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1. Introduction 
 

It has been realized that hydromechanical interaction 

between the groundwater flow field and the land (i.e., solid 

skeleton or geologic medium) deformation field plays 

important roles in controlling various geological, 

hydrogeological, and geomechanical processes (Neuzil 

2003). Land deformation due to groundwater pumping, 

which acts as a hydraulic stress, is but one example. 

Another example is excessive pore water pressure 

generation due to physical loading, which acts as a 

mechanical stress. Since the pioneering work of Biot 

(1941), such hydromechanical phenomena have been better 

explained through poroelasticity theory or the poroelastic 

consolidation theory than by the conventional theory of 

solid skeleton deformation that is forced to be decoupled 

from groundwater flow. Poroelasticity theory has also been 

further developed for the entire saturated-unsaturated water 

flow regime by others (Verruijt 1969, Safai and Pinder 

1979, Bear and Corapcioglu 1981a, Noorishad et al. 1982, 

Kim 1996, Kim and Parizek 1997, Kim et al. 1997, Kim 

and Parizek 1999a, 1999b, Kim 2000, 2003, 2004, 2005, 

Kim and Parizek 2005) using the modified effective stress 

concept (Terzaghi 1925, Biot 1941, Bishop and Blight 

1963, Nur and Byerlee 1971, Carroll 1979, Thompson and 

Willis 1991, Cheng 1997, Kim 2004). 

On the basis of Biot’s poroelastic consolidation theory, a  

                                           

Corresponding author, Ph.D. 

E-mail: junmokim@snu.ac.kr 

 

 

variety of poroelastic numerical simulations have been 

performed to evaluate groundwater flow and land 

deformation in geologic media, which are either fully or 

partially saturated with water, due to various causes such as 

groundwater pumping (Safai and Pinder 1979, Lewis et al. 

1991, Yeh et al. 1996, Kim and Parizek 1997, Kim and 

Parizek 1999a, 1999b, Kim 2005, Kim and Parizek 2005), 

surface loading (Sandhu and Wilson 1969, Christian et al. 

1972, Ghaboussi and Wilson 1973, Cui et al. 1996, Kim 

2000), subsurface coal mining (Girrens et al. 1981, Bai and 

Elsworth 1991, Ouyang and Elsworth 1993, Bai and 

Elsworth 1994, Kim et al. 1997), and others. However, such 

poroelastic numerical simulations do not consider failure 

potential and stability of geologic media. Failure potential 

and stability analyses may not be particularly significant in 

the above-mentioned poroelastic numerical simulations but 

can be essentially critical in poroelastic numerical 

simulations of geologic media associated with slopes and 

tunnels. 

The Mohr-Coulomb failure criterion (Coulomb 1776, 

Mohr 1900) has still so far become the most practical and 

popular means for analyzing failure potential and stability 

of geologic media associated with various engineering 

works such as slopes (e.g., Tu et al. 2016, Kim and Jeong 

2017, Tran et al. 2019), tunnels (e.g., Khezri et al. 2016, 

Zheng et al. 2017, Yu 2018), foundations (e.g., Ardeshiri-

Lajimi et al. 2016, Lee et al. 2016, Ukritchon et al. 2016), 

and embankments (e.g., Wang et al. 2016, Zhang et al. 

2017, Balaban and Onur 2018). Owing to its historical 

development and simplicity, most of these conventional 

stability analyses used to calculate the factor of safety 

against shear failure, which is expressed in terms of the 
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cohesion and the angle of internal friction. However, the 

Mohr-Coulomb failure criterion has been mainly focused on 

the shear failure only. As a result, the related application 

studies such as the limit equilibrium methods for slope 

stability analysis (Das 1994, Huang 2014) and the principal 

and shear stress methods for tunnel stability analysis (Jaeger 

and Cook 1979, Goodman 1989) have analyzed stability of 

geologic media in terms of the shear strength or the factor 

of safety against shear failure only. In contrast to the shear 

strength and the shear failure, the tensile strength and the 

tension failure have not been properly considered in such 

conventional stability analyses because appropriate tension 

failure variables (parameters) have not yet been presented. 

In addition, using the factor of safety against shear failure 

alone as in the conventional stability analyses, it is 

practically impossible to determine which one between the 

shear and tension failures actually takes place or not at a 

given location within geologic media, and thus one cannot 

evaluate rigorously failure potential and stability of 

geologic media under various stress field conditions. For 

instance, if the minimum principal effective stress is smaller 

than the tensile strength at a location, the tension failure 

occurs there instead of the shear failure even though the 

factor of safety against shear failure is smaller than unity. It 

strongly suggests that the tensile strength should also be 

considered as well as the shear strength in evaluating failure 

potential and stability of geologic media even in cases of 

high deviatoric or shear stress conditions. Thus, a set of new 

local shear and tension failure variables that can consider 

both shear and tensile strengths is essentially necessary for 

better illustration and more rigorous analyses of failure 

potential and stability of geologic media associated with 

slopes and tunnels. 
In the limit equilibrium methods for slope stability 

analysis (Das 1994, Huang 2014), several circular surfaces 
are drawn arbitrarily first within a slope. The shear stress on 
each surface is then calculated using the moment or force 
balance and compared with the shear strength assigned. 
Finally, a surface that has the minimum value of the global 
factor of safety, which is defined as the ratio of the shear 
strength to the shear stress on it, is chosen as a potential 
shear failure surface through a trial and error procedure. 
However, the limit equilibrium methods assume the shape 
and location of the potential failure surface rather than 
determining them by analysis. As a result, one can produce 
inconsistent estimations for the shape and location of the 
potential failure surface and consequently the value of the 
global factor of safety with another’s results depending on 
particular limit equilibrium methods they adopt. In addition, 
the limit equilibrium methods assume the uniform 
localization of shear stresses along the potential failure 
surface, but the shear stresses are not actually uniformly 
mobilized on its whole length. On the other hand, in the 
principal and shear stress methods for tunnel stability 
analysis (Jaeger and Cook 1979, Goodman 1989), spatial 
distribution of the principal or shear stress around a tunnel 
is determined first from field measurement or numerical 
simulation. It is then compared with the shear strength 
assigned. Finally, a region where the deviatoric or shear 
stress exceeds the shear strength or a specific value is 
chosen as an unstable zone. However, the principal and 
shear stress methods cannot delineate the potential shear 

failure zone since it does not always coincide spatially with 
such a high deviatoric or shear stress region (i.e., unstable 
zone) as mentioned in the preceding paragraph. Thus, a set 
of new local shear and tension failure variables that can 
consider both shear and tensile strengths is highly desirable 
for more realistic determination of the shape and location of 
a potential failure surface or zone under a stress field 
condition in geologic media associated with slopes and 
tunnels. In that case, the potential shear failure surface or 
zone, which is determined by using such a set of new local 
shear and tension failure variables, may have mostly a 
noncircular (curved) or irregular shape, which is more 
realistic, rather than a circular or regular shape, which is too 
ideal. 

