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1. Introduction 
 

Rock failure is more complex under the external load; it 

is difficult to predict rock failure accurately (Cook 1992, 

Brady 1969). The excavated roadway destroys the 

mechanical balance around the rock mass in the working 

face, resulting in the brittle failure and energy release, and 

rock bursts are prone to happen (Konicek and Waclawik 

2018). Rockburst may cause the support equipment 

damage, casualties, collapse of the roadway, it affects 

normal mine safety seriously. Therefore, the prediction of 

rock failure is significant. During the rock rupture process, 

the shape changes, cracks occur, acoustic emission occurs, 

and even temperature and conductivity change. These are 

all precursors to rock failure. How to use this precursor 

information to conduct rock failure predicting has become a 

hot and difficult point in this field. 

The phenomenon that rocks release elastic waves during 

the process of destruction is called acoustic emission. 

Acoustic emission is an important precursor for predicting 

rockburst, which is valued by many researchers (Wang et al. 

2018, 2013, Zhang et al. 2018). Many experts have made 

great work in rock fracture and prediction (Frid 2000, 2001, 

Goufo 2018, Vacek 2008, Wei et al. 2017, Zhao et al. 

2008). In the failure process of brittle materials, acoustic 

emission (AE) monitoring technology is widely applied 

because of its real-time and dynamic monitoring of the 

generation and development of internal cracks (Watanabe 

2001, Lockner 1993). Zhang (2018) used acoustic emission  

                                           

Corresponding author, Professor 

E-mail: tswcl@126.com 

 

 

technology for monitoring, which has achieved the role of 

comprehensive monitoring on the spot. Wang (2018) found 

the relative quiet period of acoustic emission parameters, 

and used it as the precursor information of rock failure. 

Carpinteri et al. (2006) found the accelerated release of AE 

energy before the material was damaged. Stanchits et al. 

(2006) studied the effect of volume strain on AE velocity 

and found predicting information based on velocity. 

Wasantha et al. (2014) studied the energy release of dry 

sandstone under uniaxial compression using acoustic 

emission techniques. They found that there was a large 

amount of energy dissipated before the sample was 

eventually destroyed. Carpinteri et al. (2010, 2013, 2016) A 

bending test was performed and the results showed that the 

AE parameters would vary with product damage. 

The simple use of AE signals could not provide a good 

predicting of rockburst, and other factors such as noise can 

seriously affect the accuracy of the calculation. The AE 

signal must be converted to establish a rockburst predicting 

model to achieve the purpose of predicting. Therefore, 

many researchers have conducted research in this direction. 

Zhang et al. (1991) proposed the neural network methods, 

which could not only simulate the elastic behavior of 

materials, but also simulate elastoplasticity and plastic 

deformation to destroy materials. Zhu et al. (2008) 

established an improved support vector machine algorithm 

for rockburst prediction using many parameters such as 

maximum tangential stress, rock uniaxial compression, 

tensile strength and elastic energy index. Wang et al. (2015) 

established a multi-index model to predict rockburst, based 

on fuzzy matter-element theory, information entropy theory 

and closeness rules. Kang et al. (2017) proposed a novel 

fractional power model for wavelet packet transform 

analysis, which is used to decompose, filter and reconstruct 
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AE signals, which improves the accuracy of positioning. 

Wang et al. (2013) used the Burgers model to study the 

position of the acoustic emission source in the granite 

sample under the uniaxial compression. The results show 

that the Burgers model can predict the rock failure mode 

under uniaxial loading conditions. However, these methods 

need be improved for the better results. Such as the neural 

network has the disadvantage of slow convergence rate; the 

Projection the selection of kernel function and parameters 

of V-SVR algorithm has certain randomness and has a great 

influence on the result; the fuzzy matter–element model 

method needs to give different weight to each index. The 

results used those theories are quite different, and they do 

not make different grades of predicting based on the degree 

of damage. 

Bayesian method could be used to analyze the 

multivariate and quantificational problem (Agletdinov et al. 

