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1. Introduction 
 

For the stability and reinforcement of a tunnel in an 

undrained plane, solutions are being provided and many 

authors have made a huge contribution (Jeffery 1921, 

Mindlin 1940, Atkinson and Pott 1977, Verruijt 1996, 

Gonzalez and Sagaset 2001, Massinas and Sakellariou 

2009, Pinto and Whittle 2013, Zou and Zuo 2017, Li and 

Zou 2019, Qian et al. 2020, Huang et al. 2020, Li et al. 

2020, Li and Yang 2020, Xu et al. 2020). But the water 

pressure and water inflow are indispensable topics for 

designing an underwater tunnel. Uncontrolled water 

pressure and water inflow may have a negative impact on 

mechanical stability around the tunnel and cause 

settlements of structure on the surface. With regard to the 

solutions of steady seepage and groundwater inflow into a 

circular tunnel, analytical solutions, numerical methods, and 

semi-analytical solutions have also been investigated over 

decades (Harr 1962, Schleiss 1986, Zhang and Franklin 

1993, Fernandez and Alvarez 1994, Lei 1999, Bobet 2001, 

Bauer et al. 2003, Perrochet 2007, Kolymbas 2007, Park 

2008, Ming et al. 2010, Font-Capo et al. 2011, Fang et al. 

2015, Kargar et al. 2015, Farhadian et al. 2017, Aalianvari 

2017). Some researchers go further who take into account 

the hydraulic mechanical coupling in order to deepen the 

understanding of surrounding rock around the tunnel 

(Brown 1982, Ohtsu 1999, Zou 2018).  

However, the existing research results are mainly 

focused on the water pressure, few solutions for the 

distribution of groundwater inflow along the tunnel 

perimeter have been examined. The main reason is that for 

the presented analytical solutions using the complex  
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variable method, it is difficult to obtain the explicit 

expression (Ming et al. 2010, Fahimifar and Zareifard 2013, 

Kargar et al. 2015, Fang et al. 2015). 

The aim of this study is to develop a new approach to 

obtain the analytical solutions of water pressure of 

surrounding rock and the distribution of groundwater inflow 

along the tunnel perimeter under the conditions of the 

constant head and constant water pressure. The coordinate 

transformation technique was adopted during the solving 

process, which transforms Cartesian coordinates to the 

bipolar coordinate system. Validation and discussion are 

carried out accordingly. 

 

 

2. Section title: Level 1 
 

In order to simplify the solving procedure, it is 

necessary to introduce an orthogonal curvilinear coordinates 

system called bipolar coordinate. As shown in Fig. 1, the 

relation between Cartesian and bipolar coordinates is given 

by the invertible transformation functions and can be 

expressed as follows (Jeffery 1921). 

coth
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(2) 

In Fig. 1, k is the length of the pole O1 or O2 to the point 

(0, 0); θ1−θ2 is the angle between the two lines joining the 

poles to the point Z. The curves β = constant are arcs of 

circles passing through O1 and O2. Meanwhile, r1 or r2 is the 

length of point O1 or O2 to the point Z, respectively. It is 

clear that α are constants typifying circles cutting the first 

set of circles orthogonally. They form a family of coaxial  
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Fig. 1 Principle of bipolar coordinate system 
 

 

circles with the two poles as limiting points. Such circles 

surround the pole O2 if r1/ r2>1 (α>0) and surround the pole 

O1 if r1/ r2<1 (α<0). Obviously, α=log(r1/r2) and β=θ1−θ2. 

The coordinate β changes from - π to π when passing 

through the y-axis connecting the poles. If the function β is 

said to be periodic with period 2 π and can describe stresses 

and displacements, the stresses and displacements will be 

continuous across y-axis. 

For a given bipolar coordinate system, at any point Z the 

infinitesimal element of arc length ds on arbitrary curve 

through Z can be defined as follows. 

2 2 2( ) ( ) ( )ds J d J d   
 

(3) 

where, / (cosh cos )  J J k    , and which can be 

reduced to / (cosh cos ) J k   . 

 

 

3. Assumptions 
 

Several assumptions have been made to determine the 

specific environment in a half-infinite aquifer under the 

conditions of the constant head and constant water pressure: 

A shallow circular tunnel is in a fully saturated, continuous, 

isotropous, and homogeneous semi-infinite space with a 

horizontal water table; the axisymmetric condition is 

considered; the flow is steady and the fluid is 

incompressible. 
 

