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1. Introduction 
 

With the developments of high-rise buildings, subway 

rail transits and underground spaces in urban area, the 

influence of the excavation on the surrounding environment 

attracts many attentions. The soil movement induced by the 

excavation usually determines the damage potential of the 

buildings adjacent to the excavation (Finno and Bryson 

2002). Most infrastructures and buildings are supported by 

shallow foundations. The damage potential of those 

building induced by excavation can be determined from the 

corresponding ground surface settlement (Poulos 1997).  

Many experiments have been carried out to evaluate the 

ground surface settlement induced by the excavation, 

including in-situ tests (Clough and O’Rourke 1990, Hong et 

al. 2015, Kim and Jung 2016, Tan et al. 2017, He et al. 

2018), laboratory model tests (Seok et al. 2001, Lam 2010) 

and centrifuge tests (Nomoto et al. 1999, Wang et al. 

2012a).  Two typical ground settlement types are found 

based on those test data: spandrel type and concave type 

(Hsien and Ou 1998, Ou et al. 1993). It is now commonly 

recognized that the problem can be assumed as plan strain 

problem when evaluating the maximum deformation 

induced by the excavation (Finno and Harahap 1991, Wang 

et al. 2012b).  Plenty of empirical methods have been 

proposed based on those experimental data to predict the 

ground settlement induced by the excavation (Roboski and  
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Finno 2006, Kung et al. 2007, Wang et al. 2009, Ou and 

Hsieh 2011, Golpasand et al. 2016). In those empirical 

methods, the ground settlements are generally calculated 

from the deflections of the retaining wall. Unfortunately, 

empirical methods are data based. Their applicability is 

regionally restricted. Besides, numerical methods, such as 

FEM, are widely used as well (Hashash and Whittle 1996, 

Arai et al. 2008, Zahmatkesh and Choobbasti 2015, Chen et 

al. 2018). FEM has advantages in simulating complex 

boundary conditions and capturing the deformation both in 

small and large range(Mu and Huang 2016). While, the 

quality of FEM highly depends on the soil model and the 

input parameters(Mu et al. 2015). Moreover, the 

requirements of a high quality FEM analysis are usually too 

high for engineers. An analytical method may explain the 

mechanism clearly and make the prediction easier. It is 

widely proved that elastic theory could significantly 

simplify foundation problems and give solutions that 

reasonably meet the engineer requirements, especially for 

displacement boundary problems(Poulos and Davis 1974). 

For example, settlement of foundation induced by surface 

loadings  and ground surface(Sheehan et al. 2010) induced 

by tunnelling(Loganathan and Poulos 1998). However, no 

existing analytical method for predicting the ground 

settlement induced by excavations has been found due to 

the complex of the excavation according to the author’s 

knowledge.  

Many efforts have been made to estimate the maximum 

deflection of the retaining wall of the excavation(Wang et 

al. 2012a, Liu et al. 2015). They are approved to be usable 

to predict the maximum deflection of the retaining wall 

induced by the excavation. The aim of this paper is to  
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calculate the ground surface settlement induced by the 

excavation based on the deflection of the retaining wall 

obtained by the existing method through a displacement-

controlled method(DCM). In this paper, three boundary 

conditions of excavation are defined by analyzing the 

boundary conditions of the excavation firstly according to 

the existing researches. The settlement of the ground is 

solved by elastic theory coupled with mirror symmetry 

principle based on three boundary conditions defined 

herein. 