The first objective of this study is to present a set of 
relatively simple local shear and tension failure variables 
and to implement it into a generalized poroelastic 
hydromechanical numerical model, which can also handle 
both unsaturated water flow and rainfall-infiltration-seepage 
processes. The second objective of this study is to simulate 
fully coupled groundwater flow and land deformation in 
variably saturated geologic media associated with a slope 
(Case 1) and a tunnel (Case 2) and to analyze their failure 
potential and stability using the resultant hydromechanical 
numerical model. From a practical point of view, a 
quantitative understanding of fully coupled groundwater 
flow and land deformation and a simultaneous evaluation of 
both shear and tension failure potential may provide 
improved guidelines for controlling groundwater flow in 
deforming variably saturated geologic media associated 
with slopes and tunnels to maintain or increase the stability 
of such engineering works within the geologic media. 
 

 

2. Local shear and tension failure variables 
 

Considering the pore fluid (i.e., water and air) pressure 

via the above-mentioned modified effective stress concept, 

a saturated-unsaturated soil or rock (i.e., geologic medium 

or solid skeleton) fails under a specific combination of the 

maximum and minimum principal (deformation-producing) 

effective stresses 𝜎′1  and 𝜎′3  (for convenience, positive 

for compression and thus 𝜎′1 ≥ 𝜎′3) (Coulomb 1776, Mohr 

1900). This means that the failure does not occur under 

either maximum effective normal stress or maximum shear 

stress alone acting on a surface, but it takes place under a 

critical combination of the effective normal stress 𝜎′ 
(positive for compression) and the shear stress 𝜏 on the 

surface. Thus, the functional relationship between the 

effective normal stress and the shear stress on a failure 

surface can be expressed as follows (Jaeger and Cook 1979, 

Das 1994): 

|𝜏| = 𝜏𝑠 = 𝑓(𝜎′) (1) 

where the sign of the shear stress only affects the direction 

of sliding, and hence only the magnitude of the shear stress 

is in question (i.e., |𝜏| = 𝜏𝑠), and 𝜏𝑠 is the shear strength. 

Eq. (1) defines the Mohr effective stress failure envelope. It 

can be constructed by touching a set of the Mohr circles, 

which are obtained from a series of compression and 

tension tests on core specimens of a soil or rock, and forms 

a parabolic locus as shown in Fig. 1. 
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For saturated-unsaturated soils and rocks, the Mohr 
effective stress failure envelope can be approximated by the 
following shear strength equation, i.e., the modified or 
extended Mohr-Coulomb failure criterion (Mohr 1900, 
Jaeger and Cook 1979, Das 1994) as shown in Fig. 1: 

|𝜏| = 𝜏𝑠 = 𝑐′ + 𝜎′ tan 𝜙′ (2) 

where 𝑐′  is the effective cohesion or effective shear 

strength intercept, and 𝜙′ is the effective angle of internal 

friction. 
The modified Mohr-Coulomb failure criterion (Mohr 

1900, Jaeger and Cook 1979, Das 1994), i.e., Eq. (2) 
implies that the shear failure occurs when the applied shear 
stress less (minus) the frictional resistance associated with 
the compressive effective normal stress on a surface is 
greater than or equal to the effective cohesion; that is, when 
the corresponding Mohr circle touches or crosses the Mohr-
Coulomb failure criterion. However, it is not reasonable to 
admit a frictional resistance in the presence of a tensile 
effective normal stress on a failure surface. As a result, Eq. 
(2) loses its physical validity when the effective normal 
stress crosses into the tensile region. In order to overcome 
this problem, the following tension cutoff (Goodman 1989) 
has also to be superimposed on the Mohr-Coulomb failure 
criterion as shown in Fig. 1: 

𝜎′ = 𝑇𝑜 (3) 

where 𝑇𝑜 is the tensile strength (𝑇𝑜 ≤ 0). Thus, Eq. (2) is 

valid only when the minimum principal effective stress 𝜎′3 

is greater than the tensile strength 𝑇𝑜 (i.e., 𝜎′3 > 𝑇𝑜). As a 

result, the tension failure occurs instead of the shear failure 

when the minimum principal effective stress is smaller than 

or equal to the tensile strength (i.e., 𝜎′3 ≤ 𝑇𝑜) even though 

the Mohr circle touches or crosses the Mohr-Coulomb 

failure criterion, i.e., Eq. (2). In other words, Eqs. (2) and 

(3) form a bilinear failure criterion for both shear and 

tension failures. 

The factor of safety against shear failure 𝐹𝑠 is defined 

 

 

as the ratio of the shear strength to the shear stress acting on 
a potential failure surface under a given stress condition 𝜎′1 
and 𝜎′3, and hence it can be expressed from Fig. 2 as 
follows: 

𝐹𝑠 =
 𝐴𝐶̅̅ ̅̅  

𝐴𝐵̅̅ ̅̅
=

sin 𝜙′ (𝜎′
𝑚 + 𝑐′ cot 𝜙′)

𝜏𝑚𝑎𝑥
=

𝜎′𝑚 sin 𝜙′ + 𝑐′ cos 𝜙′

𝜏𝑚𝑎𝑥
 (4) 

where 𝜎′𝑚 = (𝜎′1 + 𝜎′3) 2⁄  is the mean effective normal 

stress, and 𝜏𝑚𝑎𝑥 = (𝜎′1 − 𝜎′3) 2⁄  is the maximum shear 

stress equal to the half of the deviatoric effective stress 

𝜎′𝑑 = 𝜎′1 − 𝜎′
3 = 2𝜏𝑚𝑎𝑥 . If the factor of safety against 

shear failure 𝐹𝑠  is greater than or equal to unity (i.e., 

𝜏𝑚𝑎𝑥 ≤ 𝜎′
𝑚 sin 𝜙′ + 𝑐′ cos 𝜙′  and thus 1 ≤ 𝐹𝑠 ), the 

geologic medium at the corresponding location is 

considered to be stable with respect to the shear failure. If it 

is smaller than unity and greater than or equal to zero (i.e., 

0 ≤ 𝜎′
𝑚 sin 𝜙′ + 𝑐′ cos 𝜙′ < 𝜏𝑚𝑎𝑥  and thus 0 ≤ 𝐹𝑠 < 1 ), 

the geologic medium is considered to be unstable with 

respect to the shear failure. If it is smaller than zero (i.e., 

𝜎′
𝑚 sin 𝜙′ + 𝑐′ cos 𝜙′ < 0  and thus 𝐹𝑠 < 0 ), the mean 

effective normal stress crosses into the tensile region, and 

the geologic medium is considered to be unstable with 

respect to the tension failure, not the shear failure as 

described in the above-mentioned bilinear failure criterion 

(i.e., Eqs. (2) and (3)). 

