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1. Introduction 
 

A large volume of seismic damage data shows that site 

conditions play a very important role in the characteristic of 

the ground motion (Rathje et al. 2000, Shiuly et al. 2015, 

Tonyali et al. 2019). In the 1906 San Francisco earthquake 

in the United States, buildings on sedimentary layers near 

the coastline or on the marsh fills suffered more damage 

than similar houses on hard or thin soil layers (Yasuhara et 

al. 1982). The peak acceleration recorded on the soft clay 

field in the 1985 Mechoacan earthquake in Mexico, located 

in the lake area of Mexico City, was four times the peak 

acceleration of the hard-field Tacubaya site. Caused severe 

damage to high-rise and 5-15 story medium-rise buildings 

in the lake area of Mexico City (Campillo et al. 1989). A lot 

of earthquakes also demonstrated obvious effects that 

varied by site condition, such as the 1989 Loma Prieta  
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earthquake in the United States, the 2008 Wenchuan 

earthquake in China, the 2009 L'Aquila earthquake and the 

2012 Emilia earthquakes in Italy, the 2011 Tohuku-oki 

earthquake in Japan, and the 2016 Gyeongju earthquakes in 

Korea (Borcherdt et al. 1992, Bergamaschi et al. 2011, Wu 

et al. 2012, Kim et al. 2013, Goda et al. 2015, Minghini et 

al. 2016, Kim et al. 2016). 

Because the mechanical properties of a soil layer vary 

less in the transverse direction than in depth, the ground 

motion analysis is commonly simplified into one-

dimensional soil layer to consider the change of the soil and 

rock mechanical properties along the depth. The effects of 

local site conditions on ground motion (Roy and Sahu 

2012) can be analyzed by using two categories of methods. 

One is quantitative analysis and the other is qualitative 

estimation. 

The quantitative analysis method establishes the 

computational mechanical model of soil layers to calculate 

the seismic response of soil layers caused by the waves 

propagating from the underlying bedrocks. Idriss and Seed 

(1968) proposed a one-dimensional equivalent linearization 

method in 1968, which is the most common and mature 

method for nonlinear seismic response in soil layers. 

Combined with the basic principle of equivalent 

linearization, the wave method or vibration method can be 

used to calculate the seismic response of soil layers. Shake 

(Schnabel et al. 1972) and Shake 91 (Idriss et al. 1992) 

calculated the seismic response of soil layers in the 
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Abstract.  The mode perturbation method (MPM) is suitable and efficient for solving the eigenvalue problem of a nonuniform 

soil deposit whose property varies with depth. However, results of the MPM do not always converge to the exact solution, when 

the variation of soil deposit property is discontinuous. This discontinuity is typical because soil is usually made up of 

sedimentary layers of different geologic materials. Based on the energy integral of the variational principle, a new mode 

perturbation method, the energy-based mode perturbation method (EMPM), is proposed to address the convergence of the 

perturbation solution on the natural frequencies and the corresponding mode shapes and is able to find solution whether the soil 

properties are continuous or not. First, the variational principle is used to transform the variable coefficient differential equation 

into an equivalent energy integral equation. Then, the natural mode shapes of the uniform shear beam with same height and 

boundary conditions are used as Ritz function. The EMPM transforms the energy integral equation into a set of nonlinear 

algebraic equations which significantly simplifies the eigenvalue solution of the soil layer with variable properties. Finally, the 

accuracy and convergence of this new method are illustrated with two case study examples. Numerical results show that the 

EMPM is more accurate and convergent than the MPM. As for the mode shapes of the uniform shear beam included in the 

EMPM, the additional 8 modes of vibration are sufficient in engineering applications. 
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frequency domain based on wave theory. DEEPSOIL 

(Hashash et al. 2001, Hashash et al. 2017) used the 

vibration method to calculate the seismic response of soil 

layers in the frequency domain or time domain. Chen et al. 

(2017) applied the equivalent linear method to analyze the 

seismic responses of loess soil layers in Lanzhou region, 

China. Käser et al. (2008) applied finite element method to 

analyze seismic wave propagation. 
The quantitative analysis method can obtain ground 

motion parameters such as acceleration time history and 
response spectrum at any depth of the soil layer, which 
provides scientific ground motion parameters for a seismic 
design of large-scale projects. However, for general 
engineering structures, a qualitative method is often used to 
estimate ground motion parameters by site class (FEMA 
356. 2000). The soil site is usually classified by the shear 
wave velocity of the soils (Thokchom et al. 2017) or the 
fundamental frequency. The fundamental frequency has an 
important influence on the seismic response of the upper 
structure (Ruiz et al. 2009) and is important to recognize 
the characteristics of soil deposit (Mohamed Adel et al. 
2008, Liang and Hou 2016). 