 

 

2. General theory 
 

In order to get the maximum deformation induced by the 

excavation, the problem is assumed as a plane strain 

problem. As shown in Fig.1, the horizontal displacement of 

the retaining wall consists of three parts:(1) translation;(2) 

rotation around the wall toe; (3) parabola deformation. In 

Fig. 1, H is the wall depth, u(0,z) is the horizontal 

deformation of the retaining wall, d1, d2 and d3 are the 

maximum horizontal deformation of the retaining wall 

under translation, rotation and parabola deformation 

respectively. Three assumptions are made:(1)Soil 

movement behind the retaining wall is caused by the 

horizontal deformation of the retaining wall which can be 

obtained from existing methods (Mu and Huang 2016). The 

horizontal deformation of the retaining wall is assumed to 

be the boundary condition of the problem when solving the  

 

 

problem using DCM. The vertical movement of the soil 

caused by the frictional stress between the wall and the soil 

is neglected. Thus, the frictional stress between the wall and 

the soil is neglected. (2)The soil is homogenous and linear 

elasticity. Although many researches shows plastic behavior 

of the soil should be considered to calculate the soil 

movement induced by the excavation accurately, Kyrou 

(1980) showed that the error caused by using the elastic 

model for soil is engineering acceptable when evaluating 

the influence of excavations on adjacent pipeline. Unlike 

the force control method(FCM) which relies on soil 

constitutive model significantly, Cheng et al. (2007) 

showed that DCM can calculate the deformation induced by 

tunnel excavation by using a simple soil constitutive model. 

Many researches(Loganathan and Poulos 1998, Mu et al. 

2012) also shows that deformation caused by excavation 

problems can be correctly calculated by DCM even when 

the initial stress is not considered in the problem. Thus, we 

employ elastic theory to significantly simplify the problem 

to make it applicable to engineers; however it will lead to 

engineering acceptable error. (3) The ground deformation 

below the retaining wall is negligible.  

A mirror symmetry principle is employed in this 

analysis as schematically shown in Fig. 2. The ground 

settlement behind the retaining wall could be calculated by 

two steps. First step: calculate the free field movement of 

soil caused by the horizontal deflection of the retaining wall 

as shown in Fig.2(b). At this step, the vertical displacement 

on the ground surface is 0. It indicates that the ground 

 

Fig. 1 Schematic of the surface subsidence caused by an excavation 

 

Fig. 2 Mirror symmetry principle for solving excavation-induced ground movement 
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surface can be assumed to be the symmetrical plane of the 

problem shown in the first part. Secondly, apply the normal 

stress σx produced by the first step onto the surface inversely 

by using the retaining wall as the symmetrical plane. 

Adding the deformation induced by those two parts 

together, the ground settlement induced by the excavation 

can be obtained.  

In Fig.2, the deformation of the first part could be 

solved by Lame’s equation for a plane strain problem 

without considering the body force(Pasternak et al. 2004). 

The Lame’s equation in x and z directions could be 

expressed as: 

   

   
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(1) 

where λ and G are the Lame’s elastic coefficients, 

  1 1 2

E


  
＝  and 

 2 1

E
G





. 

In order to solve Eq. (1), the following transformation is 

introduced. 

1

2
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x z

w u

x z
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 
   


     

   
－

 

(2) 

where θ is the volumetric strain, ω is the rigid body rotation 

angle. 

From the Eq. (1) and Eq. (2), the following equations 

can be obtained. 

 

 
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(3) 

Deriving Eq. (3) for x and z separately.  Then we can 

get Eq. (4). 

2

2

0

0





 

   

(4) 

where 
2

2

2

2
2

zx 







 ＝ . 

Using the separation variable method, the general 

solution for Eq. (4) can be obtained. 

     

     

' '

1 2 1 2
0

' '

1 2 3 4
0

cos sin

- cos sin
z

x x

x x

u w
A z A z K e K e d

x z

u w
B z B z K e K e d

x

 

 

   

   







 
        


         




 

(5) 

According to the boundary condition that θ=0 and ω =0 

when x=+∞, we can get ' '

2 4= =0K K . Set ' '

1 1 1A K A , 

' '

2 1 2A K A , ' '

1 3 1B K B , ' '

2 3 2B K B .  