On the other hand, the factor of safety against tension 

failure 𝐹𝑡 is defined as the ratio of the maximum principal 

effective stress less (minus) the tensile strength to the 

deviatoric effective stress acting on a potential failure 

surface under a given stress condition 𝜎′1 and 𝜎′3, and 

hence it can be expressed from Fig. 2 as follows: 

𝐹𝑡 =
 𝐷𝐹̅̅ ̅̅  

𝐷𝐸̅̅ ̅̅
=

𝜎′1 − 𝑇𝑜

𝜎′1 − 𝜎′3
=

𝜎′1 − 𝑇𝑜

2𝜏𝑚𝑎𝑥
 (5) 

If the factor of safety against tension failure 𝐹𝑡 is greater 

than or equal to unity (i.e., 𝑇𝑜 ≤ 𝜎′3 < 𝜎′1 and thus 1 ≤
𝐹𝑡), the geologic medium at the corresponding location  

 

Fig. 1 Schematic diagram of the Mohr effective stress failure envelope approximated by the Mohr-Coulomb failure 

criterion and the tension cutoff 
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is considered to be stable with respect to the tension failure. 

If it is smaller than unity and greater than or equal to zero 

(i.e., 𝜎′3 < 𝑇𝑜 ≤ 𝜎′1  and thus 0 ≤ 𝐹𝑡 < 1), the geologic 

medium is considered to be unstable with respect to the 

tension failure in the minimum principal plane direction. If 

it is smaller than zero (i.e., 𝜎′3 < 𝜎′1 < 𝑇𝑜 and thus 𝐹𝑡 <
0), the geologic medium is considered to be unstable with 

respect to the tension failure in both minimum and 

maximum principal plane directions. 

However, an unstable zone, in which the factor of safety 

against shear failure 𝐹𝑠 is smaller than unity and greater 

than or equal to zero (i.e., 0 ≤ 𝐹𝑠 < 1) using Eq. (4), can 

often overlap spatially with another unstable zone, in which 

the factor of safety against tension failure 𝐹𝑡  is smaller 

than unity and greater than or equal to zero (i.e., 0 ≤ 𝐹𝑡 <
1) using Eq. (5), because these two equations are derived 

independently of each other. As a result, by using Eqs. (4) 

and (5) independently alone, one cannot distinguish a 

potential shear failure zone from a potential tension failure 

zone within a geologic medium, and thus rigorous analysis 

of shear and tension failure potential may be difficult or 

impossible. Therefore, in order to determine practically 

which one between the shear and tension failures actually 

takes place or not as described in the above-mentioned 

bilinear failure criterion (i.e., Eqs. (2) and (3)), the factors 

of safety against shear and tension failures 𝐹𝑠 and 𝐹𝑡 (i.e., 

Eqs. (4) and (5)) have to be considered dependently 

together to determine three potential shear and tension 

failure indices as follows: 

If 1 ≤ 𝐹𝑡 & 1 ≤ 𝐹𝑠: 𝐼𝑠 = 0 & 𝐼𝑡 = 0 (𝐼𝑓 = 0) 

If 1 ≤ 𝐹𝑡 & 0 ≤ 𝐹𝑠 < 1: 𝐼𝑠 = 1 & 𝐼𝑡 = 0 (𝐼𝑓 = 1) 

If 0 ≤ 𝐹𝑡 < 1: 𝐼𝑠 = 0 & 𝐼𝑡 = 1 (𝐼𝑓 = −1) 

If 𝐹𝑡 < 0: 𝐼𝑠 = 0 & 𝐼𝑡 = 2 (𝐼𝑓 = −2) 

(6) 

where 𝐼𝑠  is the potential shear failure index, 𝐼𝑡  is the  

 
 

potential tension failure index, and 𝐼𝑓  is the potential 

(shear and tension) failure index. 

If the potential shear failure index 𝐼𝑠 is equal to unity 

(i.e., 𝐼𝑠 = 1 ), the shear failure may occur at the 

corresponding location. If it is equal to zero (i.e., 𝐼𝑠 = 0), 

the shear failure may not happen there. Similarly, if the 

potential tension failure index 𝐼𝑡 is equal to unity or two 

(i.e., 𝐼𝑡 = 1 or 𝐼𝑡 = 2), the tension failure may occur at 

the corresponding location. If it is equal to zero (i.e., 𝐼𝑡 =
0), the tension failure may not happen there. Here both 

potential shear and tension failure indices 𝐼𝑠 and 𝐼𝑡 cannot 

be greater than zero simultaneously at a location (i.e., both 

shear and tension failure zones do not overlap spatially). 

Thus, they can also be further combined into the potential 

failure index 𝐼𝑓 alone. If the potential failure index 𝐼𝑓 is 

equal to zero (i.e., 𝐼𝑓 = 0), neither shear failure nor tension 

failure may occur at the corresponding location. If it is 

equal to unity (i.e., 𝐼𝑓 = 1), the shear failure may happen 

there. If it is equal to negative unity or two (i.e., 𝐼𝑓 = −1 

or 𝐼𝑓 = −2), the tension failure may happen there. As a 

result, by using the five local shear and tension failure 

variables 𝐹𝑠, 𝐹𝑡, 𝐼𝑠, 𝐼𝑡, and 𝐼𝑓 (i.e., Eq. (6) with Eqs. (4) 

and (5)), one can distinguish a potential shear failure zone 

from a potential tension failure zone within a geologic 

medium without spatial overlapping, and thus rigorous 

analysis of shear and tension failure potential may be easy 

or possible than by using the conventional factors of safety 

against shear and tension failures 𝐹𝑠 and 𝐹𝑡 (i.e., Eqs. (4) 

and (5)) only. 

 

 

3. Numerical model and implementation 
 

3.1 Numerical model 
 

The poroelastic hydromechanical numerical model used 

 

 

Fig. 2 Schematic diagram of the Mohr circle under the Mohr-Coulomb failure criterion and the tension cutoff for the 

factors of safety against shear and tension failures 
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in this study is COWADE123D (Kim 1995, 2002, 2006). 

This numerical model is a generalized multidimensional 

Galerkin finite element model and can simulate fully 

coupled groundwater flow and land deformation in 

saturated-unsaturated geologic media, which are hetero-

geneous and anisotropic, due to various causes such as 

pumping, loading, mining, tunneling, rainfall, and others. 

For more details on the numerical formulations of 

COWADE123D (Kim 1995, 2002, 2006), the readers are 

referred to the works of Kim (1996), Kim and Parizek 

(1999a), and Kim (2003, 2005). 