2016, Li et al. 2017, Wang et al. 2018) introduced a new 

Bayesian multi-index model to predict and evaluate rock 

bursts, which was observed to predict rock bursts more 

effectively than the current methods. Therefore, we carried 

out the AE experiment. Various precursory information of 

rock failure was analyzed, a comprehensive discriminant 

model was established based on Bayesian method to realize 

multi-parameter predicting. In addition, a deterioration 

model was built to analyze the degree of rock damage. A 

predicting grade classifier was established ultimately; it 

proposes a new method for the graded predicting rock 

failure in the field. 

 

 

2. Experimental materials and methods 
 

2.1 Experimental specimen and equipment 
 
Rock samples were got from the roof of Xiezhuang deep 

mine in Shandong Province, China. Rock samples were 

cylindrical cores with diameter of 50 mm and length of 100 

mm. The two end planes of every specimen were parallel 

within an accuracy of ± 0.05 mm, and both planes were 

perpendicular to the longitudinal axis with an accuracy of ± 

0.25°. Specimens’ basic physi-mechanical parameters were 

as shown in Table 1. 
These specimens were loaded by a microcomputer-

controlled electrohydraulic servo stiffness compressor 

(GAW-2000, Chaoyang Test Instrument CO., LTD, 

Changchun, China). AE monitoring system equipment 

includes the PCI-2 fully digital AE signal collection and the 

analysis system of Physical Acoustics Company (PAC CO., 

New Jersey, U.S.A.), as shown in Fig. 1(b). 
 

2.2 Experimental methods 
 

Six sensors were placed on the specimens according to 

the Fig. 1(a). Between the sensors and the surface of the 

rock, a proper amount of coupling agent was applied to 

contact fully, and it is assisted by adhesive tape. These 

sensors were arranged at the 20 mm at both ends of the 

specimen in order to reduce the end effect. AE monitoring 

system threshold was set to 45 dB according to the 

laboratory machine and environmental noise, and the  

Table 1 Limestone basic physi-mechanical parameters 

NO. 
Length 
(mm) 

Diameter 
(mm) 

Density  
(g·cm-3) 

*UCS 
(MPa) 

Total ringing 
number 

X1 102.12 51.2 2.85 102.13 37182 

X2 99.42 48.7 2.68 97.7 43122 

X3 98.54 49.52 2.61 48.63 275298 

X4 97.84 48.3 2.64 55.26 42500 

X5 98.02 49.22 2.66 118.15 93710 

X6 101.2 50.5 2.71 124 43938 

X7 99.28 48.64 2.66 124 49463 

X8 98.4 51.6 2.67 97.72 41182 

*The uniaxial compressive strength (UCS) 

 

  
(a) (b) 

Fig. 1 The arrangement of AE sensors and rock 

mechanics testing system 
 

 

sampling frequency was 1 MHz, and the gain of 

preamplifier was set to 40 dB. In addition, strain gauges are 

attached for measuring strain. 

The experiment used the axial displacement loading 

control mode, and the loading rate was 0.005 mm/s. AE 

monitoring system and the loading system were always real 

time synchronized, the former collected the activity of AE 

during the loading, and the latter collected the process of 

mechanical parameters during loading. 
 
 

3. Theoretical basis 
 

3.1 Theoretical basis of Bayesian 
 

Bayesian discriminant analysis is a statistical analysis 

method used to discriminate the type of sample. The basic 

idea is to calculate the prior probability and covariance of 

each classification under the premise of classifying the 

known observation samples, and establish a classification 

discriminant function for classification and discrimination, 

and then perform posterior probability calculation and back 

generation. Verify and determine which type of statistical 

analysis method the new sample belongs to. The main 

processes of modeling and calculation are as follows:  

(1) Prior distribution 

There are n observation samples, which are divided into 

k classifications, G1, G2, … Gk, obey the m-dimensional 

normal population distribution; ni is the number of samples; 

and 𝑋𝑗
(𝑖)