Then, 
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Combined Eq. (6), (3) and (4), we can get 
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(7) 

The general solution for Eq. (7) can be written as 
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(8) 

Substituting Eq. (8) into Eq. (1), we can get 
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(9) 

The stress can be expressed as: 
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Based on the boundary condition, 
0

0
xz z



 , we can get 

that K2=0. And define K3=K1·A. Eq. (9) can be written as 

following: 
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(11) 

where K1 and K3 are the coefficients depend on the 

boundary conditions.  

And Eq. (10) can be written as: 
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(12) 

The frictional stress between soil and structure is 

neglected, τxz|x=0=0, we can get Eq. (13) from Eq. (12). 
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Substituting Eq.(13) into Eq.(11), we get 
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(14) 

The horizontal displacement of soil at the vertical plan 

of retaining wall, where x=0, is: 
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Fig. 3 Actual surface subsidence is equal to the second 

surface subsidence 
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According to Fourier cosine integral transformation,  

1
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(16) 

Comparing Eq. (15) and Eq. (16), it is easy to find: 

3K





 
(17) 

The vertical displacement at the ground surface in the 

first part, as shown in Fig. 2(b), is 0, w1(x,0) =0. Therefore, 

the surface settlement caused by horizontal deformation of 

the retaining wall, w(x,0), is equal to the settlement of the 

second part caused by the positive surface stress, w2(x,0), as 

shown in Fig. 3. The calculation of w2(x,0) will be 

introduced in the following section according to the specific 

deformation modes of retaining wall. 

 

 

3. Solutions for specific boundary modes 
 

3.1 Translation mode (T mode) 
 

 

 

Fig. 4 Boundary condition of T mode 

As shown in Fig. 4, the boundary conditions for 

translation mode is that 
1(0, )u z d   when 0 z H  .  
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According to Fourier cosine integral transformation, we 

can get: 
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Comparing (18) and (19), it can get: 
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Substituting Eq.(20) into Eq.(14), we get 
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For the first part, the settlement at the ground surface is 

0, 
0

0
z

w

 .  

Substituting Eq. (13) and Eq. (20) into Eq. (12),  
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At the ground surface, z=0, 
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where 
21

=
G

E



.  

Thus, the inverse stress acting on the surface in part 2, 

as shown in Fig. 3, can be expressed as follows 
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According to Boussinesq-Flamant solution for plane 

strain problem, the surface settlement caused by a 

concentrated load P is: 
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where cx x   , c refs x x  . For a strict elasticity 

theory, =refx  . However, it is well recognized that the 

ground settlement induced by the excavation usually occurs 

in a zone, which is about 4 time the excavation depth away 

from the retaining wall (Kung et al. 2007). In soft ground 

area, the depth of the retaining wall is usually twice the 

excavation depth. The ground settlement induced by the 

excavation beyond the influence zone can be neglect. The 

settlement of the ground surface in the influence zone is 

focused in practice. In order to focus on the main 

deformation that has significant effect on engineering, the 

method is focused to the deformation in the influence zone. 

Thus, xref is defined as 2H herein.  

Substituting Eq. (24) into Eq. (25), the ground surface 

settlement induced by F(x) is: 

 
2 2

1

2 2 2 2

2
ln d

( )

c c

c

c refc

x H x xd H
w x x

x xx H





 
 


 

(26) 

Thus, the ground surface induced by the deformation of 

the retaining wall is: 

2

1

2 2 2 2

2 1 1
( )

ref

d H
w x

x H x H

 
  

     

(27) 

Defining H=10 m, the ground surface settlements 

corresponding to d1 = 0.1%H, 0.2%H, 0.3%H, 0.4%H and 

0.5%H are shown in Fig.5(a). And the normalized ground 

surface settlement are shown in Fig. 5(b). It can be see that 

the magnitude of the wall deformation does not influence 

the distribution of the ground surface settlement when the 

wall deforms according to T mode. The magnitude of the 

wall deformation only influences the maximum ground 

surface settlement.  

Let the first derivative of w(x) equals 0, the maximum 

settlement can be obtained by the following equation. 

Correspondingly, the maximum settlement locates at the 

location where x=0. 