The first version (Kim 1995) of COWADE123D was 

verified by Kim (1996) and Kim and Parizek (1999a) for its 

numerical accuracy by comparing numerical solutions with 

analytical solutions for pressure head (or excessive pore 

water pressure) and vertical and horizontal (radial) land 

displacements due to surface loading on a fully saturated 

column (Biot 1941), groundwater pumping from a fully 

saturated confined aquifer (Bear and Corapcioglu 1981b), 

and groundwater pumping from a fully saturated 

unconfined aquifer (Corapcioglu and Bear 1983). In all the 

three cases, the numerical solutions showed almost perfect 

agreement with the analytical solutions. 
 

3.2 Numerical implementation 
 

In COWADE123D (Kim 1995, 2002, 2006), once 

simultaneous numerical solutions of the pressure head ℎ 

and displacements 𝑢𝑖 for the poroelastic hydromechanical 

governing equations are obtained at each nonlinear iteration 

level or time step, the strain tensor 𝜀𝑖𝑗  (positive for 

tension) is calculated from the displacement vector 𝑢𝑖 

using the displacement-strain relationship, and then the 

(deformation-producing) effective stress tensor 𝜎′𝑖𝑗  

(positive for tension) is calculated from the resulting strain 

tensor 𝜀𝑖𝑗  using the generalized Hooke’s law for 𝑖, 𝑗 =

𝑥, 𝑦, 𝑧  (Love 1944, Lekhnitskii 1963). After the sign 

reversal of the effective stress tensor for convenience, the 

maximum, intermediate, and minimum principal effective 

stresses 𝜎′1, 𝜎′2, and 𝜎′3 (positive for compression) are 

calculated from the resulting effective stress tensor 𝜎′𝑖𝑗  

using the multidimensional coordinate transformation 

(Jaeger and Cook 1979, Goodman 1989). Finally, the 

above-mentioned five local shear and tension failure 

variables 𝐹𝑠 , 𝐹𝑡 , 𝐼𝑠 , 𝐼𝑡 , and 𝐼𝑓  are calculated from the 

maximum and minimum principal effective stresses 𝜎′1 

and 𝜎′3, the effective cohesion 𝑐′, the effective angle of 

internal friction 𝜙′, and the tensile strength 𝑇𝑜 by using 

Eqs. (4), (5), and (6). 

The following constitutive mathematical equations (Kim 

and Parizek 1999b) are also adopted in this study to account 

for the changes in the porosity 𝑛(𝜀𝑖𝑗) and the saturated 

hydraulic conductivity tensor 𝐾𝑠𝑎𝑡 𝑖𝑗(𝜀𝑖𝑗)  by solid 

skeleton deformation: 

𝑛 = 1 −
1 − 𝑛𝑜

1 + 𝜀𝑣
 (7) 

𝐾𝑠𝑎𝑡 𝑖𝑗 = 𝐾𝑠𝑎𝑡 𝑖𝑗
𝑜 [

1

𝑛𝑜
(1 + 𝜀𝑣)

2
3 −

1 − 𝑛𝑜

𝑛𝑜
(1 + 𝜀𝑣)−

1
3]

3

 (8) 

where 𝜀𝑖𝑗 = 𝜕𝑢𝑖 𝜕𝑥𝑗⁄ + 𝜕𝑢𝑗 𝜕𝑥𝑖⁄ (1 − 𝛿𝑖𝑗)  is the strain 

tensor (positive for tension), 𝜀𝑣 = 𝜀𝑥𝑥 + 𝜀𝑦𝑦 + 𝜀𝑧𝑧  is the 

volumetric strain (positive for tension), 𝑛𝑜  is the initial 

porosity prior to deformation, and 𝐾𝑠𝑎𝑡 𝑖𝑗
𝑜  is the initial 

saturated hydraulic conductivity tensor prior to deformation 

for 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧 . Here 𝑢𝑖  is the displacement vector 

component in the 𝑖 direction, and 𝛿𝑖𝑗 is Kronecker’s delta 

for 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧. 
 
 

4. Numerical simulations: Case studies 
 

4.1 Case 1: Soil slope under rainfall 
 

A variably saturated soil slope under rainfall is 

considered as Case 1. The slope is a valley-shape 

excavation slope located in Seoul, Korea. The slope 

material is composed of silty soil (silt), which was produced 

by weathering of granite and gneiss bedrock. In Seoul and 

its surrounding area, rainfall-induced slope failures and 

landslides have often been reported during and even right 

after intensive rainfall periods every year in the 1990s. In 

Seoul, the rainiest month in the 1990s was August with the 

average monthly rainfall amount of 407 mm, which 

corresponds to the highest monthly rainfall rate of 1.52 × 

10-7 m/s (KMA 1990-1999). Using the above-mentioned 

hydromechanical numerical model COWADE123D (Kim 

1995, 2002, 2006), a steady-state numerical simulation is 

performed for the variably saturated soil slope under the 

highest monthly rainfall rate. 

As shown in Fig. 3, the cross section of the valley-shape 

excavation slope (i.e., 100 m × 40 m) is taken as a two-

dimensional vertical system (𝑥, 𝑧) considering the lateral 

symmetry with respect to the vertical centerline of the slope 

at 𝑥 = 0 m and assuming plane strain in the 𝑦 direction 

perpendicular to the cross section. The slope has an 

inclination of 26.6° (2:1 slope) and a flat foundation with a 

length of 60 m at the slope crest to consider the laterally 

infinite domain. The cross section is then discretized into 

624 isoparametric quadrilateral elements with 680 nodes. 

The following constitutive mathematical equations (van 

Genuchten 1980) are employed here to consider the changes 

in the degree of water saturation 𝑆𝑤(ℎ) and the relative 

hydraulic conductivity 𝐾𝑟(ℎ) by unsaturated water flow 

for ℎ < 0: 

𝑆𝑤 = 𝑆𝑤𝑟 + (1 − 𝑆𝑤𝑟)(1 + |𝛼𝑣ℎ|𝑛𝑣)−𝑚𝑣 (9) 

𝐾𝑟 = (1 + |𝛼𝑣ℎ|𝑛𝑣)−
𝑚𝑣
2 [1 − (

|𝛼𝑣ℎ|𝑛𝑣

1 + |𝛼𝑣ℎ|𝑛𝑣
)

𝑚𝑣

]

2

 (10) 

where ℎ  is the pressure head, 𝑆𝑤𝑟  is the degree of 

residual water saturation, 𝛼𝑣 = − 1 ℎ𝑎⁄  and 𝑛𝑣  are van 

Genuchten’s unsaturated hydraulic parameters (𝛼𝑣 > 0 and 

𝑛𝑣 > 1 ), ℎ𝑎  is the air-entry (bubbling) pressure head 

(ℎ𝑎 < 0), and 𝑚𝑣 = 1 − 1 𝑛𝑣⁄  (0 < 𝑚𝑣 < 1). 