= [(𝑥1, 𝑥2, … 𝑥𝑚)𝑗
(𝑖)

]𝑇is the observation matrix of the 

sample, 𝑋𝑗
(𝑖)

∈ 𝐺𝑖, i=1,2,3, … 𝑘, j=1,2,3, … 𝑛𝑖 . 
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Priori probability: 

𝑝𝑖 =
𝑛𝑖

𝑛1 + 𝑛2+, … , 𝑛𝑘
=

𝑛𝑖

∑ 𝑛𝑖
𝑘
𝑖=1

 (1) 

ni is the number of samples classified in the i-th 

category. 

(2) Sample mean and covariance 

Since Gi obeys the m-dimensional normal population 

distribution, the overall distribution characteristics of the i-

th classification can be estimated by the sample mean and 

the sample covariance. 

𝜇𝑋(𝑖) =
1

𝑛𝑖
∑ 𝑋𝑗

(𝑖)

𝑛𝑖

𝑗=1

 (2) 

𝑆𝑖
2 =

1

𝑛𝑖 − 1
∑(𝑋𝑗

(𝑖) − �̄�(𝑖))(𝑋𝑗
(𝑖) − �̄�(𝑖))𝑇

𝑛𝑖

𝑗=1

 (3) 

∑ =
1

∑ (𝑛𝑖 − 1)𝑘
𝑖=1

∑(𝑛𝑖 − 1)𝑆𝑖
2

𝑘

𝑖=1

 (4) 

where Si
2 is the variance matrix of the samples of the i-th 

group; Σ is the covariance matrix of the samples. 

(3) Establish a discriminant function 

𝜔𝑖(𝑋) = 𝜇𝑖
𝑇𝛴−1𝑋 −

1

2
𝜇𝑖

𝑇𝛴−1𝜇𝑖 + 𝑙𝑛 𝑝𝑖 (5) 

pi is the prior probability of Gi; μi is the mean matrix of 

the i-th sample; and Σ is the population covariance matrix 

of the sample. 𝑋 = (𝑥1, 𝑥2, … 𝑥𝑚)𝑇 is the observed value 

of the sample, i=1,2,3, … 𝑘.  

The discriminating rule is: For X, if 𝜔𝑖(𝑋) =
𝑚𝑎𝑥
1≤𝑗≤𝑘

𝜔𝑗(𝑋), then 𝑋 ∈ 𝐺𝑖. 

(4) Posterior probability and back verification 

The generalized squared distance function of sample X 

to the i-th group is defined as 𝑑𝑗
2(𝑋): 

𝑑𝑗
2(𝑋) = (𝑋 − 𝜇𝑗)𝑇𝛴−1(𝑋 − 𝜇𝑗) − 2 𝑙𝑛 𝑝𝑗 

Then X is to the posterior probability of the i-th group: 

𝑃(𝐺𝑗|𝑋) =
𝑒𝑥𝑝[ −

1
2

𝑑𝑗
2(𝑋)]

∑ 𝑒𝑥𝑝[ −
1
2

𝑑𝑖
2(𝑋)]𝑘

𝑖=1

 (6) 

 

3.2 Discriminant and parameters of Bayesian 
 

Bayesian discriminant is to calculate the prior 

probability and covariance of each classification based on 

the assumption of the specimens’ classification, and the 

established the classification and discriminant function was 

classified. Bayesian discriminant can determine specimens 

belong to own classification. The parameters should be 

selected for the final more accurately prediction results. 

They are as follows: 

(1) Damage stress threshold σd 

The process of rock failure was accompanied by the 

closure, initiation, propagation and interaction of cracks. 

The mechanical properties of rock were related to the 

development of microcracks closely (Martin 1993, 

Eberhardt 1998). When the stress was over σd, the increased 

stress caused the cracks interpenetrate and form a 

macroscopic failure. Therefore, σd was scheduled as one of 

the discriminant parameters. 