Idriss and Seed (1968) assumed that soil has a uniform 
density, and the shear modulus of the soil increases as a 
power function of depth. The Bessel function is used to 
obtain the analytical solution of the natural frequencies of 
the soil layer. Xiong et al. (1986) used the transfer matrix 
approach to obtain the analytical solution of the natural 
frequency of the layered soil deposit. Luan et al. (2003) 
used the layered shear beam method to calculate the 
dynamic characteristics of the layered soil deposit. The 
analytical solution is very attractive for finding the 
expression of the function and for investigating the 
characteristics of the problem. However, the cases where 
the analytical solution can be obtained are very limited. The 
characteristic equation for a soil deposit whose property 
varies arbitrarily with depth, which is a differential equation 
with variable parameters, is difficult to obtain using an 
analytical solution. Therefore, a numerical solution or a 
semi-analytical solution is adopted. Even though the natural 
frequencies of the arbitrary soil deposit can be estimated by 
the finite element method (Dobry et al. 1976, Chopra et al. 
1995), much research has focused on the semi-analytic 
solution, which is not only because it finds the function 
expression of the dynamic characteristics, but also it is 
convenient for studying the characteristics of the solution. 
Xiong et al. (1986) proposed a direction method to solve 
the approximation of natural frequencies. Dobry et al. 
(1976) proposed a simplified calculation method for the 
natural vibration period of soil layer based on the basic 
principle of Rayleigh method. The simplified calculation 
method meets the engineering accuracy requirement for soil 
layers with relatively uniform soil properties. However, the 
calculation accuracy is low when the soil properties vary 
greatly with depth. The Ritz method, formed by the direct 
variation method of the Hamilton principle, obtains a 
solution by transforming the eigenvalue differential 
equation into a matrix eigenvalue which can be found in the 
textbooks of Dynamics of Structures (Chopra et al. 1995). 
Lou (1997) proposed a modal perturbation method (MPM) 
for the dynamic characteristics of soil layers with variable 
properties based on the differential equations of free 
vibration of shear beams and the basic principles of 

perturbation method. MPM is essentially a Ritz method, and 
the main advantage of MPM is that it can transform the 
differential characteristic equation into a set of nonlinear 
algebraic equations and simplify the solution process. MPM 
is highly accurate when the properties of the soil layer and 
beams change continuously. Lou et al. (2005) applied MPM 
to solve the eigenvalues of the prismatic Timoshenko beam. 
Pan et al. (2011) established a modified modal perturbation 
method for solving the eigenvalues of an arbitrary variable 
cross-section Timoshenko beam. However, when the soil 
properties are discontinuous, the MPM results of the 
eigenvalues do not always converge to the exact solution. 

Based on the energy integral of the variational principle, 

this paper proposes an energy-based mode perturbation 

method for solving the eigenvalues under arbitrary variation 

of soil properties to address the convergence issue of the 

mode perturbation method when the soil properties are 

discontinuous. First, the differential equations related to the 

soil layer’s characteristics are transformed into an energy 

integral equation by using the variational principle. Then, 

the mode shapes of the uniform shear beam are used as the 

Ritz base function, and the integral equation is transformed 

into a set of nonlinear algebraic equations based on the 

modal perturbation principle. Finally, the accuracy and 

convergence of the proposed method is validated with two 

numerical examples and compared with the previous 

methods. 
 

 

2. The energy-based modal perturbation method 
 

2.1 Non-uniform soil layers 
 

Linearly elastic soil overlying rigid bedrock with 

properties that vary with depth is shown in Fig. 1. 