 

4. Problem description 
 

As shown in Fig. 2, the central axis of the shallow 

tunnel, with radius r and depth h, is parallel to the z-axis in 

the Cartesian coordinate system (x, y, and z). The length of 

the shallow tunnel is much longer than its diameter. The 

vertical downward direction of the y-axis is considered as 

the positive direction. The cross-section of the shallow 

tunnel and the semi-infinite space are divided into two same 

parts by the y-axis. 

Physically, the speed of flow through natural soils for 

laminar flow is so slow that changes in momentum are 

negligible in comparison with the viscous resistance to  

 

Fig. 2 Geometry of the problem 

 

 

flow, which means the speed of flow can be seen as zeo. In 

the Cartesian coordinate system, if the non-viscous fluid 

and flow medium are both incompressible, according to 

Darcy’s law and Bernoulli’s equation, the Laplace equation 

governing two-dimensional steady flow can be expressed as 

follows (Kundu and Cohen 2008). 
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where 

( , ) ( / )x y KH K y p      
 

(5) 

in which φ(x,y) denotes the velocity potential, H is the 

hydraulic head, p and γ are the water pressure and the unit 

weight of fluid, respectively. 

In bipolar coordinate system, Eq. (5) becomes 
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where 

( , ) ( sinh / )KH K J p         
 

(7) 

From the ground surface to the tunnel circumstance, the 

whole half plane, include a tunnel, can be portrayed by 

successive eccentric circles, in which α=0 denotes the 

ground surface and α= αi denotes the tunnel. 
 
 

5. Solution for water pressure 
 

5.1 Considering constant water pressure at tunnel 
circumstance 
 

For the incompressible fluid, the pressure function also 

satisfies the Laplace equation which could be expressed as 

follows. 

2 2
2

2 2 2

1
( ) 0

p p
p
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 
 

(8) 

Without considering elevation head around the tunnel 

circumference, on the basis of the symmetry of the present 

problem and there is the discontinuity of 2π in β on passing  
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Fig. 3 Drained tunnel with constant water pressure at  

tunnel circumstance 
 

 

between the y-axis connecting the poles, the solution must 

be even in β and periodic in β, of period 2π. Therefore, a 

solution of water pressure can be expressed in the form of 

' ( )cosp f n 
 

(9) 

Substituting Eq. (7) in Eq. (6), it yields to 

2
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(10) 

Eq. (10) is an ordinary differential equation whose 

solution can be expressed as follows. 

For n=0, 

0 0 0( )f A B  
 

(11) 

For n≥1, 

( ) n n
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(12) 

Therefore, Eq. (9) can be written as follows 
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(13) 

The elevation head around the tunnel circumference in 

bipolar system is 

sinh
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k
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(14) 

The term β in the denominator can be expanded in 

infinite series, which is shown as follows. 
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(15) 

Combining Eq. (15) with Eq. (13), the solution to Eq. 

(8) is 
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which will be valid if α > 0. 

Boundary conditions of Eq. (8) are 
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where, h0 is the hydraulic head at the ground surface, and 

i
p  is water pressure at the tunnel perimeter. 

Substituting Eq. (17) into Eq. (16), it results in 
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So that Eq. (16) is found to be 
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According to Eq. (5), the hydraulic head around the 

tunnel circumstance is 

2

0

0

2 sinh cos
H( , )

                







 
 



i

n

n

i

A n n

p h k
h



 
 







 

(21) 

 

5.2 Considering constant hydraulic head at the tunnel 
perimeter 

 

According to Eq. (21), hydraulic head also satisfies the 

Laplace equation which is found to be the form 
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In bipolar coordinate, similar to Eq. (13), the solution of 

Eq. (22) is 
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(23) 

For Eq. (23), boundary conditions are as follows 
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Then the constants values in Eq. (23) are 
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Fig. 4 Drained tunnel with constant hydraulic head at the 

tunnel circumstance 
 

 

Therefore, solution of Eq. (23) can be written as 

follows. 
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ia
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(26) 

Substituting Eq. (26) into Eq. (5), water pressure 

surrounding the tunnel can be expressed as follows 

0
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(27) 

Note that Eq. (26) and (27) are in accordance with the 

solution in Ming et al. (2010), if both solutions are 

transformed to Cartesian coordinate. 