(2) Elastic energy Wet 

Rock failure was a process of energy dissipation. It was 

sudden and violent release of elastic strain energy in rock 

(Li, 2018). Cook et al. (1966) proposed the rock burst 

energy index based on the theory of conservation of energy 

and answered questions about the source of rock burst. The 

stored elastic energy in the rock was closely related to the 

degree of the damage.  The proposed elastic energy should 

be used as an index to predict rock burst. Therefore, the 

elastic energy Wet was selected as one of the discriminant 

parameters (Wang and Park 2001). 

(3) Damage value D 

Damage theory can describe the nonlinear dynamic 

process of rock fracture dynamically (Sato et al. 1986). 

Rock failure is actually the expansion of damage. The 

defined damage by AE parameters can indirectly represent 

the internal defects of rocks. The way of the damage value 

defined by AE parameters reference (Geng et al. 2017). 

(4) AE impact parameters 

The characteristics of rock failure could be expressed by 

AE impact parameters better than AE event. Therefore, the 

impact parameters were used to analyze the rock failure 

process. The model parameters, including in the Damage 

stress threshold σd, Elastic energy Wet, Damage value D, AE 

impact, were proposed to describe the internal damage and 

external characterization of rock fracture, it is more 

objective and accurate. 

 

3.3 Deterioration model and predicting classification 
 

Quantifying the degree of damage is the precondition 

for predicting classification. In this study, rock deterioration 

model L was constructed by the ratio of the peak stress to 

the predicting stress and breaking time. Making the two 

parameters into a unified scale, the normalization process 

was performed. The size of the numerical values was 

constant relative distance. For the specimen value range 

[xmin, xmax], the linear normalized function expression is: 

𝑦 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 (7) 

where x, y are the converted values. 

For stress σ, the range is [0, σc] and σc is the peak stress. 

The normalized expression as follows: 

𝜎 =
𝑥

𝜎𝑐

 (8) 

In order to reveal the degree of rock damage, the greater 

the σd, the more serious the rock is damaged, where x=σd. 

For time T, the range is [0, Tc] and Tc is the time of rock 

fracture. The normalized expression as follows: 

𝑇 =
𝑥

𝑇𝑐

 (9) 

To indicate the length of the failure time, the x took the 
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time interval between the predicting time and the time of 

failure, 𝑥 = 𝑇𝑐 − 𝑇𝑑. Because the degree of rock damage is 

positively related to Eq. (8) and negatively related to Eq. 

(9), the deterioration model was defined as follows: 

𝐿 =
𝜎

𝑇
=

𝜎𝑑𝑇𝑐

𝜎𝐶(𝑇𝑐 − 𝑇𝑑)
 (10) 

σd is the crack damage threshold, σc is the peak stress, 

𝑇𝑑 is predicting point, and 𝑇𝑐 is the time of rock failure. 

L is a dimensionless value, the greater the value, the 

more serious the rock damage, the closer to the peak stress, 

and the shorter the break time. 

The 
𝜎𝑑

𝜎𝑐
 ratio is used to indicate the predicting grades 

based on the L. The yield point was found generally about 

75 percent the peak stress for brittle rocks. Therefore, the 75 

- 80 percent peak stress can be defined as a third grade 

warning, and 80 - 85 percent is defined as a second grade 

warning, and 85 - 90 percent is defined as a first grade 

warning. Bayesian method is based on normal distribution. 
 

 

4. Results and analysis  
 

The curves of the stress, AE impact rate, damage value 

and time are shown in Fig. 2. X1, X2 are as examples. 

 

4.1 The cracks fracture damage threshold 
 

The impact rate corresponded to the activity of stress 

curve as shown in Fig. 2. When the stress was up to the 

peak stress, the amplitude and frequency of impact rate 

were much larger; there were several suddenly increase 

points. Cracks were up to the stage of mutual expansion, 

and cracks were expanding rapidly, rock was failure soon. 