The silt is assumed to be homogeneous and isotropic, 

and its material properties are obtained from a series of field 

and laboratory tests and the literature (Lambe and Whitman 

1979, Carsel and Parrish 1988, Das 1994, Bardet 1997) and 

summarized in Table 1. The compressibility of water 𝛽𝑤, 
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density of water 𝜌𝑤, and gravitational acceleration constant 

𝑔 are set equal to 4.40 × 10-10 m2/N, 1,000 kg/m3, and 9.81 

m/s2, respectively (Freeze and Cherry 1979). 

Along the left-hand side at 𝑥 = 0 m, a no-flow 

boundary condition and a no-horizontal displacement 

boundary condition are applied, but vertical displacement is 

allowed considering the lateral symmetry with respect to the 

vertical centerline of the slope. The same boundary 

conditions are also applied along the right-hand side at 𝑥 = 

100 m considering the laterally infinite domain. The 

impermeable bottom surface at 𝑧 = 0 m is fixed vertically, 

but it is free to move horizontally considering the 

unweathered fresh bedrock (hard rock). The top slope 

surface at 20 m ≤ 𝑧 ≤ 40 m is free to move both 

vertically and horizontally, and it is treated as a permeable 

solid-air interface by applying a variable rainfall -

infiltration-seepage boundary condition (Huyakorn et al. 

1986, Yeh 1987, 1999) with the above-mentioned highest  

monthly rainfall rate in order to take into account  

infiltration and seepage occurring simultaneously along it  

 

 
 

during rainfall. For such a slope surface, the maximum 

pressure head ℎ𝑚𝑎𝑥 is set equal to zero in order to prevent 

water accumulation (ponding) on it. 

The steady-state numerical simulation results for the 

pressure head, hydraulic head, Darcy velocity (groundwater 

flow flux), and displacement vector are shown in Fig. 4. As 

shown in Fig. 4(a), the water table, on which the pressure 

head is equal to zero, is exposed along the slope surface up 

to 11.47 m high from the slope toe, and thus an unsaturated 

zone, which is above the water table, is developed only 

below the slope surface near the slope crest. As shown in 

Fig. 4(b), the maximum hydraulic head is equal to 39.77 m 

and located at the slope crest (i.e., 𝑥 = 40.00 m, 𝑧 = 40.00 

m), and the hydraulic gradient is steepest and concentrated 

at the slope toe (i.e., 𝑥 = 0.00 m, 𝑧 = 20.00 m). As a 

result, the Darcy velocity increases toward the slope toe, 

and its maximum is equal to 1.11 × 10-6 m/s at the slope toe 

as shown in Fig. 4(c). It should also be recognized from Fig. 

4(c) that the height of the seepage face is equal to 10.00 m 

from the slope toe by inspecting the groundwater flow 

 

Fig. 3 Schematic diagram of the slope and finite element mesh used in the numerical simulation 

Table 1 Material properties of the silt in the slope used in the numerical simulation 

Property Symbol Value 

Initial porosity 𝑛𝑜 0.46 

Initial saturated hydraulic conductivity tensor* 𝐾𝑠𝑎𝑡 𝑖𝑗
𝑜  6.94 × 10-7 𝛿𝑖𝑗 m/s 

Poisson’s ratio* 𝜈 = 𝜈𝑖𝑗 0.33 

Young’s modulus* 𝐸 = 𝐸𝑖 1.10 × 107 N/m2 

Shear modulus* 𝐺 = 𝐺𝑖𝑗  4.14 × 106 N/m2 

Biot’s hydromechanical coupling coefficient tensor* 𝛼𝑐 𝑖𝑗 1.00 𝛿𝑖𝑗 

Solid density 𝜌𝑠 2.67 × 103 kg/m3 

Degree of residual water saturation 𝑆𝑤𝑟 7.39 × 10-2 

van Genuchten’s (1980) unsaturated hydraulic parameters 𝛼𝑣 1.60 m-1 

 𝑛𝑣 1.37 

Effective cohesion 𝑐′ 1.00 × 104 N/m2 

Effective angle of internal friction 𝜙′ 30.00° 

Tensile strength 𝑇𝑜 0.00 N/m2 

*𝑖, 𝑗 = 𝑥, 𝑦, 𝑧; 𝐺 = 𝐸 [2(1 + 𝜈)]⁄ ; 𝛿𝑖𝑗 is Kronecker’s delta 

180



 

A set of failure variables for analyzing stability of slopes and tunnels  

 

 

direction across the slope surface. A seepage face is defined 

as a permeable solid-air interface along which the pressure 

head is equal to zero, and the Darcy velocity is outward 

from a geologic medium (i.e., slope in this case study). As a 

result, the rainwater infiltration occurs along the slope 

surface more than 10.00 m high from the slope toe, while 

the groundwater seepage takes place along the slope surface 

less than 10.00 m high from the slope toe, under the rainfall 

rate. It means that the exposed water table does not coincide 

spatially with the seepage face under such a high rainfall 

rate, and thus the rainwater infiltration occurs instead of the 

groundwater seepage along the remaining part of the 

exposed water table that excludes the seepage face; that is, 

along the slope surface between 10.00 m and 11.47 m high 

from the slope toe. As shown in Fig. 4(d), the displacement  

vector is downward near the slope crest and upward near  

 

 

the slope toe showing a curved pattern of the overall slope  

deformation. 

The steady-state numerical simulation results for the 

five local shear and tension failure variables are shown in 

Fig. 5 (i.e., 𝐹𝑠, 𝐼𝑠, 𝐹𝑡, and 𝐼𝑡) and summarized in Table 2 

(i.e., 𝐹𝑠, 𝐹𝑡 , 𝐼𝑠, 𝐼𝑡 , and 𝐼𝑓). As shown in Fig. 5(a), the 

unstable zone, in which the factor of safety against shear 

failure 𝐹𝑠 is smaller than unity, becomes thicker near the 

slope toe and propagates toward the slope crest showing a 

downward convex shape. The minimum factor of safety 

against shear failure is equal to 0.54 and located on the 

slope surface at a height of 2.00 m from the slope toe.  

However, as shown in Fig. 5(b), the potential shear failure 

zone, in which the potential shear failure index 𝐼𝑠 is equal 

to unity, is developed only in a part of the unstable zone 

where the factor of safety against shear failure 𝐹𝑠  is 

 

Fig. 4 Steady-state spatial distributions of (a) pressure head, (b) hydraulic head, (c) Darcy velocity (groundwater flow 

flux), and (d) displacement vector in the slope (The units of the horizontal and vertical coordinate axes are m as shown in 

Fig. 3.) 

