 20° and β = 120°, the safety factor is greater 

than 1.5 (Fig. 11(a)), but when θ1 = θ2 = 20° and β = 240°, 

the safety factor is reduced to less than 0.5 (Fig. 11(b)). 

When β changes from 120° to 240°, the force changes from 

pointing to the inside of the slope to the outside of the 

slope, which is not conducive to the stability of the wedge. 

Additionally, the safety factor increases with increased θ1 

and θ2. 

Ω

B

O

Kh

C
Kv

α δ

  
(a) β=120° (b) β=240° 

 
(c) β=360° 

Fig. 11 Influence of rock mechanics parameters on safety factor 
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4.5 Additional explanations for 2D situations 
 

The 3D wedge model described above is not valid when 

the parameters are certain values, such as θ1 = 0° or θ2 = 0°. 

Then, the research problem becomes that of an infinite 

body, and the formula obtained for the 3D-wedge model 

above can no longer be used. Next, a 2D calculation model 

is constructed that considers the above problems as shown 

in Fig. 12. The safety factor is plotted as shown in Fig. 13 

with other parameters when JRC = 9 and φb = 35°. 

In Fig. 13, using the dimensionless quantity 

JCS/(γh(cot(δ)-cot(α))) constituted by rock mechanics and 

geometric parameters and the sine value of the joint surface 

angle as vertical axis and horizontal axis, respectively, the 

change of the safety factor with the dimensionless quantity 

JCS/(γh(cot(δ)-cot(α))) and the sine value of the joint 

surface angle are studied. Fig. 13 shows that the stability of 

the rock slope decreases with increasing the joint surface 

angle and JCS/(γh(cot(δ)-cot(α))), but it will not increase 

without limit because the B-B failure criterion limits [φb + 

JRClog10 (JCS/σn)] to 70°. This restriction results in an 

envelope. The envelope lines generated under different 

values in this paper are line1, line2 and line3. For points 

outside the envelope range, the safety factor values are the 

same as the points on the envelope with the same x-

coordinate. 
 
 

5. Conclusions 
 

The friction angle of the rock φb, the roughness  

 

 

coefficient of the joint JRC and the two angles related to the 

directional of the space joint face θ1 and θ2 have larger 

sensitivity coefficients for various pseudo-static directions. 

Furthermore, the sensitivity of wedge height h, the 

compressive strength of the rock at the fracture surface JCS 

and the slope angle α to the stability are insignificant. 

The change of the static force direction will change the 

failure mode of the wedge. It is known that failure mode 1 

occurs in most cases. Failure modes 2 and 3 occur only 

when the seismic pseudo-static coefficient is large and the 

seismic pseudo-static direction is within a certain angle 

range. 

The stability of the wedge is reduced by increasing the 

static coefficient. A change in the combination of wedge 

geometry and seismic pseudo-static force can lead to great 

fluctuations in the safety factor. In engineering, the 

magnitude of the earthquake force and the combination of 

seismic force and wedge geometry should be considered to 

ensure safety when conducting stability assessments. 
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Appendix 
 
Table 3 The numerical value of c1(MPA) calculated by B-B 

criterion and the M-C criterion parameter conversion formula 

under different conditions 

h/ζ -1 0 1 

10 29.857 30.223 30.625 

15 24.796 25.156 25.550 

20 21.266 21.620 22.010 

25 18.566 18.916 19.300 

30 16.385 16.7311 17.111 

 
Table 4 The numerical value of c2(MPA) calculated by B-B 

criterion and the M-C criterion parameter conversion 

formula under different conditions 

h/ζ -1 0 1 

10 0.029 0.027 0.025 

15 0.045 0.042 0.039 

20 0.062 0.057 0.053 

25 0.079 0.073 0.067 

30 0.096 0.089 0.082 

 

Table 5 The numerical value of φ1(°) calculated by B-B 

criterion and the M-C criterion parameter conversion 

formula under different conditions 

h/ζ -1 0 1 

10 30.379 30.764 31.190 

15 25.308 25.687 26.104 

20 21.771 22.144 22.555 

25 19.063 19.432 19.839 

30 16.878 17.242 17.645 

 

Table 6 The numerical value of φ2(°) calculated by B-B 

criterion and the M-C criterion parameter conversion 

formula under different conditions 

h/ζ -1 0 1 

10 29.857 30.223 30.625 

15 24.796 25.156 25.550 

20 21.266 21.620 22.010 

25 18.566 18.916 19.300 

30 16.385 16.7311 17.111 
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