Assuming that the ground surface, rock surface and the 

boundaries between soil layers are horizontal, the equation 

of ground response motion caused by SH-wave propagating 

vertically from the underlying bedrock is 

2

2
( ) ( ) ( ) ( ) ( )g

u u u
y c y G y y u t

t y yt
 

    
    

      

(1) 

in which G(y) is the shear modulus at depth y, ρ(y) is the 

mass density at depth y, c(y) is the viscous damping 

coefficient at depth y, h is the total thickness of deposited 

soil, u(y,t) is the relative displacement at depth y at time t, 

and ( )gu t  is the seismic acceleration of the bedrock 

motion. If the layer is composed of soils that are linearly 

elastic, the solution of Eq. (1) may be obtained by the 

method of separation of variables, letting 

( , ) ( ) ( )u y t y Y t
 (2) 

in which ( )y  and Y(t) are the mode shape and modal 

amplitude. The mode shape can be obtained by the 

characteristic equation 

( )
( ) ( ) [ ( ) ] 0

d d y
y y G y

dy dy


   

 
(3) 

in which   is eigenvalue. When ρ(y) and G(y) are  
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Fig. 1 Soil layer with variable properties 

 

 

constant or some specific function, Eq. (3) can obtain an 

analytical solution. However, it is very difficult to solve Eq. 

(3) for arbitrary ρ(y) and G(y) functions. To obtain the semi-

analytical solution of the Eq. (3), the energy integral 

corresponding to the Eq. (3) can be obtained by the 

variational principle: 

2
2

0 0

1 1
( ) ( ) ( ) ( )

2 2

h h

G y y dy y y dy        
 

(4) 

The minimum value problem of Eq. (4) is equivalent to 

the differential equation of Eq. (3). The total potential
would be the extremum for the jth mode of vibration, that is, 

2
2

0 0

1 1
( ) ( ) ( ) ( )

2 2

extremum

h h

j j j jG y y dy y y dy       



 

 

(5) 

in which 
2

j j   is the jth eigenvalue, j  is the jth 

natural circular frequency, ( )j y  is the jth mode shape. 

 

2.2 Corresponding uniform shear beam 
 

The corresponding uniform shear beam is defined as the 

member that has the same height and boundary conditions 

as the nonuniform soil layers with properties varying with 

depth. It is represented by a constant density ρ0 and shear 

modulus G0. To ensure that the uniform shear beam is a 

good representation of nonuniform soil layers, ρ0 and G0 

can be determined to be the average value of soil layers as 

follows: 

0
0

( ) /
h

y dy h    
(6) 

0
0

( ) /
h

G G y dy h   
(7) 

The characteristic equation of the corresponding 

uniform shear beam can be expressed as 

2

0 0 2

( )
( ) 0

d y
y G

dy


   

 

(8) 

where λ and ϕ(y) respectively denote the eigenvalue and 

mode shape of the uniform shear beam. The general 

solution of Eq. (8) can then be analytically obtained as 

 
2

0 0(2 1) / 2 /j j h G   
 

(9) 

 ( ) cos (2 1) / 2j y j y h  
 

(10) 

 

2.3 The perturbation solution 
 

In the EMPM, the jth eigenvalue and its associated mode 

of vibration for nonuniform soil layers with properties 

varying with depth are related to those of the corresponding 

uniform shear beam by 

j j j   
 

(11) 

1

( ) ( )
n

j k k

k

y y q 



 

(12) 

in which λj and ϕj(y) are the jth eigenvalue and mode shape 

of the uniform shear beam, respectively, Δλj is the 

perturbation of the jth eigenvalue, qk is the generalized 

coordinates for the Ritz functions ϕk(y). 

Substituting Eqs. (11)-(12) into Eq. (5) gives 

2

0
1

2

0
1

1
( ) ( )

2

1
( ) ( )

2

nh

j k k

k

nh

j k k

k

G y y q dy

y y q dy

 

  





 
  

 

 
  

 




 

(13) 

On introducing the symbols Kik and Mik, defined by 

0
( ) ( ) ( )

h

ik i kK G y y y dy     
(14) 

0
( ) ( ) ( )

h

ik i kM y y y dy     
(15) 

Eq. (13) can be rewritten as: 

       
1 1

[ ] [ ]
2 2

T T

j jq K q q M q  
 

(16) 

in which    1 2

T

nq q q q . To minimize the j , 

the first derivative of j  with respect to {q} is set to be 

zero: 

 
0

j

q





 

(17) 

from which 

  [ ] [ ] 0jK M q 
 

(18) 

If all the elements of {q} in Eq. (18) are unknown, Eq. 