Therefore, stress thresholds could be determined by AE 

activity characteristics at various stages of cracks 

propagation. X1 and X2 showed significant differences after 

stress peak. For the X1, stress reached at the peak value, 

then the curve was vertical descending approximately, AE 

activity was disappeared, the damage value was the 

maximum, which indicated that the X1 was completely 

failure and extremely brittleness. For the X2, AE activity  

 

Table 2 The cracks damage threshold 

NO. X1 X2 X3 X4 X5 X6 X7 X8 

σd/(MPa) 89.64 80.72 38.37 42.26 99.49 107.3 103.7 57.02 
𝜎𝑑

𝜎𝑐
 (%) 87.78 82.62 78.9 76.48 84.21 86.53 86.53 86.54 

D 0.79 0.60 0.48 0.56 0.65 0.72 0.85 0.72 

R 3258 1230 2053 3258 1480 1280 1270 5702 

 

 

still existed after the stress reached the peak stress, and the 

damage curve continued to increase, which indicated that 

the X2 was not failure completely, the X2 still had certain 

carrying capacity. 

There were several saltation points in the cracks 

propagation stage; we defined the stress corresponding to 

the last saltation point as crack fracture damage threshold. 

Before this saltation point, rocks did not failure in large 

scale. At the saltation point, the damage value raised 

sharply, indicating that there was a large crack in the rock 

and the fracture surface was coalescent. Specimens’ cracks 

damage threshold σd was defined, as shown in Table 2. 

 

4.2 The evolution pattern of damage value D 
The damage factor D of the coal sample obeys the 

statistical distribution, and its formula is as follows: 

𝜑(𝐹) =
𝑚

𝐹0
(

𝐹

𝐹0
)𝑚−1𝑒𝑥𝑝 [−(

𝐹

𝐹0
)𝑚] 

The relationship between the damage factor D and the 

probability density of micro-destruction is: 

𝑑𝐷

𝑑𝐹
= 𝜑(𝐹) 

Therefore: 

𝐷 = ∫ 𝜑(𝐹)𝑑𝐹 = 1 − 𝑒𝑥𝑝[−(
𝐹

𝐹0
)𝑚]

𝐹

0

 

When the sample is all destruction, the total acoustic 

emission is Ωm. The cumulative acoustic emission during 

the destruction Ω can be expressed as: 

𝛺 = 𝛺𝑚 ∫ 𝜑(𝑥)𝑑𝑥
𝐹

0

 

  
(a) (b) 

Fig. 2 Relationship between street-time curve, AE impact rate, damage value for X1 X2 
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When 𝜑(𝑥) =  𝜑(𝐹) 

𝐷 =
Ω

Ω𝑚

= 1 − 𝑒𝑥𝑝[− (
𝐹

𝐹0

)
𝑚

] 

In this study, the damage was defined by the AE count. 

In the Fig. 2, the tendency of the damage curve had a good 

consistency with the AE impact rate. It showed the 

rationality of using AE parameters to define the rock 

damage value, and the damage value could show the 

damage evolution of the cracks. In addition, X2 damage 

curve was saltation increasing phenomenon, and the 

periodicity of curve was obvious, this might be caused by 

more original cracks in the X2 than X1, these cracks were 

closed and the ringing counts suddenly increase. 

This paper focused on the changes of damage value at 

the critical failure. The curve raised sharply (B point on the 

Fig.2 (a)), the tangent increased closing to positive infinity. 

This indicated the cracks were rapidly expanding and cut-

through. The sample was going to fail. Therefore, the 

damage value at the sharp point was defined as the damage 

predicting value. The damage warning values D of the 

specimens were shown in Table 2. 
 

4.3 The evolution pattern of AE impact rate R 
 

The AE impact rate R is the number of impacts per unit 

time. This parameter is calculated by the supporting 

software of the acoustic emission experimental equipment. 