2

1

max 2 2 2

2 1 1

ref

d H
w

H x H

 
  

    

(28) 

 

 

Fig. 6 R mode boundary condition 

 

 

The normalized settlement induced by T mode can be 

expressed as: 

 2 2 2

2 2 2 2

max

1 1ref

ref ref

H x Hw

w x H x H

  
  

    

(29) 

 

3.2 Rotation around the wall toe (R Mode) 
 

The deformations at the top and the toe of the retaining 

wall are d2 and 0 respectively for R mode, as shown in Fig. 

6.  

Therefore,  

+

3 2 2
0

1
cos( z)d

z
u K d d

H
 





  
 

(30) 

According to Fourier cosine integral transformation of 

2 2

z
d d

H
 , we get: 

+
2

2 2 20

2 cos( ) 1
cos( )d

dz H
d d z

H H


 

 

 
  

 
(31) 

Comparing Eq. (30) and Eq. (31), it is clear that 

2

3

2 cos( ) 1d H
K

H



 




 
(32) 

Similar to the process from Eq. (20) and Eq. (23), the  

  
(a) Surface subsidence curves (b) Normalized curve of surface subsidence 

Fig. 5 Surface subsidence distribution under translation of retaining wall 
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Fig. 8 Parabola boundaries of the retaining wall 
 

 

normal stress at the surface can be expressed as following. 

4

2

0 2 2 2 2 2

1 1
ln

4 ( )
z z

d H d x

Hx H x H


  

  

 
 

(33) 

Therefore, the positive vertical stress acting on the 

surface of the second part can be expressed in Eq. (34).  

2

2 2

2 2 2 2

1 1
( ) ln

2

d H d x
F x

Hx H x H  
 

   

(34) 

Substituting Eq. (34) into Eq. (25), the ground surface 

settlement induced by F(x) is: 

2

2

2 2 2 2 2

2 1
( ) ln ln d

2

c c

c

c refc c

x x xd H
w x x

H x xx H x H





  
   

  


 
(35) 

Similar to the case mentioned in T mode section, the 

settlements and the normalized settlement calculated by Eq. 

(35) are shown in Fig.7. The distribution of the settlement 

induced by R mode is similar to that induced by T mode. 

The normalized settlement induced by R mode can be 

expressed as following.  

 
2

2

max

( ) ref

ref

x xw x

w x




 

(36) 

For undrained clay, assuming ν=0.5. Thus, no ground 

loss occurs. The area covered by the surface settlement 

curve is equal to the area covered by the deflection curve of  

 

 

the retaining wall. As shown in Fig.6, the area covered by 

the deflection curve of the retaining wall, AH, can be 

calculated by the following equation. 

2

1

2
HA Hd

 
(37) 

The area covered by the surface settlement curve, VA
, 

can be calculated: 

max
0

1
( )

3

refx

V refA w x dx w x 
 

(38) 

As AH=AV, wmax can be obtained: 

2

max

3

2 ref

Hd
w

x


 

(39) 

Obviously, the maximum settlement located at the 

location where x=0.  

 

3.3 Parabola mode (P mode) 
 

For parabola mode, the boundary condition at the 

retaining wall is 3

2

4
(0, ) ( )

d
u z z z H

H
   when 0≤ z ≤H, as 

shown in Fig. 8. 

Therefore, 

+
3

3 20

41
cos ( )

d
u K zd z z H

H
 





  
 

(40) 

Through Fourier cosine integral transformation on 

u(0,z), we get Eq. (37). 

3 3 3

2 2 3 20

4 8 (1 cos ) 16 sin1
( ) ( )cos d

d d H d H
z z H z

H H H

 
 

  

 
  

 
(41) 

By comparing Eq.(40) and Eq.(41), it can be found that: 

3

3 2 2

8 (1 cos ) 2sin
[ ]

d H H H
K

H

 

 


 

 
(42) 

Similar to the process from Eq.(20) and Eq.(23), the 

normal stress at the surface can be expressed as following. 