(18) is the conventional Rayleigh-Ritz method. For the 

modal perturbation method, it is assumed that the soil layer 

with variable parameters is regarded as a new system 

obtained by modifying the parameters of the uniform shear 

beam. The main mode shape and eigenvalue of the new 

system can be approximately obtained with simplified 

perturbation analysis by using the modal characteristics of 

the original system. That is, qj=1, and Eq. (12) can be 

rewritten as: 
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1,

( ) ( ) ( )
n

j j k k

k k j

y y y q  
 

  
 

(19) 

Substituting Eqs. (11) and (19) into Eq. (18) gives 

     - + + [ ]
j

j j

j

K E M q R


 


 
     

   
(20) 

in which the square matrices K 
  , [E] and the vectors 

 q , {R} are given below: 

0

ik

ik

K k j
K

k j


 

 , 
0

ik

ik

M k j
E

k j


 

 , 

1

k

k

q k j
q

k j


 

 , k kj j kjR K M 
. 

Set 
/

k

k

j j

q k j
x

k j 


 

 
, Eq. (20) can be rearranged as 

     - + [ ]+j j jK M x E x R      
(21) 

in which    1 2 ...
T

nx x x x . Eq. (21) is a nonlinear 

algebraic equation with n unknowns, which can be rewritten 

as 

       ( )j jD x E x R   (22) 

in which   - + [ ]jD K M    . 

Differential Eq. (3), with unknown functions and 

unknown eigenvalue 
j , has been transformed into a set of 

nonlinear algebraic equations in Eq. (22). After {x} is 

solved, the jth eigenvalue and associated mode shape of soil 

layers with variable parameters can be obtained from Eqs. 

(11) and (19). In general, solving the nonlinear algebraic 

equations is easier than solving the differential equation and 

eigen-problem equation. 

Eq. (22) is the same as the MPM from the forms 

perspective. The difference is that the MPM is derived from 

the differential equation, and the proposed method is based 

on the variational principle. Therefore, this method is called 

the energy modal perturbation method (EMPM). Another 

significant difference is the calculation of the coefficient Kik 

in Eq. (14). In the MPM, the coefficients Kik is: 

 
0

- ( ) ( ) ( )
h

ik i k

d
K y G y y dy

dy
  

 
(23) 

Comparing Eq. (14) and Eq. (23), it can be seen that 

when the soil property is a continuous function, Eq. (14) 

and Eq. (23) are the same after using integration by parts 

and boundary conditions. But when there are mutations in 

properties of the layered soil, Eq. (23) causes the matrix [K] 

to become asymmetric because of the boundary conditions 

of the abrupt interface, which often leads to a 

misconvergence in the perturbation solution. From Eq. (14), 

it is known that the potential energy of the soil layer is 

reflected by Kik. It is meaningless to discuss the magnitude 

of energy at point level for any continuous medium system. 

The constant term by the integration by parts in Eq. (23) is 

actually the potential energy of the abrupt boundary. 

Therefore, it is more reasonable to select Kik as obtained by 

the variational principle. 
 

 

3. Solution of nonlinear algebraic equation 
 

For a set of nonlinear algebraic equation, Eq. (22) can 

be solved by the Newton-Raphson iteration method. 

Assume 

           ( )j jf x D x E x R  
 

(24) 

Then the iteration solution of {x} can be obtained by 

       
1

( 1) ( ) ( ) ( )l l l lx x H f x


     
 

(25) 

in which the superscript (l) denotes the lth iteration. The 

matrix [H(l)] is given below: 

( )

( )

( )

1

l

ik j j ik

l n
ik l

ij j ik k

k

D x E k j

H
D E x k j






  


 
 




. 

The initial approximation {x(0)} is set as 

     
1(0)x D R



 

(26) 

The iteration termination judgment can be 

( 1) ( ) ( 1)/l l l

j j jx x x e  
 

(27) 

in which e is the allowable value of the convergence error 

and usually is set to 1.0E-6. 
 

 

4. The algorithm workflow 
 

In order to make the procedure of the algorithm clearer, 

the workflow of the EMPM described above is shown in 

Fig. 2. 
 

 

 

Fig. 2 Flowchart of the EMPM 

0 0, , , ( )j jG y  

( ), ( )y G y

1j 

 Assemble  [ ], [ ], D E R

 Eq. (22) for x

Eq. (11) for  

Eq. (19) for ( )

j

j y





j r

End

1j j 

False

Eq. (14) for ,Eq. (15) for ik ikK M

True
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The algorithm is executed via five steps:  

Step 1: Given ρ(y) and G(y), calculate the parameters ρ0, 

G0 of the corresponding uniform shear beam from Eq. (6) 

and Eq. (7), and obtain the eigenvalue and mode shape λj, 

ϕj(y) from Eq. (9) and Eq. (10). 