AE impact rate could describe the development, expansion 

and penetration of cracks in the rock specimens. As shown 

in the Fig. 2, AE characteristics could be divided into three 

stages, as I, II, and III. Which were corresponding to the 

stage of deformation and destruction of the rock. In I, the 

micro fissure was closed, AE activity was obvious, and the 

impact rate increased obviously with the loading. AE 

impact rate of X2 specimen was obvious during I, which 

was due to the more internal original joints. However, the 

overall value of X1 was larger than X2, because X1 was 

better integrity. More energy was stored in the loading 

process. In II, AE was relatively quiet, and the impact rate 

was in lower level. In III, when the loading status of rock 

sample was up to the plastic deformation stage, AE activity 

was active and the impact rate increased obviously. As 

shown in the Fig.2, there was a period of AE disappearing 

before rock failure for X2, AE appeared the relatively quiet 

period. The specimen released a large amount of energy, 

and the impact rate of AE increased suddenly approach the 

failure, these phenomena could be as precursory 

information of rock failure. As show in Fig.2, when the 

impact rate of AE was up to the maximum, the stress was 

the peak. The maximum impact rate of AE could be defined 

as the predicting value of the rock failure. The maximum 

impact rate values of specimens were as follows, as shown 

in Table 2. 
 

4.4 Deterioration value and multi-parameter 
predicting model 

 

When the other conditions are the same, the more the 

rock receives the load, the easier it is to destroy. For rocks 

with low brittleness, the yield limit is generally about 75%  

Table 3 Specimens predicting grade 

NO. σd Wet R D 
𝜎𝑟

𝜎𝑐

 
Predicting 

grades 

3 
4 

38.37 
42.26 

15.53 
17.66 

2053 
3258 

0.48 
0.56 

78.9% 
76.48% 

Third 

2 80.72 14.61 1230 0.60 82.62% 

Second 5 99.49 18.31 1480 0.65 84.21% 

8 57.02 6.72 1940 0.72 84.19% 

1 89.64 17.66 3258 0.79 87.78% 

First 6 107.3 19.75 1280 0.72 86.53% 

7 103.2 18.62 1270 0.85 86 % 

 

Table 4 Samples degradation value L 

NO. 
𝜎𝑟

𝜎𝑐

 Predicting grade L 

1 
75%-80% Third 

0.91 

4 0.77 

3 

80%-85% Second 

1.12 

5 1.04 

8 14.29 

2 

85%-90% First 

20 

6 16.67 

7 25 

 

Table 5 Average value of each grade 

Predicting 
grade 

σd Wet R D 

Third 40.32 16.60 2655.5 0.52 

Second 79.08 13.20 1550 0.66 

First 100.05 18.68 1936 0.79 

 

 

of the peak load. Dividing early warning into different 

categories is the basis for grading early warning.  

Therefore, the value of sigma_d / sigma_c is 75%-80% can 

be set as a three-level warning, 80%-85% as a second-level 

warning, and 85%-90% as a first-level warning. Each 

predicting value was obtained, and the elastic energy stored 

at the moment of damage threshold was calculated. The 

results of the predicting grade for each specimen were as 

follows according to 
𝜎𝑟

𝜎𝑐
 , as shown in Table 3. 

Compared with the deterioration value L 

As shown in Table 4, the L value corresponded to the 

predicting grade. L value increased with the increase of 

predicting grade. It showed that the classification was 

reasonable. The L value differed between each grade 

greatly, the difference of L value was small in the same 

grade. However, X8 degradation value was 14.29, which 

was very different from those second rocks. It might be that 

the internal heterogeneity of X8 was very large, and there 

was weak structure surface. When the stress was up to the 

yield limit, the microcracks just extended through to the 

weak area, which was the cause of the big L value. It 

showed that the degradation model could be adaptable to 

the difference between the rocks, and made it better to 

classify the rocks.  
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d(x1), Wet(x2), R(x3), D(x4) were as discriminant factors, 

the predicting grade was divided into the third warning 

grade (G1); the second warning grade (G2); the first warning 

grade (G3). That was 𝐺 = (𝑋1, 𝑋2, 𝑋3, 𝑋4)𝑇 , the main 

calculation process was as follows: 