181



 

Jun-Mo Kim, Sungho Lee, Jai-Yong Park, Jung-Hwi Kihm and Sangho Park 

 

 

 

smaller than unity and greater than or equal to 0.66 showing 

a curved shape from the slope toe toward the slope crest 

(Table 2). Such a potential shear failure zone is very well  

matched with a circular shear failure surface obtained by 

Bishop’s simplified method of slices (Das 1994, Huang 

2014), which is a limit equilibrium method (Fig. 5(b)). In  

the remaining part of the unstable zone where the factor of  

 

 

 

safety against shear failure 𝐹𝑠  is smaller than 0.66, the 

factor of safety against tension failure 𝐹𝑡 is slightly smaller 

than unity as shown in Fig. 5(c), and the potential tension 

failure index 𝐼𝑡 is equal to unity as shown in Fig. 5(d). 

This strongly suggests that the tension failure is likely to 

occur instead of the shear failure in the remaining part of 

the unstable zone between the potential shear failure zone 

 

Fig. 5 Steady-state spatial distributions of (a) factor of safety against shear failure, (b) potential shear failure index, (c) 

factor of safety against tension failure, and (d) potential tension failure index in the slope (The units of the horizontal and 

vertical coordinate axes are m as shown in Fig. 3.) 

Table 2 Local shear and tension failure variables on the slope surface 

Point (location)* Coordinates 𝐹𝑠 𝐹𝑡 𝐼𝑠 𝐼𝑡 𝐼𝑓 

A (closer to slope crest) 𝑥 = 26.00 m, 𝑧 = 33.00 m 0.80 1.10 1 0 1 

B (intermediate) 𝑥 = 14.00 m, 𝑧 = 27.00 m 0.63 0.99 0 1 −1 

C (closer to slope toe) 𝑥 = 01.00 m, 𝑧 = 20.50 m 0.66 1.12 1 0 1 

*The three points A, B, and C are marked in Fig. 5 
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and the slope surface since the minimum principal effective 

stress 𝜎′3 is in a tensional state and slightly smaller than 

the tensile strength there. However, the minimum factor of 

safety against tension failure is equal to 0.98 and located on 

the slope surface at a height of 2.50 m from the slope toe as 

shown in Fig. 5(c), and the potential tension failure zone, in 

which the potential tension failure index 𝐼𝑡  is equal to 

unity, is very thin along the slope surface as shown in Fig. 

5(d) compared with the potential shear failure zone (Fig. 

5(b)). These indicate that the tension failure near the slope 

surface may not be as severe as the shear failure in the slope 

(Table 2). As a result, the potential tension failure zone, in 

which the potential tension failure index 𝐼𝑡 is equal to two, 

is not developed near the slope surface as shown in Fig. 

5(d) since only the minimum principal effective stress 𝜎′3 

is smaller than the tensile strength there. It should also be 

recognized that the potential tension failure zone delineated 

in Fig. 5(d) does not overlap spatially with the potential 

shear failure zone delineated in Fig. 5(b). However, the 

unstable zone with respect to the tension failure illustrated 

in Fig. 5(c) overlaps spatially with the unstable zone with 

respect to the shear failure illustrated in Fig. 5(a). These 

strongly suggest that shear and tension failure potential and 

stability of the variably saturated geologic medium 

associated with the slope can be better analyzed by using 

the five local shear and tension failure variables as a set 

than by using the conventional factors of safety against 

shear and tension failures only. 
 

4.2 Case 2: Weathered rock under tunneling 
 

Tunneling of a subway before reinforcement and lining 

is considered as Case 2. The subway is Subway Line 2 

located in Busan, Korea. Construction of its first phase was 

initiated in November 1991 and completed in June 1999, 

and the other phases have been constructed later. The first-

phase tunnel was mainly constructed through weathered 

granite bedrock (soft rock), which was classified as a poor 

rock (Class IV) with the rock mass rating (RMR) of 37 (Lee 

and Kim 1999). Prior to the start of tunneling, the average 

annual regional water table depth was about 3.24 m from 

the ground surface (BUTA 1992). The average annual 

rainfall amount in Busan during the first-phase tunneling 

period was about 1,505 mm, which corresponds to the 

average annual rainfall rate of 4.77 × 10-8 m/s (KMA 1991-

1999). The initial (pretunneling) horizontal stress 

coefficient 𝐾𝑜 = 𝜎ℎ
𝑜 𝜎𝑣

𝑜⁄  in the first-phase area was 

determined to be about 0.50 (Lee and Kim 1999). Here 𝜎ℎ
𝑜 

is the initial horizontal total normal stress, and 𝜎𝑣
𝑜 is the 

initial vertical total normal stress. Using the above-

mentioned hydromechanical numerical model COWADE-

123D (Kim 1995, 2002, 2006), a transient-state numerical 

simulation is performed for the variably saturated 

weathered rock under tunneling. 

As shown in Fig. 6, the cross section of the weathered 

rock around the tunnel (i.e., 100 m × 50 m) is taken as a 

two-dimensional vertical system (𝑥 , 𝑧 ) considering the 

lateral symmetry with respect to the vertical centerline of 

the tunnel at 𝑥 = 0 m and assuming plane strain in the 𝑦 

direction perpendicular to the cross section. The tunnel is at 

an average depth of 13.30 m below the ground surface and 

has a horseshoe shape with a height of 8.44 m and a width 

of 10.54 m to disperse stress around the tunnel (BUTA 

1992). The cross section is then discretized into 440 

isoparametric quadrilateral elements with 490 nodes. 

The following constitutive mathematical equations 

(Huyakorn et al. 1984) are employed here to consider the 

changes in the degree of water saturation 𝑆𝑤(ℎ) and the 

relative hydraulic conductivity 𝐾𝑟(ℎ) by unsaturated water 

flow for ℎ𝑏 < ℎ < ℎ𝑎: 

𝑆𝑤 = 1 − (1 − 𝑆𝑤𝑟)
ℎ − ℎ𝑎

ℎ𝑏 − ℎ𝑎
 (11) 

𝐾𝑟 = [1 − (1 − 𝑆𝑤𝑟)
ℎ − ℎ𝑎

ℎ𝑏 − ℎ𝑎
− 𝑆𝑤𝑟] (1 − 𝑆𝑤𝑟)−1 (12) 

where ℎ  is the pressure head, 𝑆𝑤𝑟  is the degree of 

residual water saturation, ℎ𝑎  is the air-entry (bubbling) 

pressure head (ℎ𝑎 ≤ 0), and ℎ𝑏 is the allowed minimum 

pressure head (ℎ𝑏 < ℎ𝑎). 