Step 2: Calculate Kik from Eq. (14) and Mik from Eq. 

(15), and set j=1. 

Step 3: Assemble the matrices [D], [E] and the vector 

{R}. 

Step 4: Obtain {x} by solve Eq. (22). 

Step 5: Obtain 
j  from Eq. (11) and ( )j y  from (19), 

then set j=j+1, and go back to Step 3 until j=r which r is the 

desirable highest mode. 
 

 

5. Seismic response of soil layer 
 

In linear or equivalent linear seismic response analysis, 

after obtaining the frequency 
j  and its associated mode 

( )j y  of the nonuniform soil layer, the well-known modal 

superposition method can be used to calculate the seismic 

response, that is, the solution of the displacement can be 

expressed as follows 

1

( , ) ( ) ( )
r

j j

j

u y t y Y t



 

(28) 

in which r is the number of mode shapes of the nonuniform 

soil layer. The generalized coordinates Yj(t) can be derived 

from 

2( ) 2 ( ) ( ) ( )j j j j j j j gY t Y t Y t u t      
 

(29) 

where j  is the modal participation factor, 

2

0 0
( ) ( ) / ( ) ( )

h h

j j jy y dy y y dy        
(30) 

In the calculation process of the energy modal 

perturbation method used to calculate the seismic response 

of the soil layer with variable parameters, the calculation 

related to the variable parameters is only ρ0, G0, Mik, Kik. 

These parameters are the results of the integral operation. If 

the analytical integration cannot be obtained, it can be 

carried out by means of numerical integration. There is no 

special requirement for ρ(y) and G(y), which may or may 

not be an analytical function. Such soil layer parameters can 

directly use survey results in engineering applications. 
 

 

6. Verification with numerical results 
 

Theoretically, the method can be applied to free and 
forced vibration analysis of soil layers whose density and 
shear modulus vary arbitrarily along their depths. Because 
the seismic response of the soil layer is a conventional 
modal superposition method, the key step is to obtain highly 
accurate dynamic characteristics. Therefore, the following 
is to mainly investigate the validity and accuracy of the 
frequencies of the EMPM. 
 

6.1 Soil shear modulus power exponent variation with 
depth 

 

Fig. 3 Relative error of the fundamental frequency by 

EMPM 

 

 

Fig. 4 Relative error of the first three frequencies by 

EMPM (p=1/3) 
 

 

For a soil layer with uniform density ρ0, the shear 

modulus varies with depth as given by: 

 ( ) /
p

bG y G y h
 

(31) 

in which Gb is the shear modulus at the depth h and p is a 

constant. For p≤1/2, Idriss and Seed (1968) derived the 

closed-form solutions: 

0*

1/
, ( 1,2,...)

b
n p

n

G

h
n

h 







 
 

(32) 

in which βn is the roots of ( ) 0q nJ   , 
qJ
 is the Bessel 

function of the first kind of order -q. q and θ are constants 

related to p by 

2

2p
  


 

(33) 

1

2

p
q

p





 

(34) 

The EMPM would converge to the exact solutions of 

j  and ( )j y  for soil layers with variable parameters 

when an infinite number of modes ( ) ( 1,2,..., )k y k    

are required in Eq. (19). However, relatively few modes can 

provide sufficiently accurate results in engineering 

applications. Similar to the subspace iteration method  
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Fig. 5 The first three natural mode shapes (p=1/3) 

 

 

Fig. 6 Two layers site 

 

 

Fig. 7 Relative error of the fundamental frequency by 

EMPM 

 

 

(Bathe 1996), to calculate the jth eigenvalue of soil layers 

with variable parameters, the number of modes, n, of its  

 

 

 

corresponding uniform shear beam must be 

n j n 
 

(35) 

As the additional number of modes, Δn, increases, the 

result gradually converges to the exact solution. The relative 

error e of the jth natural frequency obtained by using n 

modes of vibration can be expressed as 

*

*
100%

j j

j

e
 




 

 

(36) 

where j  and 
*

j  are the approximate and exact 

frequencies, respectively. 