  
(a) Surface subsidence curves (b) Normalized curve of surface subsidence 

Fig. 7 Distribution of surface subsidence caused by rotation around wall toe 
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2

3

0 2 2 2 2

2

2 2

4
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d E H x
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Hx H
x
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(43) 

The inversed surface pressure is: 

 
2

3

2 2 2 2

2

2 2

4
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d E H x
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(44) 

Substituting Eq. (44) into Eq. (25), 

2 2

3

2 2 2 2 2 2

8
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






 

(45) 

Calculating the case mentioned in T mode section, the 

surface settlements and the normalized settlement 

calculated by Eq. (45) are shown in Fig. 9. 

According to Fig. 8, the area covered by the deflection 

curve of the retaining wall, AH, can be calculated as: 

3 3

3

3 3 3

2 20 0

4 2 (3 2 )
(0, ) - ( )

3

d d

H

d d H d
A u z dz z z H dz

H H


    

 
(46) 

According to Fig. 9 and Eq. (45), the area covered by 

the surface settlement curve, AV, can be calculated as: 

4

0 0
( ) = ( ) ( )

refx i

VA w x dx w x dx w x dx



     

(47) 

As AH=AV, wmax can be obtained: 

3

3 3

max 2

3.2 (3 2 )

3 ref

d H d
w

H x




 

(48) 

Let the first derivative of w(x) equals 0, the location 

where the maximum settlement occurs can be obtained by 

numerical method, x=xref/4=H/2.  

In summary, the combination of T mode, R mode and P 

mode could form a common deformation mode of retaining  

 

 

wall in practice. Then the ground settlement induced by the 

excavation can be obtained in practice.   
 

 

4. Verification 
 

To verify the rationality of the proposed analytical 

solution, four excavation cases reported by Hsieh and Ou 

(1998) were analyzed by the proposed method in this paper.  

Case 1 is located near the center of the Taipei basin. The 

soil conditions consist mainly of silty clay, the profile of the 

soil is shown in Fig. 10(a). The average undrained shear 

strength of soft clay is 80 kPa. The diaphragm wall depth is 

35m. The excavation depth is 19.7m. The excavation width 

is 41m. The excavation is excavated in 7 steps using top-

down method. The observed maximum horizontal 

deformation of the retaining wall is 0.54%H. 

Case 2 is also located in the Taipei basin. The ground 

condition is mainly composed of silty clay overlying clayey 

silt. The average undrained strength of soft clay is 55 kPa. 

The diaphragm wall length is 31m. The excavation depth is 

18.45m. The excavation width is 35m. The excavation is 

excavated in 7 steps using bottom-up method. The observed 

maximum horizontal deformation of the retaining wall is 

0.34%H. 
Case 3 is the New Palace Yard Park project in London. 

The foundation soil is stiff London clay. The average 
undrained strength of the soft clay is 170 kPa. The 
diaphragm wall length is 30 m. The excavation depth is 
18.5m. The excavation width is 50 m. The excavation is 
excavated in 6 steps using bottom-up method. The observed 
maximum horizontal deformation of the retaining wall is 
0.13%H. 

Case 4 is the Bell Common Tunnel in England. The 

subsurface soil is mainly London clay. The average 

undrained strength of the soft clay is 150 kPa. The Secant 

pile wall length is 21 m. The excavation depth is 9 m. The 

excavation width is 40 m. The excavation is excavated in 2 

steps using bottom-up method. The observed maximum 

horizontal deformation of the retaining wall is 0.29%H. 

As shown in Fig.10, the calculated results fit the 

measured data very well. Both the maximum settlement and 

the location where the maximum settlement occurs are 

predicted reasonably. The larger prediction in Fig. 10(d)  

  
(a) Surface subsidence curves (b) Normalized curve of surface subsidence 

Fig. 9 Surface subsidence distribution under parabola pattern 
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(a) Case 1 

 
(b) Case 2 

 
(c) Case 3 

 
(d) Case 4 

Fig. 10 Deformation of foundation pits and normalized 

curves of surface subsidence 
 

 

may due to the assumption that the influence area is equal 

to 2H. While, it seem the influence area in this case is H 

based on the measured data. 