 

 

6. Solution for groundwater inflow 
 

The discharge is the product of the stream's cross-

sectional area and its mean velocity, which could be written 

as follows (Kundu and Cohen 2008) 

q ds


   v n
 

(28) 

where,   represents the tunnel surface, n outward unit 

normal vector, ds arc length along the surface and 
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α βe e . α

e  and β
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vectors tangent to the bipolar coordinate curve which α and 

β varies, respectively). 

By means of the divergence theorem of Gauss, the 

derivation surface integrals could be converted to volume 

integrals, which means 
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where Ω is the cross-section of the tunnel and 2 H H  

which could be expressed by 
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For constant hydraulic head condition, in terms of Eq. 

(29), seepage flow can be expressed as follows. 
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(31) 

As for the distribution of inflow along the tunnel 

circumference, in the condition of inflow along the angular 

sector 0 1          of the tunnel circumstance, 

the expression for discharge can be expressed by 
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If β changes from -π to π when crossing the segment of 

y-axis, then, 
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Similarly, for constant water pressure condition, seepage 

flow is 
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Distribution of inflow along the angular section 

0 1          of the tunnel circumstance is 

1

0 1
0

i

H
q K d



 











 

(35) 

If β changes from -π to π when crossing the segment of 

y-axis, then, 
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where, 
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(37) 

It is noted that Eq.(31) and (34) are the same solutions 

as Kolymbas and Wagner’s (2007) and the differences 

between them are clear which are owing to the different 

boundary conditions. 

 

 

7. Validation 
 

To validate the proposed solution in this study, the 

results by the proposed solution and FLAC3d are compared 

with those in Ming et al. (2010). The parameters of the 

numerical and theoretical calculations are all selected from 

Ming et al. (2010) The tunnel perimeter is subjected to zero 

water pressure (i.e., 0
i

p ), while the soil’s permeability 

is k=10-5 m/s. Buried depth of circular tunnel is h=20 m and  
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Fig. 5 Numerical model 

 

Fig. 6 Calculation points in the aquifer 

  
(a) Water pressure in line (1-2) (b) Water pressure in line (3-4) 

 
Fig. 7 Results of water pressure between the proposed solutions and those in Ming et al. (2010). 
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radius of the tunnel is r=5 m. Water depth above the ground 

surface is h0=30 m. The size of the numerical model is 80 in 

the x-direction and 100 in the y-direction (see Fig. 5), which 

is similar to that in Ming et al. (2010). Corresponding 

points are chosen from three lines (1-2), (3-4) and (5-6) as 

shown in Fig.6 in order to carry out the validation.  

Fig. 7(a) and 7(b) show that the results of the proposed 

solutions are agreed better with those of FLAC3d than those 

in Ming et al. (2010) do in the y-direction. As in the x-

direction, Fig.7(c) reveals that the proposed solutions are 

more exact than Ming’s when the points are far from the 

tunnel. However, there are still some minor differences 

between the proposed solutions and FLAC3d. The reason is 

that the proposed solutions are derived by assuming a half-

infinite space while the extent of the numerical model is 

limited. For the points at infinity, water pressure is only 

associated with the elevation head, and the numerical 

results of water pressure seem to get close to the boundary 

condition faster than the theoretical results. 

 

 

8. Conclusions 
 

This study proposed a new approach to obtain the 

closed-form analytical solutions for the water pressure 

surrounding the tunnel and steady-state groundwater inflow 

into a drained circular tunnel in a half-infinite aquifer. 

Compared with the previous analytical solutions, the 

following improvements have been achieved. 

(1) By using the bipolar coordinate system, consider the 

two different boundary conditions (i.e., constant total head 

and constant water pressure), the derivation process is very 

simple. Furthermore, the proposed approach can be easy to 

obtain the explicit expression of the distribution equations 

of groundwater inflow along the tunnel perimeter. 

(2) In comparison with the existing solutions, the 

proposed solution is more exact for fully drained shallow 

tunnels and enables readers to derive the distribution of 

inflow along the tunnel circumference under the condition 

of constant water pressure for the first time. 

The new analytical solution could form a theoretical 

basis for the interpretation of the problems of the seepage 

into a shallow circular tunnel. 
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