The relative errors of the fundamental frequency by 

EMPM are presented in Fig. 3 for various p values. The 

relative errors of different natural frequencies by EMPM are 

shown in Fig. 4 with p=1/3 for various number of modes 

∆n. In the EMPM, the corresponding uniform shear beam 

parameter G0 is equal to / ( 1)bG p . It can be observed 

from Fig. 3 that p significantly influences the convergence 

rate. The soil property is more uniform (p is much smaller), 

so the results are more rapidly converge. When p is between 

1/2 and 1/4, the relative error of the fundamental frequency 

is within 0.05% when Δn is larger than 8. Fig. 4 shows that 

when the order of natural frequency is higher, the error is 

slightly greater. However, the higher frequencies are all 

convergent with the increase of Δn. The curves of error are 

almost merging into one when Δn is greater than 8. 

Therefore, referring to previous research results (Pan et al. 

2011, Bathe 1996), n=j+8 in the EMPM is satisfactory for 

engineering applications. 

Table 1 lists the first three natural frequencies of soil 

layers in which the shear modulus power exponent variation 

with depth are calculated by exact solution, EMPM, 

Rayleigh-Ritz method and the direct solution proposed by 

Xiong et al. (1986). For soil layer thickness h=30 m, 

density ρ0=2000 kg/m3, and bottom shear modulus Gb=200 

MPa. Table 2 lists the relative errors of the first three 

natural frequencies by EMPM, Rayleigh-Ritz method and 

direct solution. Based on the previous results, 11 vibration 
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Table 1 The first three natural frequencies of soil shear modulus power exponent variation with depth (rad/s) 

p 1/4 1/3 1/2 

ω 
Exact 

solution 
EMPM 

Rayleigh 

-Ritz 

Direct 

solution 

Exact 

solution 
EMPM 

Rayleigh 

-Ritz 

Direct 

solution 

Exact 

solution 
EMPM 

Rayleigh 

-Ritz 

Direct 

solution 

ω1 15.684 15.684 15.684 15.762 15.381 15.381 15.381 15.519 14.755 14.755 14.755 15.061 

ω2 44.561 44.562 44.562 45.084 42.853 42.852 42.856 43.761 39.432 39.445 39.445 41.378 

ω3 73.513 73.519 73.519 74.606 70.419 70.435 70.435 72.301 64.228 64.294 64.294 68.206 

Table 2 The relative errors of the first three natural frequencies (%) 

p 1/4 1/3 1/2 

ω EMPM Rayleigh-Ritz Direct solution EMPM Rayleigh-Ritz Direct solution EMPM Rayleigh-Ritz Direct solution 

ω1 0.0003 0.0003 0.4988 0.0008 0.0008 0.8967 0.0032 0.0032 2.0738 

ω2 0.0029 0.0029 1.1750 0.0033 0.0072 2.1184 0.0310 0.0310 4.9344 

ω3 0.0093 0.0093 1.4872 0.0233 0.0233 2.6726 0.1035 0.1035 6.1941 
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modes of the corresponding uniform shear beam are 

included in the solution of Eq. (19). The same number of 

modes was used in the Rayleigh-Ritz method. It can be seen 

from Table 2 that the relative error of the first three natural 

frequencies obtained by EMPM is within 0.2% when ∆n=8. 

The calculation results of EMPM and Rayleigh-Ritz method 

are almost same. The difference between the two methods is 

that the Rayleigh-Ritz method solves the characteristic 

equation while EMPM solves the linear algebraic equations. 

The EMPM is simpler than Rayleigh-Ritz method. And the 

EMPM is most likely more accurate than the direct solution. 

Fig. 5 presents the first three natural mode shapes with 

p=1/3 obtained by the exact solution and the EMPM. 

EMPM is solved by 11 vibration modes of the 

corresponding uniform shear beam. The mode shapes 

obtained by EMPM are almost identical with the shapes 

obtained by exact solution. Therefore, once the natural 

frequencies are convergent, the associated mode shapes 

would also be highly precise. 