 

 

5. Discussion 
 

According to the equations, it is clear that the 

settlements are independent on elastic modulus of soils. We  

Table 1 Information of the cases with different modulus 

Deformation mode H 
ν=0.5 

E1 E2 E3 

T mode 10m 10MPa 20MPa 30MPa 

R mode 10m 10MPa 20MPa 30MPa 

P mode 10m 10MPa 20MPa 30MPa 
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Fig. 11 Normalized curve calculated by analytical method 

and FEM under T mode 
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Fig. 12 Normalized curve calculated by analytical method 

and FEM under R mode 
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Fig. 13 Normalized curve calculated by analytical 

method and FEM under P mode 
 

 

think the soil modulus would not influence the distribution 

of the soil deformations for a displacement-controlled 

boundary problem. Several cases are analyzed by FEM to 

verify the assumption. For those cases, excavation depth is 

set as 5 m, retaining wall length is set as 10 m. Elastic 
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model is used for the soil. The Poisson’s Ratio of the soil is 

0.499. The other information of the cases are shown in 

Table 1. The settlements calculated by the analytical method 

and FEM can be seen in Fig. 11, Fig. 12 and Fig. 13. It is 

clear that the soil movement is only relative to the boundary 

condition while using displacement-controlled method. The 

elastic modulus of the soil will not influence the soil 

movement induced by the excavation in a displacement-

controlled analysis. However, the maximum deformation of 

the wall, which we assumed as the boundary condition, 

would be decided by the soil parameters. The conclusion is 

consistent with the formula proposed for calculating the 

ground settlement induced by tunneling by Loganathan and 

Poulos (1998). 

 

 

6. Conclusions 
 

Three basic solutions for ground settlement induced by 

excavations are obtained according to T mode, R mode and 

P mode respectively through elastic theory coupled with 

mirror symmetry principle. T mode and R mode would 

result in spandrel type settlement, while P model would 

result in concave type settlement. The ground deformation 

induced by the excavation in practice can be obtained by 

combining those three ingredients. The validation shows the 

analytical method can calculate the ground settlement 

induced by the excavation reasonably based on the known 

wall deflection. 
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CC 
 

Notations 
 

H wall length 

u(0,z) horizontal deformation of the retaining wall 

d1 maximum horizontal deformation of the retaining 

wall under translation 

d2 maximum horizontal deformation of the retaining 

wall under rotation 

d3 maximum horizontal deformation of the retaining 

wall under parabola deformation 

σxz normal stress 

λ first Lame’s elastic coefficients 

G second Lame’s elastic coefficients 

E elastic modulus of soil 

υ Poisson’s ratio of soil 

u horizontal displacement 

w vertical displacement 

θ volumetric strain 

ω rigid body rotation angle 

K1 coefficients depend on the boundary conditions 

A coefficients depend on the boundary conditions 

K3 coefficients depend on the boundary conditions 

w1(x,0) vertical displacement at the surface of part 1 

w2(x,0) vertical displacement at the surface of part 2 

F(x) inverse stress acting on the surface in part 2 

xref x coordinate of the reference point where ground 

settlement induced by the excavation usually 

occurs in a zone  

P concentrated load on the surface 

s distance from the concentrated load to the 

reference point 

ρ distance from the concentrated load to the 

calculation point 

xc x coordinate of the point where the concentrated 

load is applied 

x x coordinate of the calculation point 
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wmax maximum settlement 

AH area covered by the deflection curve of the 

retaining wall 

AV area covered by the surface settlement curve 

 water content 

PI plasticity index 

LL liquid limit 

' drained friction angle 

v' 
effective overburden pressure 

Su undrained shear strength 
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