Calculated by Eq. (1): 

𝑝1 =
1

4
, 𝑝2 =

3

8
, 𝑝3 =

3

8
 

Calculated by Eq. (2), specimens mean and covariance: 

𝑢1 = (40.32  16.60  2655.5  0.52)𝑇 

𝑢2 = (79.08  13.20  1550.0  0.66)𝑇 

𝑢3 = (100.05  18.68  1936.0  0.79)𝑇 

It could be clearly shown from the specimens mean that 

the higher the level of predicting, the greater the damage 

value. In addition, the elastic energy also increased with the 

rise of the warning grade, it indicated that the internal 

energy accumulation was the source of rock failure. 

The mean vector matrix of the sample is as follows: 

�̅� = [𝑢1, 𝑢2, 𝑢3] 

�̅� = [

40.32 79.08 100.05
16.60 13.21 18.68

2655.5 1550 1936
0.52 0.66 0.79

] 

Calculated by Eq. (3), the specimen variance matrix is 

obtained according to the foregoing formula: 

𝑆3
2 = [

7.5661 4.1429 2343.725 0.2556
4.1429 2.2685 1283.325 0.00852

2343.725 1283.325 726012 48.2
0.1556 0.0852 48.2 0.0032

] 

𝑆2
2 [

452.95 124.78 −5278.45 0.2556
124.78 35.045 −1668.05 −0.2622

−5278.45 −1668.05 129700 21.65
−0.813 −0.262 21.65 0.00365

] 

𝑆1
2 [

85.427 9.093 −10308 −0.159
9.093 1.09445 −1005.2 −0.039

−10308 −1005.2 1310788 2.98
−0.159 −0.039 2.98 0.00425

] 

Calculated by Eq. (4), the specimen covariance matrix 

and its inverse matrix are: 

∑ = [

216.85 54.38 −5765.82 −0.36
54.38 14.91 −812.64 −0.1

−5765.82 −812.64 721397.7 19.49
−0.36 −0.10 19.49 0.0038

] 

∑−1 = [

0.207 −0.74 0.001 −5.72
−0.74 2.75 −0.0034 22.57
0.001 −0.0035 0 −0.034
−5.72 22.57 −0.034 515.132

] 

Calculated by Eq. (5), Discriminant formulas are: 

𝜔1(𝑋1, 𝑋2, 𝑋3, 𝑋4) = 

−4.36𝑥1 + 18.18𝑥2 − 0.019𝑥3 + 321.14𝑥4 − 122.26 

𝜔2(𝑋1, 𝑋2, 𝑋3, 𝑋4) = 

4.33𝑥1 − 12.96𝑥2 + 0.019𝑥3 + 132.85𝑥4 − 144.63 

𝜔3(𝑋1, 𝑋2, 𝑋3, 𝑋4) = 

4.24𝑥1 − 11.92𝑥2+0.018𝑥3 + 190.15𝑥4-194.49 

Table 6 Predicting results 

NO. 
Discriminants Classified 

results 
Actual 
grade W3 W2 W1 

1 107.92 -76.98 -88.69 third third 

2 -0.23 181.49 183.94 first first 

3 -39.28 118.62 109.85 second second 

4 106.79 -54.22 -60.69 third third 

5 -42.54 163.34 159.33 second second 

6 -24.13 183.99 184.99 first first 

7 15.14 197.96 205.62 first first 

8 -54.34 120.90 139 second first 

 

 

The predicting results are shown in the following table. 

The discriminant values of W1, W2 and W3 were quite 

different, which indicated that Bayesian theory was good 

applicability in the predicting of rock failure. X8 was 

misjudged, this exactly corresponded to the phenomenon 

that the L value of X8 was larger in the second level, and the 

cause had been analyzed as shown in Table 5. 
 

 

5. Discussion 
 

In fact, the conventional AE parameters could be used to 

predict rock failure, such as AE energy count (Ganne et al. 