 

6.2 Layered soil 
 

The main difference between the EMPM and the 

previous MPM is the integration of Kik in Eq. (14). To 

investigate the effect of Kik for layered soil, the natural 

frequencies of a two-layer site, as shown in Fig. 6, are 

calculated by EMPM, MPM, the Rayleigh-Ritz method and 

direct solution, respectively. Xiong et al. (1986) derived the 

transcendental equation of natural frequencies by transfer 

matrix method as follows 

* *

1 1 1 2

2 2 1 2

tan tan 1
v h h

v v v

  




 

(37) 

in which /i i iv G  (i=1,2) is the shear wave velocity of 

the ith layer, Gi and ρi are the shear modulus and mass 

density of the ith layer. 

The integration of Kik in Eq. (14) of a two-layers site is 

1 2

1
1 2

0
( ) ( ) ( ) ( ) ( ) ( )

h h

ik i k i k
h

K G y y y dy G y y y dy        
 

(38) 

And the integration of Kik in Eq. (23) of a two-layers site 

is given by 

1 2

1

'

1 2
0

2 1 1 1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

h h

ik i k i k
h

i k

K G y y y dy G y y y dy

G G h h

   

 

    

 

 

 

(39) 

Suppose β=G1/G2 is the ratio of shear modulus between 

the first and second layer. When the first and second layer 

thickness of soil deposit are h1=4 m and h2=16 m with 

ρ1=1800 kg/m3, ρ2=2000 kg/m3, G2=100 MPa, the relative 

error of the fundamental frequency by EMPM and MPM 

are shown in Figs. 7-8 for various β values. The relative 

errors of different natural frequencies by EMPM and MPM 

are shown in Figs. 9-10 for various number of modes Δn 

with ρ1=1800 kg/m3, ρ2=2000 kg/m3, G2=100 MPa, β=1/2. 

Corresponding uniform shear beam parameters are 

0 1 20.2 0.8G G G   and 
0 1 20.2 0.8    . 

It can be seen that the EMPM leads to monotonically  

 

Fig. 8 Relative error of the fundamental frequency by 

MPM 

 

 

Fig. 9 Relative error of the first three frequencies by 

EMPM(β=1/2) 

 

 

Fig. 10 Relative error of the first three frequencies by 

MPM(β=1/2) 

 

 

convergent solutions with the increase of Δn, but errors of 

frequencies by MPM fluctuate and do not converge to zero. 

This means that the results by MPM cannot be relied upon 

to converge to an exact solution for the layered soil. 

Therefore, the EMPM is more reasonable and accurate than 

the MPM. 

The effect of soil non-homogeneity on the error is the 

same as the soil shear modulus power exponent variation 

with depth. That is, when β is between 1/4 and 1/2, the 

larger the β is, the soil is more homogeneous, and the error 

is smaller. When the order of frequency is higher, the error 

is larger. But the errors of natural frequencies by EMPM for 

Δn=8 are less than 5%. 
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Fig. 11 The mode shapes of first three frequencies 

(β=1/2) 

 

 

Table 3 compares the first three frequencies for various 

β values, which are calculated by the exact solution, 

EMPM, MPM, the Rayleigh-Ritz method and direct 

solution. Table 4 lists the relative errors of the first three 

natural frequencies by EMPM, MPM, the Rayleigh-Ritz 

method and direct solution. Eleven modes of vibration of 

the corresponding uniform shear beam are included in the 

solution of Eq. (19). The same number of modes was used 

in the Rayleigh-Ritz method. As can be seen, when 

1/4 1/2  , the relative error calculated by EMPM is less 

than 2%. 

 

 

 

In the Rayleigh-Ritz method, the terms of the stiffness 

matrix Kik, can also be calculated with either Eq. (38) or 

(39) (Xiong et al. 1986). It can be seen from Table 3 and 

Table 4 that the results of both the Rayleigh-Ritz method 

and EMPM are the same when Eq. (38) is adopted. The 

results of Rayleigh-Ritz method based on Eq. (39) is almost 

same as MPM. The phenomena are caused by the fact that 

the mode perturbation method derive from Rayleigh-Ritz 

method, so their errors are similar. The accuracy obtained 

by Rayleigh-Ritz method using the Kik in Eq. (38) is better 

than that in Eq. (39), therefore, the coefficients of stiffness 

matrix Kik is more reasonable based on energy integration. 

As for the direct solution, it can be seen from the 

calculation results, if the Eq. (38) which is based on energy 

integral is used, the direct solution is reasonable for the 

fundamental frequency calculation. However, when the 

nonlinear property of the soil layer becomes stronger, the 

error of the direct solution increases rapidly so it is not 

suitable for the calculation of higher order frequencies. The 

stiffness matrix Kik obtained by the differential form of Eq. 