The weathered granite is assumed to be homogeneous 

and isotropic, and its material properties are obtained from a 

series of field and laboratory tests and the literature (Lee 

and Park 1976, Goodman 1989, BUTA 1992, Lee and Kim 

1999) and summarized in Table 3. The compressibility of 

water 𝛽𝑤 , density of water 𝜌𝑤 , and gravitational 

acceleration constant 𝑔 are set equal to 4.40 × 10-10 m2/N, 

1,000 kg/m3, and 9.81 m/s2, respectively (Freeze and Cherry 

1979). 

Prior to the start of tunneling, the system is assumed to 

be at a hydrostatic equilibrium condition corresponding to 

the above-mentioned average annual regional water table 

depth; that is, the pretunneling (initial) hydraulic head is 

equal to 46.76 m everywhere from the bottom surface at 𝑧 

= 0 m. The initial shear stress is set equal to zero since both 

isotropic geologic medium (weathered granite) and no far-

field or tectonic stress are assumed in this case study. 

Along the left-hand side at 𝑥 = 0 m, a no-flow 

boundary condition and a no-horizontal displacement 

boundary condition are applied, but vertical displacement is 

allowed considering the lateral symmetry with respect to the 

vertical centerline of the tunnel. Along the right-hand side at 

𝑥 = 100 m, a constant hydraulic head boundary condition 

with its pretunneling value (i.e., 46.76 m) and a no-

horizontal displacement boundary condition are applied, but 

vertical displacement is allowed considering the laterally 

infinite domain. The impermeable bottom surface at 𝑧 = 0 

m is fixed vertically, but it is free to move horizontally con- 

sidering the unweathered fresh bedrock (hard rock). The top 

ground surface at 𝑧 = 50 m is free to move both vertically 

and horizontally, and it is treated as a permeable solid-air 

interface by applying a variable rainfall-infiltration 

boundary condition (Huyakorn et al. 1986, Yeh 1987, 1999) 

with the above-mentioned average annual rainfall rate in 

order to take into account possible spatial changes in the 

infiltration rate along it during tunneling. For such a ground 

surface, the maximum pressure head ℎ𝑚𝑎𝑥  is set equal to 

its pretunneling value (i.e., -3.24 m) in order to prevent an 

undesirable water table rise over its pretunneling depth up 

to the ground surface because it is not likely to happen 

during tunneling in most real situations. On the other hand, 
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the tunnel surface at 28.26 m ≤ 𝑧 ≤ 36.70 m is free to 

move both vertically and horizontally by applying a surface 

traction boundary condition under the overburden load 

(gravitational body force) and the above-mentioned 

pretunneling horizontal stress coefficient, and it is treated as 

a permeable solid-air interface by applying a variable 

seepage boundary condition (Huyakorn et al. 1986, Yeh 

1987, 1999) in order to account for seepage and 

desaturation occurring simultaneously along it during 

tunneling. For such a tunnel surface, the maximum pressure 

head ℎ𝑚𝑎𝑥  is set equal to zero in order to prevent water 

accumulation (ponding) on it, and no water flow is allowed 

into the surrounding geologic medium from the tunnel. 

The final steady-state numerical simulation results for 

the pressure head, hydraulic head, Darcy velocity 

(groundwater flow flux), and displacement vector are  

shown in Fig. 7. It takes about 31 days to arrive at the final  

 

 
 

steady-state conditions after the start of tunneling. As 

shown in Fig. 7(a), the water table, which was initially 

located 3.24 m below the ground surface, declines, and 

hence the unsaturated zone, which is above the water table, 

expands downward to the sidewall of the tunnel. As a result, 

the crown of the tunnel becomes unsaturated, while a 

seepage face is developed along the sidewall and invert of 

the tunnel. The minimum pressure head on the tunnel 

surface is equal to -2.43 m and located at the uppermost part 

of the crown (i.e., 𝑥 = 0.00 m, 𝑧 = 36.70 m), while the 

minimum pressure head on the ground surface is equal to -

14.88 m and located right above the uppermost part of the 

crown (i.e., 𝑥 = 0.00 m, 𝑧 = 50.00 m). As shown in Fig. 

7(b), the minimum hydraulic head is equal to 28.26 m and 

located at the lowermost part of the invert (i.e., 𝑥 = 0.00 

m, 𝑧 = 28.26 m), and the hydraulic gradient is steepest and 

concentrated at the lower part of the sidewall (i.e., 𝑥 = 

 

Fig. 6 Schematic diagram of the tunnel and finite element mesh used in the numerical simulation 

Table 3 Material properties of the weathered granite around the tunnel used in the numerical simulation 

Property Symbol Value 

Initial porosity 𝑛𝑜 0.17 

Initial saturated hydraulic conductivity tensor* 𝐾𝑠𝑎𝑡 𝑖𝑗
𝑜  1.81 × 10-6 𝛿𝑖𝑗 m/s 

Poisson’s ratio* 𝜈 = 𝜈𝑖𝑗 0.30 

Young’s modulus* 𝐸 = 𝐸𝑖 1.96 × 108 N/m2 

Shear modulus* 𝐺 = 𝐺𝑖𝑗  7.54 × 107 N/m2 

Biot’s hydromechanical coupling coefficient tensor* 𝛼𝑐 𝑖𝑗 1.00 𝛿𝑖𝑗 

Solid density 𝜌𝑠 2.66 × 103 kg/m3 

Degree of residual water saturation 𝑆𝑤𝑟 1.00 × 10-1 

Huyakorn et al.’s (1984) unsaturated hydraulic parameters ℎ𝑎 −0.50 m 

 ℎ𝑏 −25.00 m 

Effective cohesion 𝑐′ 4.90 × 104 N/m2 

Effective angle of internal friction 𝜙′ 35.00° 

Tensile strength 𝑇𝑜 −1.88 × 104 N/m2 

*𝑖, 𝑗 = 𝑥, 𝑦, 𝑧; 𝐺 = 𝐸 [2(1 + 𝜈)]⁄ ; 𝛿𝑖𝑗 is Kronecker’s delta 
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5.24 m, 𝑧 = 30.45 m). As a result, the Darcy velocity 

increases toward the lower part of the sidewall and then the 

invert, and its maximum is equal to 2.08 × 10-6 m/s at the 

lower part of the sidewall as shown in Fig. 7(c). It should 

also be recognized from Fig. 7(c) that the groundwater does 

not flow across the tunnel surface but along it at the crown 

(unsaturated zone), while the groundwater flows across the 

tunnel surface at the sidewall and invert (seepage face). 