2007), AE ring count (Yang et al. 2011; Wang et al. 2012) 

and so on. This predicting method ignored the based single 

on the changes of AE parameters. In addition, these 

parameters were related to the threshold, and there were 

different values in different threshold, the data could not be 

analyzed quantitatively. The method proposed to combine 

the AE parameters and other characterization parameters. In 

energy research, the strain energy storage index method was 

proposed by Wang and Park (2001), which only considered 

the ability of storage and release, but did not consider the 

internal damage. In this study, Bayesian discriminant 

method is used to consider the internal and external causes 

of rock failure, and the quantitative analysis of each 

parameter, the discriminant results are more reasonable and 

accurate. 

Based on the breaking time and the damage stress 

threshold, this paper constructed the degradation model and 

quantified the degree of rock damage. In the study of multi 

parameter predicting (Carpinteri et al. 2006, Sun et al. 

2017), there was no quantitative consideration of all factors 

in the comprehensive judgment, and the analysis of the 

degree of predicting was not carried out. In the 

classification of rock by the L value, the L value at the same 

level might be differences, which was caused by the 

existence of weak structure. 

There were many criteria in rockburst predictability 

(Eberhart and Kennedy 2002, Friedman and Tukey 1974, 

Jian et al. 2014), which only predicted the intensity grade of 

rock burst, but ignored the time factor. Time was an 

essential factor in the study of rock fracture and predicting. 

The deterioration model L took into account the breaking 

time, it could predict the time of rock failure according to  
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Fig. 3 Predicting grade classifier 

 

 

the ratio of the damage stress threshold to the peak stress, 

which provided a new idea for the quantification of rock 

predicting. 

On the basis of the above research, the idea of 

establishing a predicting grade classifier (as shown in Fig.3) 

was proposed. The sensors received the rock compression 

and AE data, and inputted the physi-mechanical parameters 

of rock to the computer. The data were analyzed by the 

method of mathematical statistics and analysis. The 

variables were extracted to analyze the variation 

characteristics of the parameters when rock was instability, 

the elastic energy, damage value and so on were used as 

input signals. The predicting grade was displayed on the 

monitor based on the Bayes discriminant calculation 

program.  

It is an attempt to analyze precursor information through 

Bayesian discriminant method, and some problems are still 

waiting for further discussion. 

(1) The selection of discriminant factors, the rock will 

produce a lot of physi-chemical precursor information 

before rock failure. We only selected four representative 

factors, there are more discriminant factors need further 

research.  

(2) The sensitivity analysis of each discriminant factor, 

the analysis about which factor is most sensitive among the 

several precursors can lead to predict for different periods. 

The sensitivity analysis of each parameter needs new 

methods. 

(3) The finiteness of specimens, the individual 

differences of specimens and the influence of sampling 

geology on rock failure. The physi-mechanical properties 

vary widely even if the same kind of rock. However, we 

provided an important method for predicting rock failure. 

 

 

6. Conclusions 
 

In this paper, AE parameters and the characteristics were 

analyzed, and the predicting point of rock failure was 

obtained. The deterioration model L was established, and 

the data integration was analyzed by the Bayesian 

discriminant method. The main conclusions are as follows: 

• Under the loading conditions, AE impact rate exactly 

coincided with the change of the damage curve, and both of 

them correspond to the three phases of stress. The impact 

rate rose abruptly, and it was the same as the damage curve. 

The tangent at the growth point tends to positive infinity. 

These phenomena can be used as precursory information of 

rock failure. 

• The degradation model L was established quantified 

the damage degree, it provided the precondition for 

classification predicting. The L value differed greatly 

between each grade, the difference of L value was small at 

the same level. The reasons for the deviation of the L value 

might be caused by the inhomogeneity and the weak 

structure. 

• A multi-parameter discriminant model was established 

using the Bayesian discriminant method. The cracks 

damage threshold, AE impact rate, elastic energy and 

damage value were taken as input values, and it could 

predict rock failure classified. 
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