(39) is not recommended for use because the error is large. 

The results given by EMPM are probably more accurate 

than both MPM and direct solution. 

The first three natural mode shapes obtained by the 

exact solution, EMPM and MPM are as shown in Fig.11 

with β=1/2. It is evident that the results obtained by the 

EMPM are perfectly in agreement with those by exact 
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Table 3 The first three natural frequencies of two layered soils (rad/s) 

β ω 
Exact 

solution 
EMPM MPM 

Rayleigh-Ritz Direct solution 

Based on Eq. (38) Based on Eq. (39) Based on Eq. (38) Based on Eq. (39) 

1/4 

ω1 17.593 17.640 14.442 17.640 14.442 17.825 15.090 

ω2 45.091 45.981 42.572 45.981 42.572 51.471 47.075 

ω3 71.362 71.751 75.155 71.751 75.155 81.779 81.779 

1/3 

ω1 17.702 17.727 14.969 17.727 14.969 17.835 15.429 

ω2 47.945 48.483 44.978 48.483 44.978 51.700 47.831 

ω3 74.865 75.312 77.811 75.312 77.811 82.577 82.577 

1/2 

ω1 17.808 17.816 15.874 17.816 15.874 17.854 16.086 

ω2 50.869 51.052 48.195 51.052 48.195 52.155 49.309 

ω3 80.599 80.616 81.994 80.899 81.994 84.150 84.150 

Table 4 The relative errors of the first three natural frequencies (%) 

β ω EMPM MPM 
Rayleigh-Ritz Direct solution 

Based on Eq.(38) Based on Eq.(39) Based on Eq.(38) Based on Eq.(39) 

1/4 

ω1 0.2672 17.911 0.2661 17.908 1.3203 14.230 

ω2 0.6461 8.0121 0.6456 8.0111 11.216 1.7178 

ω3 0.5451 5.3152 0.5445 5.3149 14.598 14.597 

1/3 

ω1 0.1412 15.439 0.1435 15.441 0.7510 12.842 

ω2 1.1221 6.1883 1.1215 6.1894 7.8318 0.2375 

ω3 0.5971 3.9351 0.5970 3.9347 10.301 10.301 

1/2 

ω1 0.0449 10.860 0.0471 10.860 0.2599 9.6722 

ω2 0.3598 5.2566 0.3592 5.2557 2.5282 3.0672 

ω3 0.0211 1.7308 0.3716 1.7312 4.4055 4.4055 
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solution. However, those mode shapes obtained by MPM 

could lead to significantly inconsistent results. Once again, 

this shows that EMPM is more accurate than MPM from a 

mode shape perspective. 

 

 

7. Conclusions 
 

This paper introduces an energy-based modal 

perturbation method (EMPM) for the evaluation of natural 

frequencies and mode shapes of soil deposits with 

properties varying with depth. The results of examples 

show that the proposed method is highly accurate and 

convergent. This method treats soil layers with variable 

parameters as a perturbed system of its corresponding 

uniform shear beam with the same boundary conditions and 

thickness. Based on extensive analyses and numerical 

results, the following conclusions can be drawn: 

• The EMPM can decouple the energy integral equation 

for the soil deposit with properties varying with depth into a 

set of algebraic equations by using the vibration modes of 

corresponding uniform shear beam as Ritz functions. The 

method is particularly suitable for finding a few individual 

orders of frequency and mode. 

• When the soil property variation with depth is 

continuous, the EMPM is the same as the MPM. For the 

discontinuous variations, the EMPM is superior to the 

previous MPM, no matter the accuracy and stability levels. 

The solution of EMPM is monotonically convergent, but 

the results by MPM cannot be relied upon to converge to 

exact solution. 

• As the number of vibration modes of corresponding 

uniform shear beam included in EMPM analysis increases, 

the end results converge to the exact solutions. The 

difference of soil properties has a significant effect on the 

convergence rate. If the jth natural frequency and associated 

mode of shape is of the interest, including (8+j) number of 

vibration modes from its corresponding uniform shear beam 

is sufficient. In this paper, for the first three natural 

frequencies, the error of the solution obtained by EMPM is 

less than 2%, which is the preferred method for the 

evaluation of natural frequencies and mode shapes of soil 

deposit property variation with depth. 
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