However, the groundwater also flows across the tunnel 

surface at the crown during tunneling until it becomes 

unsaturated. Such similar patterns have been observed 

during and after tunneling in the actual fields including the 

study area. As shown in Fig. 7(d), the displacement vector 

is toward the tunnel surface. As a result, the invert heaves 

up to 1.20 cm, while the crown subsides down to 2.94 cm.  

The maximum subsidence on the ground surface occurs  

 

 

right above the uppermost part of the crown and is equal to 

2.52 cm indicating the weathered rock between the ground 

surface and the crown is in a vertically tensional state 

during tunneling. 

The final steady-state numerical simulation results for 

the five local shear and tension failure variables are shown 

in Fig. 8 (i.e., 𝐹𝑠, 𝐼𝑠, 𝐹𝑡, and 𝐼𝑡) and summarized in Table 

4 (i.e., 𝐹𝑠, 𝐹𝑡, 𝐼𝑠, 𝐼𝑡, and 𝐼𝑓). As shown in Fig. 8(a), the 

factor of safety against shear failure 𝐹𝑠 decreases toward 

the tunnel surface, and its minimum is equal to 0.13 at the 

crown, 0.82 at the sidewall, and -0.62 at the invert, 

respectively (Table 4). However, as shown in Fig. 8(b), the  

potential shear failure zone, in which the potential shear 

failure index 𝐼𝑠 is equal to unity, is developed only at the 

lower part of the sidewall showing an ear shape, but it is not 

observed at the crown and invert where the potential 

 

Fig. 7 Final steady-state spatial distributions of (a) pressure head, (b) hydraulic head, (c) Darcy velocity (groundwater flow 

flux), and (d) displacement vector around the tunnel (The units of the horizontal and vertical coordinate axes are m as 

shown in Fig. 6.) 
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shear failure index 𝐼𝑠  is equal to zero. This strongly 

suggests that the tension failure is likely to occur instead of 

the shear failure along the crown and invert since the 

minimum principal effective stress 𝜎′3 or both maximum 

and minimum principal effective stresses 𝜎′1 and 𝜎′3 are 

in tensional states and smaller than the tensile strength 

there. As shown in Fig. 8(c), the factor of safety against  

tension failure 𝐹𝑡 also decreases toward the tunnel surface,  

 

 

 

and its minimum is equal to 0.40 at the crown, 1.13 at the 

sidewall, and -0.23 at the invert, respectively (Table 4). It 

means that both maximum and minimum principal effective 

stresses 𝜎′1 and 𝜎′3 are smaller than the tensile strength 

at the invert, while only the minimum principal effective 

stress 𝜎′3 is smaller than the tensile strength at the crown. 

As a result, the potential tension failure index 𝐼𝑡 increases 

toward the invert and the crown, and its value is equal to 

 

Fig. 8 Final steady-state spatial distributions of (a) factor of safety against shear failure, (b) potential shear failure index, (c) 

factor of safety against tension failure, and (d) potential tension failure index around the tunnel (The units of the horizontal 

and vertical coordinate axes are m as shown in Fig. 6.) 

Table 4 Local shear and tension failure variables on the tunnel surface 

Point (location)* Coordinates 𝐹𝑠 𝐹𝑡 𝐼𝑠 𝐼𝑡 𝐼𝑓 

A (uppermost part of crown) 𝑥 = 0.00 m, 𝑧 = 36.70 m 0.13 0.40 0 1 −1 

B (lower part of sidewall) 𝑥 = 5.24 m, 𝑧 = 30.45 m 0.82 1.33 1 0 1 

C (lowermost part of invert) 𝑥 = 0.00 m, 𝑧 = 28.26 m −0.62 −0.23 0 2 −2 

*The three points A, B, and C are marked in Fig. 8 
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two at the invert and unity at the crown, respectively, as 

shown in Fig. 8(d). These indicate that the tension failure 

may be more severe at the invert than at the crown (Table 

4). As a result, the potential tension failure zone, in which 

the potential tension failure index 𝐼𝑡 is equal to two, is 

developed at the invert. On the other hand, the potential 

tension failure index 𝐼𝑡  is equal to zero at the sidewall 

indicating that the tension failure is not likely to occur 

there. It should also be recognized that the potential tension 

failure zone delineated in Fig. 8(d) does not overlap 

spatially with the potential shear failure zone delineated in 

Fig. 8(b). However, the unstable zone with respect to the 

tension failure illustrated in Fig. 8(c) overlaps spatially with 

the unstable zone with respect to the shear failure illustrated 

in Fig. 8(a). These strongly suggest that shear and tension 

failure potential and stability of the variably saturated 

geologic medium associated with the tunnel can be better 

analyzed by using the five local shear and tension failure 

variables as a set than by using the conventional factors of 

safety against shear and tension failures only. 
 

 

5. Conclusions 
 

A set of relatively simple five local shear and tension 

failure variables was presented to analyze failure potential 

and stability of variably saturated geologic media. They are 

the factor of safety against shear failure 𝐹𝑠, the factor of 

safety against tension failure 𝐹𝑡, the potential shear failure 

index 𝐼𝑠 , the potential tension failure index 𝐼𝑡 , and the 

potential (shear and tension) failure index 𝐼𝑓. The factor of 

safety against shear failure 𝐹𝑠 was formulated using the 

geometrical relationship between the Mohr circle and the 

Mohr-Coulomb failure criterion (effective cohesion and 

effective angle of internal friction). The factor of safety 

against tension failure 𝐹𝑡  was formulated using the 

geometrical relationship between the Mohr circle and the 

tension cutoff (tensile strength). The three potential shear 

and tension failure indices 𝐼𝑠 , 𝐼𝑡 , and 𝐼𝑓  were then 

determined considering the factors of safety against shear 

and tension failures 𝐹𝑠  and 𝐹𝑡  dependently together. 

These five local shear and tension failure variables were 

then implemented into a generalized poroelastic hydro-

mechanical numerical model, which is also capable of 

simulating both unsaturated water flow and rainfall-

infiltration-seepage processes on permeable solid-air 

interfaces such as ground, slope, and tunnel surfaces. 

Finally, fully coupled groundwater flow and land 

deformation in two variably saturated geologic media, 

which are associated with a slope (Case 1) and a tunnel 

(Case 2), respectively, and their failure potential and 

stability were simulated using the resultant hydro-

mechanical numerical model. The numerical simulation 

results of both cases show that shear and tension failure 

potential and stability of variably saturated geologic media 

can be analyzed numerically simply and efficiently and 

even better by using the five local shear and tension failure 

variables as a set than by using the conventional factors of 

safety against shear and tension failures only. Therefore, it 

may be concluded that the five local shear and tension 

failure variables have to be properly utilized together if 

more rigorous predictions of failure potential and stability 

of variably saturated geologic media associated with slopes 

and tunnels are to be obtained. 
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